
z/OS

UNIX System Services
Programming: Assembler Callable
Services Reference

SA22-7803-03

IBM

z/OS

UNIX System Services
Programming: Assembler Callable
Services Reference

SA22-7803-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 1349.

Fourth Edition, September 2002

This edition applies to Version 1 Release 4 of z/OS™ (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52),
and to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22-7803-02.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xvii

Tables . xix

About this document . xxi
Who should use this document xxi
Where to find more information xxi

Softcopy publications . xxi
Accessing z/OS licensed documents on the Internet xxii
Using LookAt to look up message explanations. xxii
IBM Systems Center publications. xxiii
z/OS UNIX porting information. xxiii
z/OS UNIX courses . xxiii
z/OS UNIX home page . xxiii
z/OS UNIX customization wizard xxiv
Discussion list. xxiv

Summary of changes . xxv

Chapter 1. Invocation details for callable services 1
Connecting to and disconnecting from z/OS UNIX System Services 1
Syntax conventions for the callable services 1

CALL . 2
Service_name. 2
Parm parameters . 2
Return_value . 2
Return_code . 2
Reason_code . 3

Determining the callable service release level 3
Linkage conventions for the callable services 3
Parameter descriptions for callable services. 4

Call parameter lists . 4
Mapping macros . 5
Examples . 5

Reentrant coding versus nonreentrant coding 5
Environmental restrictions . 5
Restrictions in a multiprocess, multiuser environment 6
Abend conditions and environments 6
Callable service failures . 7
Authorization . 8

Chapter 2. Callable services descriptions 9
accept (BPX1ACP) — Accept a Connection Request from a Client Socket . . . 10
accept_and_recv (BPX1ANR) — Accept a Connection and Receive the First

Block of Data. 13
access (BPX1ACC) — Determine If a File Can Be Accessed 18
aio_suspend (BPX1ASP) — Wait for an Asynchronous I/O Request 21
alarm (BPX1ALR) — Set an Alarm 25
asyncio (BPX1AIO) — Asynchronous I/O for Sockets 27
attach_exec (BPX1ATX) — Attach a z/OS UNIX Program 45
attach_execmvs (BPX1ATM) — Attach an MVS Program 54
auth_check_resource_np (BPX1ACK) — Determine a User’s Access to a

RACF-Protected Resource. 60

© Copyright IBM Corp. 1996, 2002 iii

||

bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor 65
chattr (BPX1CHR) — Change the Attributes of a File or Directory 68
chaudit (BPX1CHA) — Change Audit Flags for a File by Path 75
chdir (BPX1CHD) — Change the Working Directory 79
chmod (BPX1CHM) — Change the Mode of a File or Directory 82
chown (BPX1CHO) — Change the Owner or Group of a File or Directory . . . 86
chpriority (BPX1CHP) — Change the Scheduling Priority of a Process 90
chroot (BPX1CRT) — Change the Root Directory 94
close (BPX1CLO) — Close a File 97
closedir (BPX1CLD) — Close a Directory. 100
cond_cancel (BPX1CCA) — Cancel Interest in Events 102
cond_post (BPX1CPO) — Post a Thread for an Event 104
cond_setup (BPX1CSE) — Set Up to Receive Event Notifications 107
cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event . 110
cond_wait (BPX1CWA) — Suspend a Thread for an Event 114
connect (BPX1CON) — Establish a Connection Between Two Sockets 117
__console() (BPX1CCS) — Communicate with Console

(Modify/Stop/WTO/DOM) . 120
convert_id_np (BPX1CID) — Convert a DCE UUID to a userid or a userid to a

DCE UUID . 124
__cpl (BPX1CPL) — CPL Interface Service 128
deletehfs (BPX1DEL) — Delete a Program from Storage 131
exec (BPX1EXC) — Run a Program 133
execmvs (BPX1EXM) — Run an MVS Program 144
_exit (BPX1EXI) — End a Process and Bypass the Cleanup 150
extlink_np (BPX1EXT) — Create an External Symbolic Link 153
fchattr (BPX1FCR) — Change the Attributes of a File or Directory by

Descriptor . 156
fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor 163
fchdir (BPX1FCD) — Change the Working Directory. 166
fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor 168
fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by

Descriptor . 171
fcntl (BPX1FCT) — Control Open File Descriptors 174
fork (BPX1FRK) — Create a New Process 184
fpathconf (BPX1FPC) — Determine Configurable Pathname Variables Using a

Descriptor . 189
freeaddrinfo (BPX1FAI) — Free Addr_Info Structures 193
fstat (BPX1FST) — Get Status Information about a File by Descriptor 195
fstatvfs (BPX1FTV) — Get the File System Status 198
fsync (BPX1FSY) — Write Changes to Permanent Storage 201
ftruncate (BPX1FTR) — Change the Size of a File 203
getaddrinfo (BPX1GAI) — Get the IP Address and Information for a Service

Name or Location . 206
getclientid (BPX1GCL) — Obtain the Calling Program’s Identifier 213
getcwd (BPX1GCW) — Get the Pathname of the Working Directory 216
getegid (BPX1GEG) — Get the Effective Group ID 218
geteuid (BPX1GEU) — Get the Effective User ID 219
getgid (BPX1GID) — Get the Real Group ID 220
getgrent (BPX1GGE) — Sequentially Access the Group Database 221
getgrgid (BPX1GGI) — Access the Group Database by ID 224
getgrnam (BPX1GGN) — Access the Group Database by Name 227
getgroups (BPX1GGR) — Get a List of Supplementary Group IDs 230
getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group IDs by

User Name . 233

iv z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||

|
||

gethostbyaddr (BPX1GHA) — Get the IP Address and Alias of a Host Name
for the Specified IP Address 236

gethostbyname (BPX1GHN) — Get the IP Address and Alias of a Host Name
for the Specified Host Domain Name 239

gethostid or gethostname (BPX1HST) — Get ID or Name Information about a
Socket Host. 242

getitimer (BPX1GTR) — Get the Value of the Interval Timer 245
getlogin (BPX1GLG) — Get the User Login Name 248
getpeername or getsockname (BPX1GNM) — Get the Name of a Socket or of

the Peer Connected to a Socket 250
getnameinfo (BPX1GNI) — Get the Host Name and Service Name from a

Socket Address . 251
getpgid (BPX1GEP) — Get the Process Group ID 255
getpgrp (BPX1GPG) — Get the Process Group ID 257
getpid (BPX1GPI) — Get the Process ID 258
getppid (BPX1GPP) — Get the Parent Process ID 259
getpriority (BPX1GPY) — Get the Scheduling Priority of a Process 260
getpwent (BPX1GPE) — Sequentially Access the User Database 263
getpwnam (BPX1GPN) — Access the User Database by User Name 266
getpwuid (BPX1GPU) — Access the User Database by User ID 269
getrlimit (BPX1GRL) — Get Resource Limits 272
getrusage (BPX1GRU) — Get Resource Usage 274
getsid (BPX1GES) — Get the Process Group ID of the Session Leader . . . 276
getsockname or getpeername (BPX1GNM) — Get the Name of a Socket or of

the Peer Connected to a Socket 278
getsockopt or setsockopt (BPX1OPT) — Get or Set Options Associated with a

Socket. 281
__getthent (BPX1GTH) — Get Thread Data. 285
getuid (BPX1GUI) — Get the Real User ID 288
getwd (BPX1GWD) — Get the Pathname of the Working Directory 289
givesocket (BPX1GIV) — Give a Socket to Another Program 292
grantpt (BPX1GPT) — Grant Access to the Slave Pseudoterminal 295
IPCSDumpOpenClose (BPXGMCDE) — MVS IPCS Dump Open/Close Service 297
IPCSDumpAccess (BPXGMPTR) — PTRACE IPCS Dump Access Service 302
isatty (BPX1ITY) (POSIX Version) — Determine Whether a File Descriptor

Represents a Terminal . 307
isatty (BPX2ITY) (X/Open Version) — Determine Whether a File Descriptor

Represents a Terminal . 309
kill (BPX1KIL) — Send a Signal to a Process 311
lchown (BPX1LCO) — Change the Owner or Group of a File, Directory, or

Symbolic Link . 315
link (BPX1LNK) — Create a Link to a File 319
listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection

Requests from Clients . 323
loadhfs (BPX1LOD) — Load a Program into Storage by HFS Pathname . . . 326
lseek (BPX1LSK) — Change a File’s Offset 332
lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname . 335
__map_init (BPX1MMI) — Create a Mapped Megabyte Area 339
__map_service (BPX1MMS) — Mapped Megabyte Area Services. 344
mkdir (BPX1MKD) — Make a Directory 349
mknod (BPX1MKN) — Make a Directory, a FIFO, a Character Special, or a

Regular File. 353
mmap (BPX1MMP) — Map Pages of Memory 357
mount (BPX1MNT) — Make a File System Available 365
__mount (BPX2MNT) — Make a File System Available 369

Contents v

|
||

mprotect (BPX1MPR) — Set Protection of Memory Mapping 373
msgctl (BPX1QCT) — Perform Message Queue Control Operations 376
msgget (BPX1QGT) — Create or Find a Message Queue 380
msgrcv (BPX1QRC) — Receive from a Message Queue 384
msgsnd (BPX1QSN) — Send to a Message Queue 388
msync (BPX1MSY) — Synchronize Memory with Physical Storage 392
munmap (BPX1MUN)— Unmap Previously Mapped Addresses 396
mvsiptaffinity (BPX1IPT) — Run a Program on the IPT Thread 399
mvspause (BPX1MP) — Wait on User Events Plus Signals 402
mvspauseinit (BPX1MPI) — Set Up to Wait on User Events Plus Signals 405
mvsprocclp (BPX1MPC) — Clean Up Kernel Resources 408
mvssigsetup (BPX1MSS) — Set Up MVS Signals. 411
MVSThreadAffinity (BPX1TAF) — MVS Thread Affinity Service 416
mvsunsigsetup (BPX1MSD) — Detach the Signal Setup 419
nice (BPX1NIC) — Change the nice Value of a Process 422
oe_env_np (BPX1ENV) — Examine, Change, or Examine and Change an

Environmental Attribute . 425
open (BPX1OPN) — Open a File. 434
opendir (BPX1OPD) — Open a Directory 439
openstat (BPX2OPN) — Open a File and Obtain Status Information 442
osenv (BPX1OSE) — Get or Set Security Attributes or WLM Enclave

Membership Attributes . 447
__passwd (BPX1PWD) — Verify/Change the User Password 455
pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a

Pathname . 459
pause (BPX1PAS) — Suspend a Process Pending a Signal 463
pfsctl (BPX1PCT) — Physical File System Control 465
__pid_affinity (BPX1PAF) — Add or Delete an Entry in a Process’s Affinity List 471
pipe (BPX1PIP) — Create an Unnamed Pipe 475
poll (BPX1POL) — Monitor Activity on File Descriptors and Message Queues 477
Pread() and Pwrite() (BPX1RW) — Read from or Write to a File without

Changing the File Pointer. 482
pthread_cancel (BPX1PTB) — Cancel a Thread 484
pthread_create (BPX1PTC) — Create a Thread 486
pthread_detach (BPX1PTD) — Detach a Thread 492
pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread 494
pthread_join (BPX1PTJ) — Wait on a Thread 498
pthread_kill (BPX1PTK) — Send a Signal to a Thread 501
pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process 504
pthread_quiesce_and_get_np (BPX1PQG) — pthread Quiesce and Get

Service . 508
pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security

Environment for Caller’s Thread 512
pthread_self (BPX1PTS) — Query the Thread ID 518
pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State. . . . 519
pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt Type 522
pthread_tag_np (BPX1PTT) — Set, Query, or Both Set and Query the Caller’s

Thread Tag Data . 525
pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur 528
ptrace (BPX1PTR) — Control Another Process for Debugging 530
querydub (BPX1QDB) — Obtain the Dub Status of the Current Task. 559
queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered 561
quiesce (BPX1QSE) — Quiesce a File System 564
read (BPX1RED) — Read from a File or Socket 567
readdir (BPX1RDD) — Read an Entry from a Directory 571
readdir2 (BPX1RD2) — Read an Entry from a Directory 574

vi z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

read_extlink (BPX1RDX) — Read an External Symbolic Link 578
readlink (BPX1RDL) — Read the Value of a Symbolic Link 581
readv (BPX1RDV) — Read Data and Store It in a Set of Buffers 584
realpath (BPX1RPH) — Resolve a Pathname 588
recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer 592
recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer 595
recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in

Message Buffers . 599
rename (BPX1REN) — Rename a File or Directory 602
resource (BPX1RMG) — Measure Resources 606
rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning 608
rmdir (BPX1RMD) — Remove a Directory 610
BPX1SEC — Create a New Security Environment for a Process 613
select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues 619
semctl (BPX1SCT) — Perform Semaphore Control Operations 627
semget (BPX1SGT) — Create or Find a Set of Semaphores 633
semop (BPX1SOP) — Perform Semaphore Serialization Operations. 638
send (BPX1SND) — Send Data on a Socket 642
send_file (BPX1SF) — Send a File on a Socket 645
sendmsg (BPX2SMS) — Send Messages on a Socket 650
sendto (BPX1STO) — Send Data on a Socket 654
server_init (BPX1SIN) — Server Initialization 658
server_pwu (BPX1SPW) — Server Process Work Unit 662
set_dub_default (BPX1SDD) — Set the Dub Default Service 669
setegid (BPX1SEG) — Set the Effective Group ID 673
seteuid (BPX1SEU) — Set the Effective User ID 676
setgid (BPX1SGI) — Set the Group ID. 678
setgrent (BPX1SGE) — Reset the Group Database 681
setgroups (BPX1SGR) — Set the Supplementary Group IDs List 682
setitimer (BPX1STR) — Set the Value of the Interval Timer 685
setpeer (BPX1SPR) — Preset the Peer Address Associated with a Socket 689
setpgid (BPX1SPG) — Set a Process Group ID for Job Control 692
setpriority (BPX1SPY) — Set the Scheduling Priority of a Process 695
setpwent (BPX1SPE) — Reset the User Database 698
setregid (BPX1SRG) — Set the Real and/or Effective GIDs 699
setreuid (BPX1SRU) —Set the Real and/or Effective UIDs 702
setrlimit (BPX1SRL) — Set Resource Limits. 705
setsid (BPX1SSI) — Create a Session and Set the Process Group ID 709
setsockopt or getsockopt (BPX1OPT) — Get or Set Options Associated with a

Socket . 711
set_thread_limits (BPX1STL) — Change a Process’s Task or Thread Limits for

pthread_created Threads . 712
set_timer_event (BPX1STE) — Set DIE-Mode Timer Event 716
setuid (BPX1SUI) — Set User IDs 719
shmat (BPX1MAT) — Attach to a Shared Memory Segment 723
shmctl (BPX1MCT) — Perform Shared Memory Control Operations 727
shmdt (BPX1MDT) — Detach a Shared Memory Segment 731
shmem_lock (BPX1SLK) — Shared Memory Lock Service 733
shmget (BPX1MGT) — Create/Find a Shared Memory Segment 738
shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket Connection 743
sigaction (BPX1SIA) — Examine or Change a Signal Action 746
__sigactionset (BPX1SA2) — Examine or Change a Set of Signal Actions 752
sigpending (BPX1SIP) — Examine Pending Signals 757
sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask 759
sigqueue (BPX1SGQ) — Queue a Signal to a Process. 762

Contents vii

sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread
Until a Signal Is Delivered 766

sigtimedwait (BPX1STW) — Wait for a Signal With a Specified Timeout . . . 769
sigwait (BPX1SWT) — Wait for a Signal 772
sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time 774
smf_record (BPX1SMF) — Write an SMF Record. 777
socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets 780
spawn (BPX1SPN) — Spawn a Process 784
srx_np (BPX1SRX) — Send or Receive CSM Buffers on a Socket 801
stat (BPX1STA) — Get Status Information about a File by Pathname 808
statvfs (BPX1STV) — Get the File System Status 812
sw_sigdlv (BPX1DSD) — Switch the Setting for Signal Delivery 815
symlink (BPX1SYM) — Create a Symbolic Link to a Pathname 817
sync (BPX1SYN) — Schedule File System Updates 822
sysconf (BPX1SYC) — Determine System Configuration Options 824
takesocket (BPX1TAK) — Acquire a Socket from Another Program 826
tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted 829
tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal. 831
tcflush (BPX1TFH) — Flush Input or Output on a Terminal 834
tcgetattr (BPX1TGA) — Get the Attributes for a Terminal 837
tcgetcp (BPX1TGC) — Get Terminal Code Page Names 840
tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID 843
tcgetsid (BPX1TGS) — Get a Process Group ID for the Session Leader for the

Controlling Terminal . 845
tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal 847
tcsetattr (BPX1TSA) — Set the Attributes for a Terminal 850
tcsetcp (BPX1TSC) — Set Terminal Code Page Names 853
tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID 857
tcsettables (BPX1TST) — Set Terminal Code Page Names and Conversion

Tables . 860
times (BPX1TIM) — Get Process and Child Process Times 864
truncate (BPX1TRU) — Change the Size of a File 867
ttyname (BPX1TYN) (POSIX Version) — Get the Name of a Terminal 870
ttyname (BPX2TYN) (X/Open Version) — Get the Name of a Terminal 872
umask (BPX1UMK) — Set the File Mode Creation Mask 875
umount (BPX1UMT) — Remove a Virtual File System 877
uname (BPX1UNA) — Obtain the Name of the Current Operating System 880
unlink (BPX1UNL) — Remove a Directory Entry 882
unlockpt (BPX1UPT) — Unlock a Pseudoterminal Master/Slave Pair. 885
unquiesce (BPX1UQS) — Unquiesce a File System. 887
utime (BPX1UTI) — Set File Access and Modification Times. 890
wait (BPX1WAT) — Wait for a Child Process to End. 893
wait-extension (BPX1WTE) — Obtain Status Information for Children 897
w_getipc (BPX1GET) — Query Interprocess Communications 901
w_getmntent (BPX1GMN) — Get Information on Mounted File Systems . . . 905
w_getpsent (BPX1GPS) — Get Process Data 908
w_ioctl (BPX1IOC) — Control I/O 914
__wlm (BPX1WLM) — WLM Interface Service 924
w_pioctl (BPX1PIO) — Pathname I/O Control 929
w_statvfs (BPX1STF) — Get the File System Status 932
write (BPX1WRT) — Write to a File or a Socket 935
writev (BPX1WRV) — Write Data from a Set of Buffers 939

Appendix A. System control offsets to callable services 945
Example . 945
List of offsets . 945

viii z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix B. Mapping macros 951
Macros Mapping Parameter Options 951
BPXYACC — Map Flag Values for access 951
BPXYAIO — Map asyncio Parameter List 952
BPXYATT — Map File Attributes for chattr and fchattr 953
BPXYAUDT — Map Flag Values for chaudit and fchaudit 954
BPXYBRLK — Map Byte Range Lock Request for fcntl 955
BPXYCCA — Map Input/Output Structure for __console(). 955
BPXYCID — Map the Returning Structure for getclientid() 956
BPXYCONS — Constants Used by Services 956
BPXYCW — Serialization Constants Used by Many Services 961
BPXYDIRE — Map Directory Entries for readdir 961
BPXYDCOR — dbx cordump cache information 962
BPXYENFO — ENF Signal Constants 968
BPXYERNO — Component Return and Reason Codes 968
BPXYFCTL — Command Values and Flags for fcntl 968
BPXYFDUM — Logical File System Dump Parameter List 969
BPXYFTYP — File Type Definitions 969
BPXYFUIO — Map File System User I/O Block 970
BPXYGIDN — Map Data Returned for getpwnam and getpwuid 971
BPXYGIDS — Map Data Returned for getgrnam and getgrpid 972
BPXYINHE — Spawn Inheritance Structure 972
BPXYIOCC — Ioctl Command Definitions 973
BPXYIOV — Map the I/O Vector Structure 978
BPXYIPCP — Map InterProcess Communication Permissions 978
BPXYIPCQ — Map w_getipc Structure 978
BPXYITIM — Map getitimer, setitimer Structure 980
BPXYMMG — Map Interface for _map_init and _map_service 981
BPXYMNTE — Map Response and Element Structure of w_getmntent 983
BPXYMODE — Map the Mode Constants of the File Services 986
BPXYMSG — Map InterProcess Communication Message Queues 986
BPXYMSGF — Map the Message Flags 987
BPXYMSGH — Map the Message Header 987
BPXYMSGX — Map the Message Header 988
BPXYMTM — Map the Modes for mount and unmount. 989
BPXYOCRT — Map the OE Certificate Support Structure. 990
BPXYOEXT — Map the Common External Control Block 991
BPXYOPNF — Map Flag Values for open 993
BPXYPCF — Command Values for pathconf and pathconf 993
BPXYPEDB — Mapping of Process Exit Data Block f 994
BPXYPGPS — Map the Response Structure for w_getpsent 996
BPXYPGTH — Map the Response Structure for __getthent 997
BPXYPOLL — Map poll Syscall Parameters 1000
BPXYPPSD — Map Signal Delivery Data 1001
BPXYPRLI — Process-level Information. 1003
BPXYPTAT — Map Attributes for pthread_exit_and_get 1003
BPXYPTRC — Map Parameters for ptrace. 1004
BPXYPTXL — Map the Parameter List for pthread_create 1018
BPXYRFIS — Map the Register File Interest Structures 1018
BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures 1019
BPXYRMON — Map Resource Monitor Data 1019
BPXYSECI — Map the Output of BPX1IOC for the SECIGET Request 1020
BPXYSEEK — Constants for lseek 1021
BPXYSEL — Map the select Options 1021
BPXYSELT — Map the Timeout Value for the select Syscall 1022
BPXYSEM — Map InterProcess Communication Semaphores 1022

Contents ix

BPXYSFDL — Map the Server File Descriptor List Structure 1022
BPXYSFPL — Map the send_file parameter list 1023
BPXYSHM—Map InterProcess Communication Shared Memory Segments 1024
BPXYSIGH — Signal Constants 1024
BPXYSINF — Map SIGINFO_T Structure 1026
BPXYSOCK — Map SOCKADDR Structure and Constants. 1027
BPXYSSET — Map the sigaction set 1032
BPXYSSTF — Map Response Structure for File System Status 1033
BPXYSTAT — Map the Response Structure for stat 1034
BPXYTCCP — Map the Terminal Control Code Page Structure 1035
BPXYTCPP — Map TcpParm Structure 1036
BPXYTCPX — Map TcpX structure 1044
BPXYTHDQ — Mapping of THDQ structure for BPX1PQG 1044
BPXYTHLI — Thread-level Information 1047
BPXYTIMS — Map the Response Structure for times. 1049
BPXYTIOS — Map the termios Structure 1049
BPXYUTSN — Map the Response Structure for uname 1053
BPXYWAST — Map the Wait Status Word 1053
BPXYWLM — WLM Constants and Parameter List DSECTs 1054
BPXYWNSZ — Map the winsize Structure 1057
BPXZOAPB — USS address space per-process extension 1057
BPXZOTCB — USS extension to the TCB 1057

Appendix C. Callable services examples 1065
Reentrant entry linkage . 1066
BPX1ACC (access) Example 1067
BPX1ACK (auth_check_resource_np) Example 1068
BPX1ACP (accept) Example 1069
BPX1AIO (asyncio) Example 1070
BPX1ALR (alarm) Example 1071
BPX1ANR (accept_and_recv) Example 1072
BPX1ASP (aio_suspend) Example. 1073
BPX1ATM (attach_execmvs) Example 1074
BPX1ATX (attach_exec) Example 1075
BPX1BND (bind) Example . 1076
BPXICCA (cond_cancel) Example 1077
BPX1CCS (__console()) Example 1078
BPX1CHA (chaudit) Example. 1079
BPX1CHD (chdir) Example 1080
BPX1CHM (chmod) Example. 1081
BPX1CHO (chown) Example 1082
BPX1CHP (chpriority) Example 1083
BPX1CHR (chattr) Example 1084
BPX1CID (convert_id_np) Example 1085
BPX1CLD (closedir) Example 1086
BPX1CLO (close) Example 1087
BPX1CON (connect) Example 1088
BPX1CPO (cond_post) Example 1089
BPX1CRT (chroot) Example 1090
BPX1CSE (cond_setup) Example 1091
BPX1CTW (cond_timed_wait) Example 1092
BPX1CWA (cond_wait) Example 1093
BPX1DEL (deleteHFS) Example 1094
BPX1ENV (oe_env_np) Example 1095
BPX1EXC (exec) Example. 1096
BPX1EXI (_exit) Example . 1097

x z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1EXM (execmvs) Example 1098
BPX1EXT (extlink_np) Example 1099
BPX1FAI(freeaddrinfo)Example 1100
BPX1FCA (fchaudit) Example 1101
BPX1FCD (fchdir) Example 1102
BPX1FCM (fchmod) Example 1103
BPX1FCO (fchown) Example 1104
BPX1FCR (fchattr) Example 1105
BPX1FCT (fcntl) Example . 1106
BPX1FPC (fpathconf) Example 1107
BPX1FRK (fork) Example . 1108
BPX1FST (fstat) Example . 1109
BPX1FSY (fsync) Example. 1110
BPX1FTR (ftruncate) Example 1111
BPX1FTV (fstatvfs) Example 1112
BPX1GAI (getaddrinfo) Example 1113
BPX1GCL (getclientid) Example 1114
BPX1GCW (getcwd) Example 1115
BPX1GEG (getegid) Example. 1116
BPX1GEP (getpgid) Example 1117
BPX1GES (getsid) Example 1118
BPX1GET (w_getipc) Example 1119
BPX1GEU (geteuid) Example 1120
BPX1GGE (getgrent) Example 1121
BPX1GGI (getgrgid) Example 1122
BPX1GGN (getgrnam) Example 1123
BPX1GGR (getgroups) Example 1124
BPX1GHA (gethostbyaddr) Example 1125
BPX1GHN (gethostbyname) Example 1126
BPX1GID (getgid) Example 1127
BPX1GIV (givesocket) Example 1128
BPX1GLG (getlogin) Example 1129
BPX1GMN (w_getmntent) Example 1130
BPX1GNI (getnameinfo) Example 1131
BPX1GPG (getpgrp) Example 1132
BPX1GNM (getpeername or getsockname) Example 1133
BPX1GPE (getpwent) Example 1134
BPX1GPI (getpid) Example 1135
BPX1GPN (getpwnam) Example 1136
BPX1GPP (getppid) Example. 1137
BPX1GPS (w_getpsent) Example 1138
BPX1GPT (grantpt) Example 1139
BPX1GPU (getpwuid) Example 1140
BPX1GPY (getpriority) Example 1141
BPX1GRL (getrlimit) Example 1142
BPX1GRU (getrusage) Example 1143
BPX1GTH (__getthent) Example 1144
BPX1GTR (getitimer) Example 1145
BPX1GUG (getgroupsbyname) Example 1146
BPX1GUI (getuid) Example 1147
BPX1GWD (getwd) Example 1148
BPX1HST (gethostid or gethostname) Example 1149
BPX1IOC (w_ioctl) Example 1150
BPX1IPT (mvsiptaffinity) Example 1151
BPX1ITY (isatty) Example . 1152
BPX2ITY (isatty) Example . 1153

Contents xi

BPX1KIL (kill) Example . 1154
BPX1LCO (lchown) Example 1155
BPX1LNK (link) Example . 1156
BPX1LOD (loadHFS) Example 1157
BPX1LSK (lseek) Example. 1158
BPX1LSN (listen) Example 1159
BPX1LST (lstat) Example . 1160
BPX1MAT (shmat) Example 1161
BPX1MCT (shmctl) Example 1162
BPX1MDT (shmdt) Example 1163
BPX1MGT (shmget) Example 1164
BPX1MKD (mkdir) Example 1165
BPX1MKN (mknod) Example 1166
BPX1MMI (__map_init) Example 1167
BPX1MMP (mmap) Example 1168
BPX1MMS (__map_service) Example 1169
BPX1MNT (mount) Example 1170
BPX2MNT (__mount) Example 1171
BPX1MP (mvspause) Example 1172
BPX1MPC (mvsprocclp) Example 1173
BPX1MPI (mvspauseinit) Example 1174
BPX1MPR (mprotect) Example 1175
BPX1MSD (mvsunsigsetup) Example 1176
BPX1MSS (mvssigsetup) Example 1177
BPX1MSY (msync) Example 1178
BPX1MUN (munmap) Example 1179
BPX1NIC (nice) Example . 1180
BPX1OPD (opendir) Example 1181
BPX1OPN (open) Example 1182
BPX2OPN (openstat) Example 1183
BPX1OPT (getsockopt or setsockopt) Example 1184
BPX1OSE ((__osenv_get/set/unset/persist/unpersist) Example 1185
BPX1PAF (__pid_affinity) Example. 1186
BPX1PAS (pause) Example 1187
BPX1PCF (pathconf) Example 1188
BPX1PCT (pfsctl) Example 1189
BPX1PIP (pipe) Example . 1190
BPX1POL (poll) Example . 1191
BPX1PQG (Pthread_quiesce_and_get_np) Example 1192
BPX1PSI (pthread_setintr) Example 1193
BPX1PST (pthread_setintrtype) Example 1194
BPX1PTB (pthread_cancel) Example 1195
BPX1PTC (pthread_create) Example 1196
BPX1PTD (pthread_detach) Example. 1197
BPX1PTI (pthread_testintr) Example 1198
BPX1PTJ (pthread_join) Example 1199
BPX1PTK (pthread_kill) Example 1200
BPX1PTQ (pthread_quiesce) Example 1201
BPX1PTR (ptrace) Example 1202
BPX1PTS (pthread_self) Example 1203
BPX1PTT (pthread_tag_np) Example. 1204
BPX1PTX (pthread_exit_and_get) Example 1205
BPX1PWD (__passwd) Example 1206
BPX1QCT (msgctl) Example 1207
BPX1QDB (querydub) Example 1208
BPX1QGT (msgget) Example 1209

xii z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1QRC (msgrcv) Example 1210
BPX1QSE (quiesce) Example 1211
BPX1QSN (msgsnd) Example 1212
BPX1RCV (recv) Example . 1213
BPX1RDD (readdir) Example. 1214
BPX1RDL (readlink) Example 1215
BPX1RDV (readv) Example 1216
BPX1RDX (read extlink) Example 1217
BPX1RD2 (readdir2) Example 1218
BPX1RED (read) Example. 1219
BPX1REN (rename) Example 1220
BPX1RFM (recvfrom) Example 1221
BPX1RMD (rmdir) Example 1222
BPX1RMG (resource) Example 1223
BPX2RMS (recvmsg) Example 1224
BPX1RPH (realpath) Example 1225
BPX1RW (Pwrite) Example 1226
BPX1RWD (rewinddir) Example 1227
BPX1SA2 (__sigactionset) Example 1228
BPX1SCT (semctl) Example 1229
BPX1SDD (setdubdefault) Example 1230
BPX1SEC Example . 1231
BPX1SEG (setegid) Example. 1232
BPX1SEL (select)Example. 1233
BPX1SEU (seteuid) Example. 1234
BPX1SF (send_file) Example. 1235
BPX1SGE (setgrent) Example 1236
BPX1SGI (setgid) Example 1237
BPX1SGQ (sigqueue) Example 1238
BPX1SGR (setgroups) Example. 1239
BPX1SGT (semget) Example. 1240
BPX1SHT (shutdown) Example 1241
BPX1SIA (sigaction) Example 1242
BPX1SIN (server_init) Example 1243
BPX1SIP (sigpending) Example 1244
BPX1SLK (shmem_lock) Example 1245
BPX1SLP (sleep) Example 1246
BPX1SMF (smf_record) Example 1247
BPX2SMS (sendmsg) Example 1248
BPX1SND (send) Example 1249
BPX1SOC (socket or socketpair) Example 1250
BPX1SOP (semop) Example 1251
BPX1SPB (queue_interrupt) Example 1252
BPX1SPE (setpwent) Example 1253
BPX1SPG (setpgid) Example. 1254
BPX1SPM (sigprocmask) Example 1255
BPX1SPN (spawn) Example 1256
BPX1SPR (setpeer) Example 1257
BPX1SPW (server_pwu) Example 1258
BPX1SPY (setpriority) Example 1259
BPX1SRG (setregid) Example 1260
BPX1SRL (setrlimit) Example. 1261
BPX1SRU (setreuid) Example 1262
BPX1SRX (srx_np) Example 1263
BPX1SSI (setsid) Example 1264
BPX1SSU (sigsuspend) Example 1265

Contents xiii

BPX1STA (stat) Example . 1266
BPX1STE (set_timer_event) Example 1267
BPX1STF (w_statvfs) Example 1268
BPX1STL (set_thread_limits) Example 1269
BPX1STO (sendto) Example 1270
BPX1STR (setitimer) Example 1271
BPX1STV (statvfs) Example 1272
BPX1STW (sigtimedwait) Example. 1273
BPX1SUI (setuid) Example 1274
BPX1SWT (sigwait) Example. 1275
BPX1SYC (sysconf) Example 1276
BPX1SYM (symlink) Example 1277
BPX1SYN (sync) Example. 1278
BPX1TAF (MVSThreadAffinity) Example. 1279
BPX1TAK (takesocket) Example 1280
BPX1TDR (tcdrain) Example 1281
BPX1TFH (tcflush) Example 1282
BPX1TFW (tcflow) Example 1283
BPX1TGA (tcgetattr) Example 1284
BPX1TGC (tcgetcp) Example. 1285
BPX1TGP (tcgetpgrp) Example 1286
BPX1TGS (tcgetsid) Example 1287
BPX1TIM (times) Example. 1288
BPX1TLS (pthread_security_np) Example 1289
BPX1TRU (truncate) Example 1290
BPX1TSA (tcsetattr) Example 1291
BPX1TSB (tcsendbreak) Example 1292
BPX1TSC (tcsetcp) Example 1293
BPX1TSP (tcsetpgrp) Example 1294
BPX1TST (tcsettables) Example 1295
BPX1TYN (ttyname) Example 1296
BPX2TYN (ttyname) Example 1297
BPX1UMK (umask) Example 1298
BPX1UMT (umount) Example 1299
BPX1UNA (uname) Example 1300
BPX1UNL (unlink) Example 1301
BPX1UPT (unlockpt) Example 1302
BPX1UQS (unquiesce) Example 1303
BPX1UTI (utime) Example. 1304
BPX1WAT (wait) Example . 1305
BPX1WLM (__WLM) Example 1306
BPX1WRT (write) Example 1307
BPX1WRV (writev) Example 1308
BPX1WTE (wait extension) Example 1309
Reentrant Return Linkage . 1310

Appendix D. Example with nonreentrant entry linkage 1315

Appendix E. The relationship of z/OS UNIX signals to callable services 1319
High-level-language signal interfaces 1319

How high-level languages use signals 1319
Signal setup when linking to callable services. 1320

ESPIE or ESTAE and the SIGILL, SIGFPE, and SIGSEGV signals 1321
When signals are and are not supported 1321

Signal delivery keys . 1322
Delayed signal delivery . 1323

xiv z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

When signals cannot be delivered 1324
Signals and multiple tasks created by ATTACH 1324
Signals and multiple tasks created by pthread_create. 1324
Signal defaults . 1325

Appendix F. Using threads with callable services 1327
Creating threads . 1327

The pthread_create task initialization routine 1327
Terminating pthreads . 1328

Heavyweight thread (HWT) 1328
Mediumweight thread (MWT) 1328
Terminating multiple pthreads and tasks. 1328
Pthread termination scenarios 1329

Appendix G. Optimizing performance using process- and thread-level
information . 1335

Optimization processing for BPX1PSI (pthread_setintr) 1335
Optimization processing for BPX1PST (pthread_setintrtype) 1336
Optimization processing for BPX1SPM (sigprocmask). 1336
Optimization processing for BPX1GPI (getpid) 1337

Appendix H. Callable services available to SRB mode routines 1339
Overview . 1339
Recovery . 1339

Task mode routine responsibilities 1340
Task and address space dynamic resource manager 1340

Callable services supported in SRB mode 1340

Appendix I. z/OS UNIX process start/end exits 1343
Exit environment . 1344
Errno/errnoJrs . 1345
Restrictions . 1345
Usage notes . 1345

Appendix J. Accessibility 1347
Using assistive technologies 1347
Keyboard navigation of the user interface 1347

Notices . 1349
Programming interface information. 1350
Trademarks . 1350

Index . 1351

Contents xv

||
||
||
||
||

xvi z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Figures

1. Call parameter list . 5
2. Program flow of mvssigsetup and sigaction with Signal Interface Routine (SIR) 1321

© Copyright IBM Corp. 1996, 2002 xvii

xviii z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Tables

1. Attribute fields modifiable by chattr . 71
2. Attribute fields modifiable by fchattr . 158
3. Dcor_Request options . 304
4. PTRACE service options for the Dcor_Request parameter 305
5. Parameter attributes for request options . 537
6. Return values and return codes for request options. 541
7. BPX1SEC return values for certificate registration/deregistration with initACEE return code 8 617
8. BPX1SEC parameter usage based on function requested 617
9. Calling parameters and commands. 630

10. Resources that can be limited by setrlimit . 705
11. Allowable thread limits for calling processes . 714
12. Idtypes . 898
13. Options . 899
14. Authorization requirements for __wlm functions 927
15. System control offsets to callable services . 945
16. Support of signal calls . 1322
17. Using exit or _exit when the thread is not the IPT 1329
18. Using exit or _exit when the thread is the IPT 1330
19. Using pthread_exit_and_get when the thread is not the IPT and not the last thread 1331
20. Using pthread_cancel when the thread is not the last thread and is canceled. 1332
21. Using pthread_exit_and_get when the thread is the IPT and not the last thread 1332
22. Using pthread_exit_and_get when the thread is not the IPT and is the last thread 1333
23. Using pthread_exit_and_get when the IPT is the last thread 1334
24. Optimization processing for BPX1PSI (pthread_setintr) 1335
25. Optimization processing for BPX1PST (pthread_setintrtype) 1336
26. Optimization processing for BPX1SPM (sigprocmask) 1336

© Copyright IBM Corp. 1996, 2002 xix

||

xx z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

About this document

This document describes the features and usage requirements for the z/OS UNIX
System Services (z/OS UNIX) callable services. These services are interfaces
between the z/OS operating system and standard (POSIX or Single UNIX®

Specification) programming functions that require operating system services. For
example, programmers creating runtime library programs use these services. This
book also describes callable services that are not related to the standard interfaces.

System programmers coding programs in assembler can use these callable
services to obtain the z/OS UNIX services they need. This document contains
detailed information—such as the function, requirements, syntax, linkage
information, parameters, and usage information—that is needed to use the services.
In the appendixes you will find information about:
v System control offsets to callable services
v Mapping macros
v Callable service examples
v The relationship of signals to callable services
v Using threads with callable services
v Optimizing performance using process- and thread-level information
v Callable services available to SRB mode routines
v z/OS UNIX process start/end exits
v Accessibility features
v Notices
v An index

Who should use this document
This document is for assembler programmers who want to use z/OS UNIX System
Services.

Where to find more information
Where necessary, this document references information in other documents about
the elements and features of z/OS. For complete titles and order numbers for all
z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications
The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This
softcopy collection contains a set of z/OS and related unlicensed product
documents. The CD-ROM collection includes the IBM Library Reader™, a program
that enables customers to read the softcopy documents.

© Copyright IBM Corp. 1996, 2002 xxi

|

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:
http://www.ibm.com/servers/eserver/zseries/zos/

Select “Library”.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxii z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

IBM Systems Center publications
IBM systems centers produce redbooks that can be helpful in setting up and using
z/OS UNIX System Services. You can order these publications through normal
channels, or you can view them with a web browser from this URL:
http://www.redbooks.ibm.com/

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of z/OS UNIX topics. You must order them separately. A selected list
of these documents is on the z/OS UNIX web site at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html/

z/OS UNIX porting information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,
at this URL:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html/

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

z/OS UNIX courses
For a current list of courses that you can take, go to:
http://www.ibm.com/services/learning/

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

z/OS UNIX home page
The z/OS UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for z/OS UNIX. All this code works in our environment
at the time we make it available, but is not officially supported. Each tool has a
README file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys .

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp .

About this document xxiii

Restrictions
Because the tools are not officially supported, there are no known
enhancements and no APARs can be accepted.

z/OS UNIX customization wizard
If you’d like help with customizing z/OS UNIX, then check out our Web-based
wizard. You can access it at:
http://www.ibm.com/servers/eserver/zseries/zos/wizards/

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF® security setup for z/OS UNIX. Whether you are installing z/OS
UNIX for the first time or are a current user who wishes to verify settings, you can
use this wizard.

Beginning with OS/390® R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2R8, as well.

Discussion list
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list . This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:
subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

xxiv z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Summary of changes

Summary of changes
for SA22-7803-03
z/OS Version 1 Release 4

This document contains information previously presented in z/OS UNIX System
Services Programming: Assembler Callable Services Reference, SA22-7803-02,
which supports z/OS Version 1 Release 3.

New information

v The following callable service descriptions are new:
– BPX1FAI (freeaddrinfo)
– BPX1GAI (getaddrinfo)
– BPX1GNI (getnameinfo)

v An appendix has been added, Appendix I, “z/OS UNIX process start/end exits” on
page 1343.

Changed information

v Minor changes have been made to the following callable services:
– BPX1AIO (asyncio)
– BPX1GMN (w_getmntent)
– BPX1GPN (getpwnam)
– BPX1GPS (w_getpsent)
– BPX1IOC (w_ioctl)
– BPX1KIL (kill)
– BPX1MKD (mkdir)
– BPX1MKN (mknod)
– BPX1MNT (mount)
– BPX2MNT (__mount)
– BPX1OPN (open)
– BPX1PTK (pthread_kill)
– BPX1PWD (__passwd)
– BPX1SA2 (__sigactionset)
– BPX1SEC
– BPX1SEL (select/selectex)
– BPX1SIA (sigaction)
– BPX1SPM (sigprocmask)
– BPX1SRL (setrlimit)
– BPX1SUI (setuid)
– BPX1SSU (sigsuspend)
– BPX1SWT (sigwait)
– BPX1SYM (symlink)
– BPX1TLS (pthread_security_np)

This document includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

© Copyright IBM Corp. 1996, 2002 xxv

Summary of changes
for SA22-7803-02
z/OS Version 1 Release 3

This document contains information previously presented in z/OS UNIX System
Services Programming: Assembler Callable Services Reference, SA22-7803-01,
which supports z/OS Version 1 Release 2.

New information

An appendix with z/OS product accessibility information has been added.

Changed information

v Minor changes have been made to the following callable services:
– BPX1AIO (asyncio)
– BPX1ATX (attach_exec)
– BPX1EXC (exec)
– BPX1ENV (oe_env_np)
– BPX1FPC (fpathconf)
– BPX1IOC (w_ioctl)
– BPX1PCF (pathconf)
– BPX1PIO (w_pioctl)
– BPX1SDD (set_dub_defaultl)
– BPX1SEU (seteuid)
– BPX1SPN (spawn)
– BPX1SRU (setreuid)
– BPX1SUI (setuid)

Summary of changes
for SA22-7803-01
z/OS Version 1 Release 2

This document contains information previously presented in z/OS UNIX System
Services Programming: Assembler Callable Services Reference, SA22-7803-00,
which supports z/OS Version 1 Release 1.

New information

v The following callable service descriptions are new:
– BPX1GHA (gethostbyaddr)
– BPX1GHN (gethostbyname)
– BPX1RW (Pread() and Pwrite())

Changed information

v Minor changes have been made to the following callable services:
– BPX1CHA (chattr)
– BPX1CHM (chmod)
– BPX1FCR (fchattr)
– BPX1FCT (fcntl)
– BPX1FRK (fork)
– BPX1RED (read)
– BPX1SDD (set_dub_default)
– BPX1SPN (spawn)
– BPX1TLS (pthread_security_np)
– BPX1WRT (write)

xxvi z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes xxvii

xxviii z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Chapter 1. Invocation details for callable services

As an interface between the z/OS operating system and the functions specified in
the Single UNIX Specification and earlier standards, z/OS UNIX System Services
(z/OS UNIX) provides access to assembler callable services (syscalls). The z/OS
UNIX callable services have a standard set of syntax and linkage requirements, as
well as parameter specification details necessary for successful invocation.

Connecting to and disconnecting from z/OS UNIX System Services
To connect to the kernel for z/OS UNIX System Services, you make an address
space known to it. This process is called dubbing. Once dubbed, an address space
is considered to be a process. Address spaces created by fork are automatically
dubbed when they are created; other address spaces become dubbed if they
invoke a z/OS UNIX service. Dubbing also applies to MVS™ tasks. A dubbed task is
considered a thread. Tasks created by pthread_create are automatically dubbed
threads; other tasks are dubbed if they invoke a z/OS UNIX service.

Undub is the inverse of dub. Normally, a task (dubbed a thread) is undubbed when
it ends. An address space (dubbed a process) is undubbed when the last thread
ends.

If, when a thread or process is being dubbed, the calling task has a task-level
ACEE that does not have a USP connected to it, an INITUSP is done against the
task-level ACEE. This causes UNIX System Services security information to be
associated with the task-level ACEE.

Syntax conventions for the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service and a parameter list. A syntax diagram for a callable
service follows.

This format does not show the assembler column conventions (columns 1, 10, 16,
and 72) or parameter list options (VL and MF). The exact syntax is shown in the
examples in Appendix C.

When you code a callable service:

v You must code all the parameters in the parameter list, because parameters are
positional in a callable service interface. The function of each parameter is
determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter’s function to the
next parameter in the list.

CALL Service_name,(Parm_1,
Parm_2,
.
.
Return_value,
Return_code,
Reason_code)

© Copyright IBM Corp. 1996, 2002 1

v You must place values explicitly into all supplied parameters, because callable
services do not set defaults.

CALL
CALL is the assembler macro that transfers control and passes a parameter list.

Service_name
The name that the assembler understands is the name of a module in the form
BPX1xxx, where xxx is a three-character symbol unique to the service. (In a few
cases, where both nonstandard and standard versions of a service exist, the
standard version of the service will be in the form BPX2xxx.)

Modules are invoked in one of the following ways:

v A program can load a module, and then branch to the address where it was
loaded.

v When you link-edit a program, you can link to the linkage stub. The program can
issue a call.

The linkage stubs are contained in SYS1.CSSLIB. You can specify SYS1.CSSLIB
in the //SYSLIB statement of the JCL used to invoke the linkage editor. This
causes the addresses of all required linkage-assist routines to be automatically
resolved, and saves you the trouble of having to specify individual linkage-assist
routines in INCLUDE statements.

v You can include in the code the system control offset to the callable service. See
Appendix A for information on how to use this linkage.

Parm parameters
Parm_1, Parm_2, and so on are placeholders for variables that may be part of a
service’s syntax.

Return_value
The Return_value parameter is common to many callable services. It indicates the
success or failure of the service. If the callable service fails, it returns a −1 in the
Return_value. For most successful calls to z/OS UNIX services, the return value is
set to 0. However, some services, such as “getgrgid (BPX1GGI) — Access the
Group Database by ID” on page 224 and “getgrnam (BPX1GGN) — Access the
Group Database by Name” on page 227, return zeros instead of −1 when the
service fails.

Some callable services, such as “fork (BPX1FRK) — Create a New Process” on
page 184, return a positive return value to indicate success. Other services, such as
“_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 150, are
unique, in that they do not return when successful.

Some services do not have a return value, because they do not fail under normal
conditions. System failures, however, may cause these services to fail. In this case,
the process that issues the call ends abnormally. See “getegid (BPX1GEG) — Get
the Effective Group ID” on page 218 for an example.

Return_code
The Return_code parameter is referred to as the errno in the POSIX and X/Open C
interfaces. The Return_code is returned only if the service fails.

Invocation details

2 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

In the callable service description, some of the possible return codes are listed for
services that have return codes. The return codes are described in each service if
they help to describe its function.

For each return code, any reason code that may accompany it is identified.

The return codes and their descriptions can be found in z/OS UNIX System
Services Messages and Codes.

Some Return_code values may occur for any callable service: the return codes that
are unique to z/OS UNIX. They are not always listed under each callable service.
See z/OS UNIX System Services Messages and Codes for a description of these.

The following five return codes can occur with any callable service, and are not
listed with each service because the failure may occur before the syscall gets
control:

Return_code Explanation
EFAULT An address is incorrect, usually because it is a zero pointer, an

uninitialized pointer, or a pointer to read-only storage (for example, a
program constant of zero) for a parameter that is (or could be, in a
different context) an output parameter.

EMVSINITIAL A process initialization error has occurred.
EMVSERR An MVS environmental or internal error has occurred.
EMVSPARM Bad parameters were passed to the service.
ENOMEM Not enough space is available to fill the request.

Reason_code
The Reason_code parameter usually accompanies the Return_code value when the
callable service fails. It further defines the return code. Reason codes do not have
an equivalent in the POSIX or X/Open standards.

The reason codes and their descriptions can be found in z/OS UNIX System
Services Messages and Codes. Reason codes are listed both alphabetically, by
name, and numerically, by value. The value is the lower half of the reason code.

Determining the callable service release level
New callable services may be added with each new z/OS UNIX release. Depending
on the operating environment, the caller may have to determine the release level of
z/OS UNIX before a new callable service can be issued.

The release information is indicated in the CVT feature flags. For z/OS V1R1, the
feature flag is:
CVTJ7713 EQU X’20’ JBB7713

Linkage conventions for the callable services
Callers must use the following linkage conventions for all z/OS UNIX callable
services:

v Register 1 is set up by the CALL macro. It contains the address of a parameter
list, which is a list of consecutive words, each containing the address of a
parameter to be passed. The last word in this list must have a 1 in the high-order
(sign) bit.

Invocation details

Chapter 1. Invocation details for callable services 3

v Register 14 is set up by the CALL macro; it contains the return address.

v Register 15 is set up by the CALL macro; it contains the entry point address of
the service stub that is being called.

On return from a callable service, general and access registers 2 through 13 are
restored. General and access registers 0, 1, 14, and 15 are not restored.

The caller must be running with 31-bit addressing (AMODE=31), because the
linkage code uses control blocks that reside above the 16-MB line.

Parameter descriptions for callable services
All the parameters of the callable services are required positional parameters. When
you specify a call, you must specify all the parameters in the order listed.

Note: Some parameters do not require values, and allow you to substitute zeros
for the parameter. The descriptions of the parameters identify those that can
be replaced by zeros, and when to do so.

In the descriptions of the calls, each parameter is described as supplied or
returned:

Supplied means that you supply a value for the parameter in the call.

Returned means that the service returns a value in the named parameter when
the call is finished (for example, Return_code).

Some parameters are both supplied and returned.

Each parameter is also described in terms of its data type, character set, and
length:

Data type is one of the following: integer, address, character string, or structure.

Character set applies only to parameters whose values are character strings,
and governs the values allowed for that parameter. A possible character set is:

– No restriction. There is no restriction on the byte values contained in the
character string.

Length depends on the data type of the parameter:

– For an address item, the length is always a fullword.

– For an integer item, the length indicates the size of the field in bytes or
fullwords: bytes are 1, 2, 3, 4, or 8.

– For a character string parameter, the length indicates the number of
characters that can be contained in a character-type parameter.

– For a structure parameter, the length indicates the size of the structure in
bytes or fullwords, or refers to a label in the structure’s mapping macro that
defines the length.

Call parameter lists
Every callable service is called with a parameter list. As shown in Figure 1 on
page 5, when a service is called:

v Register 1 points to a parameter address list.

v Each field in the parameter address list points to a field containing a parameter.

v The “parameter list” is the set of those parameters, however they are arranged in
storage. The last parameter pointer in the list must have the high-order bit set to
1.

Invocation details

4 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Mapping macros
In many callable services, mapping macros map the parameter options. A complete
list of the options for each macro is listed in the macro in Macros Mapping
Parameter Options.

Most of the mapping macros can be expanded with or without a DSECT statement.
The invocation operand DSECT=YES is the default.

Examples
An invocation example for each callable service is in Appendix C. These examples
follow the rules of reentrancy. They use DSECT=NO and place the variables in the
program’s dynamic storage DSECT, which is allocated upon entry. The examples
are arranged alphabetically, and have references to the mapping macros they use.
The declaration for all local variables used in the examples follows the examples.

Reentrant coding versus nonreentrant coding
See “Examples” on page 910 for an example of the w_getpsent service that uses
reentrant code. Compare this example with an example of nonreentrant code for the
same service in Appendix D, and note the following:

v Placement of the standard 18-word register save area

v Use of program and dynamic storage base registers

v @DYNAM DSECT in the reentrant version

v Different forms of the CALL macro

v Several variables (such as PGPSCONTTYBLEN) that are initialized by the
assembler in the nonreentrant version (see “BPXYPGPS — Map the Response
Structure for w_getpsent” on page 996 for the DCs), and at execution time with
moves and stores in the reentrant version.

Environmental restrictions
Callers must be aware of the following restrictions for all z/OS UNIX callable
services:

Functional recovery routine (FRR)
Except for callable services that are supported in SRB mode, do
not invoke a callable service with an FRR set, because this

@PARM1 PARM1@PARMPTRS

Register 1

@PARM2

PARM2

@PARMn

PARMn

•
•
•

Figure 1. Call parameter list

Invocation details

Chapter 1. Invocation details for callable services 5

bypasses callable services recovery and can severely damage the
system. (If a callable service can run in SRB mode, that is stated in
its description.)

Locks Do not call z/OS UNIX with system locks held. Testing is not done
for locks held, and your call may fail.

Linkage stack
The use of the system linkage stack with PC or BAKR instructions
prevents signals from being delivered.

Nested callable services
You cannot issue “nested” callable services. That is, if a request
block (RB) issues a callable service and is interrupted by an
interrupt request block (IRB) in an STIMER exit, any additional
callable service that the IRB attempts to issue is detected and
flagged as an error.

Restrictions in a multiprocess, multiuser environment
Programs that change the security environment cannot run in a multiprocess,
multiuser environment. A multiprocess, multiuser environment is an environment in
which there are multiple z/OS UNIX processes in an address space (enabled by the
environment variable _BPX_SHAREAS=YES REUSE.) Each process has a different
MVS identity; that is, it has its own process-level ACEE anchored at the TCB
(TCBSenv) level. To prevent a user running under one MVS identity from affecting
all the other processes in the address space, or creating a new process with an
identity other than the one the user is running under, certain callable services are
restricted.

The following list of z/OS UNIX callable services are restricted in a multiprocess,
multiuser environment, and will fail with JRMpMuProcess:
v BPX1ATM (attach_execMVS) — ASM only
v BPX1ATX (attach_exec) — ASM only
v BPX1SEG (setegid)
v BPX1SGI (setgid)
v BPX1SPN (spawn family)
v BPX1SRG (setregid)

See the descriptions of these callable services for further information about these
restrictions.

Abend conditions and environments
Callers must be aware of the following conditions that can cause an abnormal end:

v When the _exit service, BPX1EXI, is called in any environment except single
task, single RB, and no linkage stack, the system issues an abend EC6. This
abend ends the calling task and all its subtasks. The subtasks receive a 442
abend. If the caller is a thread task created with the pthread_create service, the
initial pthread creating-task abends with a 422 abend code. All subtasks of the
initial pthread creating task receive a 442 abend.

v Some POSIX services are defined as always successful, yet the kernel can get
program checks or other MVS abends. When these failures occur, the user
receives an EC6 abend code.

v There are SLIP traps that recognize z/OS UNIX abends as normal exec service
and _exit service processing. Dumps are suppressed, and the new tasks for the
exec service are created. These SLIP traps are shipped as part of IEASLP00. If

Invocation details

6 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

your system does not use IEASLP00 as provided by z/OS, you will need to copy
the SLIP commands for EC6 and 422 abends into their SLIP command parmlib
member. Otherwise, your system will generate an excessive number of dumps.

v Condition codes (cc) seen by the next step in a multistep job cause an abnormal
end:

– Case 1:

1. The step invokes the C main program.

2. The C main program invokes the exit or _exit service, specifying the return
code.

3. The return code surfaces as the step condition code.

– Case 2:

When you return from the main program, the condition code is in R15 at the
time of exit.

v Signals that are not caught often cause a task to end abnormally. z/OS UNIX
defines which signals generate dumps. Terminating signals that do not require
user dumps have an abend code of EC6 with a reason code 0000FFxx, where xx
is the signal number. Parmlib member IEASLP00 has a statement to suppress all
dumps that match this profile. Terminating signals that require that a user dump
be taken (if requested) have an abend code of EC6 with a reason code
0000FDxx, where xx is the signal number. Parmlib member IEASLP00 has a
statement to suppress all SDUMPs that match this profile but that allow user
dumps to be taken.

v If a process abends while being debugged with ptrace by a debugger program
such as dbx , the debugger may be notified of the abend. The notification occurs
if the tested program’s recovery calls ptrace. This is normally true for C
programs, because the C runtime library establishes the necessary recovery
environment to call ptrace.

Callable service failures
A typical application that receives an unexpected return code from a callable service
usually exits. If an application is written to handle unexpected errors, you need to
understand the following information:

Services can fail for a number of reasons: bugs in the system, user code that
causes failure return codes, or abend conditions. Depending on when the failure
occurs in the service path, the requested function may or may not have been
performed. For example, if the application provides an address for a file descriptor
that does not exist, the open service (BPX1OPN) completes the open processing
and then fails on the return path when trying to set the file descriptor. If an EFAULT
return code is returned, the user may assume the file was not opened, even though
it was.

If the return value parameter is not in valid storage, a service can complete
successfully, yet not return normally to the caller. Because the service cannot set
the return value, it abends. It is possible for the C runtime library to convert the
return value into a SIGABND or SIGSEGV signal, which can be caught and
handled by the user signal action defined in sigaction. You should be aware that
functions that abend in this way may have completed their processing. For
example, a call to sigaction could modify the state of signal information and then fail
on the return to the caller. In this case, the caller should not make any assumptions
about the state of the signal environment.

Invocation details

Chapter 1. Invocation details for callable services 7

Authorization
Users authorized to perform special functions are defined as having appropriate
privileges, and are called superusers. Users with appropriate privileges are also
those with:

v A user ID of zero

v RACF-supported user privileges trusted and privileged, regardless of their user
ID

The ability to change the MVS identity of an address space is reserved for a subset
of superusers who control daemons. A daemon is a process that verifies the identity
of a user before creating a process to run work on behalf of the user. This approach
allows the installation to have superusers whose job is to maintain the file system
and user processes, but who do not have the ability to change their user identity.
See z/OS UNIX System Services Planning for a description of the BPX.DAEMON
FACILITY class profile and how it is created. This book also describes additional
BPX.xxxxxxxx FACILITY class profiles that are used to provide selective permission
to certain restricted functions.

Note that aliases can be supplied for user IDs. Callable services that pass or
receive userid parameters may need to use the userid alias table. Its use is
described in z/OS UNIX System Services Planning.

Security

This book assumes that your operating system contains Resource Access
Control Facility (RACF). You could use an equivalent security product updated
to handle z/OS UNIX security.

Invocation details

8 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Chapter 2. Callable services descriptions

This section of the book describes each of the callable services. These services are
arranged in alphabetic order. A sample invocation of each service is in Appendix C.

If you are unfamiliar with the conventions used to describe the system calls, refer to
Chapter 1.

© Copyright IBM Corp. 1996, 2002 9

accept (BPX1ACP) — Accept a Connection Request from a Client
Socket

Function
The accept callable service allows a server to accept a connection request from a
client. It extracts the first connection on the queue of pending connections, creates
a new socket with the same properties as the specified socket, and allocates a new
descriptor for that socket. If there are no connections pending, the service either
blocks until a connection request is received, or fails with an EWOULDBLOCK,
depending on whether the specified socket is marked as blocking or nonblocking.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ACP,(Socket_descriptor,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
accept is to be done.

Sockaddr_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Sockaddr. On return, this field
specifies the size required to represent the address of the connecting socket. If
this value is larger than the size supplied on input, the information contained in

accept (BPX1ACP)

10 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Sockaddr is truncated to the length supplied on input. The field can be zero if
no value is passed for Sockaddr. The size of the field should be less than 4096
bytes (4KB) in length.

Sockaddr
Supplied and returned parameter

Type: Structure

Length: Length specified by Sockaddr_length

The name of a field that contains the socket address of the connecting client.
The format of Sockaddr is determined by the domain in which the client resides.
This field can be null if the caller is not interested in the client address. For
more information on the format of this structure, see “BPXYSOCK — Map
SOCKADDR Structure and Constants” on page 1027.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the accept service returns one of the following:

v A socket descriptor, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the accept service stores the return code. The
accept service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The accept service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse, or
JRFileNotOpen.

EINTR A signal interrupted the accept service before any connections
were available. The following reason code can accompany the
return code: JRSignalReceived.

EINVAL The socket is not accepting connections. A listen must be done
prior to the accept. The following reason code can accompany
the return code: JRListenNotDone.

EIO There has been a network or transport failure. The following
reason codes can accompany the return code: JRInetRecycled,
JRPrevSockError.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EWOULDBLOCK The socket file descriptor is marked nonblocking, and no
connections are present to be accepted.

accept (BPX1ACP)

Chapter 2. Callable services descriptions 11

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the accept service stores the reason code. The
accept service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The Socket_descriptor that is passed refers to the socket that was created with

the socket callable service, was bound to an address with the bind callable
service, and that has issued a successful call to the listen callable service.

Before calling the accept service, you can find out if the socket is pending a
connection by doing a read select with the select callable service.

2. In order for Sockaddr to be returned for a UNIX domain socket, the client
application doing the connect must bind a unique local name to the socket using
the bind service before running the connect service.

Related services
v “asyncio (BPX1AIO) — Asynchronous I/O for Sockets” on page 27
v “bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor” on

page 65
v “listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection

Requests from Clients” on page 323
v “select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues”

on page 619
v “socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets” on

page 780

Characteristics and restrictions
There are no restrictions on the use of the accept service.

Examples
For an example using this callable service, see “BPX1ACP (accept) Example” on
page 1069.

accept (BPX1ACP)

12 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

accept_and_recv (BPX1ANR) — Accept a Connection and Receive the
First Block of Data

Function
The accept_and_recv callable service accepts the next connection on a socket and
receives the first block of data. The new socket’s descriptor, the peer’s remote
address, and the caller’s local address are also returned. The service does not
return until some data has arrived.

Requirements

Authorization: Supervisor state of problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ANR,(Socket_desc,
Accepted_socket,
Remote_addr_len,
Remote_addr,
Local_addr_len
Local_addr,
Buffer_len,
Buffer,
Buffer_alet,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_desc

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket descriptor for which the
accept_and_recv() is to be done. This is the server’s ″listen socket.″

Accepted_socket
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one of the following:

accept_and_recv (BPX1ANR)

Chapter 2. Callable services descriptions 13

v −1, indicating that the system is to assign a new descriptor to the accepted
connection. The new descriptor is returned in this parameter.

v The value of a reusable socket descriptor with which the accepted
connection is to be associated. Generally, socket descriptors are reused after
they have been used on a send_file() that specified SF_CLOSE and
SF_REUSE.

Reusable socket descriptors are usually created initially through an accept()
or an accept_and_recv(), although any stream socket that is not bound or
connected may be reused.

Remote_addr_len
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Remote_addr. This field is
updated with the length of the socket address that is returned in Remote_addr.
If you do not want the Remote_addr, specify 0 for Remote_addr_len.

Remote_addr
Supplied and returned parameter

Type: Structure

Length: Remote_addr_len

The name of an area that contains the sockaddr structure that is returned for
the client that is connecting.

Local_addr_len
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Local_addr. This field is
updated with the length of the socket address that is returned in Local_addr. If
you do not want the Local_addr, specify 0 for Local_addr_len.

Local_addr
Supplied and returned parameter

Type: Structure

Length: Local_addr_len

The name of an area that contains the sockaddr structure that is returned for
the server’s port on which the connection arrives.

Buffer_len
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Buffer. If this value is zero,
no receive is done. The accept_and_recv request completes when a connection
is available.

accept_and_recv (BPX1ANR)

14 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Buffer
Returned parameter

Type: Area

Length: Buffer_len

The name of an area that contains the received data.

Buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the alet of the buffer. For buffers in the caller’s
primary address space, this value should be 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the accept_and_recv service returns one of the
following:

v The number of bytes (zero or greater) that are received into the buffer, if the
request is successful. Zero could occur if the client closed the socket without
sending any data.

v −1 with a Return_code of EINTRNODATA, if the request was interrupted by a
signal in the time between the arrival of the connection and the arrival of the
first data. The connection is established, and Accepted_socket returns the
new socket descriptor.

v −1 with any other Return_Code, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the accept_and_recv service stores the return
code. The accept_and_recv service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The accept_and_recv service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EBADF A file descriptor that was not valid was supplied. The following

reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET The connection was reset by a peer. The following reason code
can accompany the return code: JRSockNotCon.

ECONNABORTED The connection has been dropped.
EINTR A signal interrupted the accept_and_recv service before a

connection had arrived. The following reason code can
accompany the return code: JRSignalReceived.

accept_and_recv (BPX1ANR)

Chapter 2. Callable services descriptions 15

Return_code Explanation
EINTRNODATA A signal interrupted the accept_and_recv service after a

connection had been established but before any data had
arrived. This is a partial success, and the session has been
established. A new socket descriptor is returned in
Accepted_socket.

EINVAL The socket is not accepting connections.
ENOBUFS The service could not obtain a buffer. The following reason code

can accompany the return code: JROutofSocketCells.
ENOMEM The service could not obtain memory to complete the operation.
ENOTSOCK Socket_desc does not refer to a valid socket descriptor.The

following reason code can accompany the return code:
JRMustBeSocket.

EFAULT An address that was passed cannot be accessed in the key of
the caller.

EISCONN Accepted_socket is either bound or already connected.
EOPNOTSUPP The socket type of the specified socket does not accept

connections; or O_NONBLOCK is set for this socket.
Nonblocking mode is not supported for this function.

EMFILE OPEN_MAX descriptors are currently open in the calling process.
EIO An I/O error occurred on one of the descriptors.
ENOSR Insufficient STREAMS resources were available for the operation

to complete.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the accept_and_recv service stores the reason
code. The accept_and_recv service returns Reason_code only if Return_value
is −1. Reason_code further qualifies the Return_code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

Usage notes
1. Nonblocking mode is not supported for this function. If O_NONBLOCK is set on

the Socket_desc parameter, the function fails with an EOPNOTSUPP error.

2. The accept_and_recv service is intended to be used from a multithreaded
server, that is, a server process with several threads simultaneously calling
accept_and_recv() on the same Socket_desc. Alternately, the server could be
implemented as multiple threads in multiple processes, with the Socket_desc
originally inherited through fork() or passed via sendmsg() or givesocket().

The multithreaded server model differs from the standard model of a central
server thread that issues an accept() and dispatches the new connections to
worker threads, who issue the first recv(). The central thread is removed, and
the worker threads contend with each other for the new connections. This saves
the overhead of the central thread, and the extra system task dispatches
between the central thread and the worker threads.

All threads that issue accept_and_recv() are considered to be equal, as in a
“worker thread” model, and the requests may be serviced in any order. In
particular, some threads may never get any work to do if there are more threads
than the highest number of new connections available at any one time.

Because the accept_and_recv request waits for the first block of data to arrive
on the new connection, it would be much too slow for a central server thread

accept_and_recv (BPX1ANR)

16 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

model. Connections arriving later would back up while the system was waiting
for the data. The listen() backlog could overflow, and clients could time out
waiting for a response.

Note: Each thread in the multithreaded server described here is operating
against the same socket, although the socket descriptors could be
different (for example, as a result of fork() or dup()). This differs internally
from a similar model in which separate threads issue their own socket()
calls and independently issue bind() calls for the same IP address and
port. The latter might be called a ″multi-server″ model, rather than a
multithreaded server model, although each one of these servers could
itself be multithreaded in the sense used here.

3. If accept (BPX1ACP) and accept_and_recv (BPX1ANR) calls are both used on
the same socket, it cannot be predicted which calls will be satisfied and in which
order. It is certainly possible that all arriving connections will be given to waiting
accept() calls, and no accept_and_recv() calls will ever be satisfied.

4. The accept_and_recv function is designed to work with the send_file function to
provide an efficient file transfer capability for a connection-oriented server with
short connection times and high connection rates.

Related services
v “accept (BPX1ACP) — Accept a Connection Request from a Client Socket” on

page 10
v “recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on

page 592

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1ANR (accept_and_recv)
Example” on page 1072.

accept_and_recv (BPX1ANR)

Chapter 2. Callable services descriptions 17

access (BPX1ACC) — Determine If a File Can Be Accessed

Function
The access callable service determines whether the caller can access a file. You
identify the file by its pathname.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ACC,(Pathname_length,
Pathname,
Access_mode,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file to be checked for
accessibility. The length of this field is specified in Pathname_length.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory. The search for the file starts at the root directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

access (BPX1ACC)

18 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Access_mode
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that indicates the accessibility to be tested. This
field is mapped by the BPXYACC macro. The values for this field are:

ACC_F_OK Test for file existence. This is the default value.

ACC_R_OK Test for permission to read.

ACC_W_OK Test for permission to write.

ACC_X_OK Test for permission to execute or search.

ACCWAIT If an asynchronous mount is in progress, wait
for it to complete.

ACCDEVNO Return the devno of the file in Return_value.

ACCEFFID Use the effective ID rather than the real ID to
check for permission.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the access service returns 0 if the request
completes successfully (that is, the file exists or access is permitted), or −1 if
the request is not successful, or the file cannot be accessed in the specified
way.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the access service stores the return code. The
access service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The access service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have appropriate permissions to

access the file in the ways specified by the Access_Mode
parameter, or does not have search permission for some
component of the Pathname prefix.

EINVAL The Access_Mode parameter is incorrect. The following reason
code unique to the access service can accompany the return
code: JRInvalidAMODE.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

access (BPX1ACC)

Chapter 2. Callable services descriptions 19

||

||
|

Return_code Explanation
ENAMETOOLONG Pathname is longer than 1023 characters, or some component of

the pathname is longer than 255 characters. Name truncation is
not supported.

ENOENT No file named Pathname was found, or no Pathname was
specified. The following reason code unique to the access
service can accompany the return code: JRFileNotThere.

ENOTDIR A component of the Pathname prefix is not a directory.
EROFS The Access_Mode parameter is testing for write access to a

read-only file system. The following reason code unique to the
access service can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the access service stores the reason code. The
access service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. Testing for file permission is based on the real user ID (UID) and real group ID

(GID), unless the ACCEFFID bit has been set on. In that case, the effective ID
is used for the test.

2. The caller can test for the existence of a file, or for access to the file, but not for
both.

3. In testing for permission, the caller can test for any combination of read, write,
and execute permission. If the caller is testing a combination of permissions,
Return_value indicates failure if any one of the accesses is not permitted.

4. If the caller has appropriate privileges, the access test is successful even if the
permission bits are off, except when testing for execute permission. When the
caller tests for execute permission, at least one of the execute permission bits
must be on for the test to be successful.

5. If the Access_mode parameter is zero, the service performs the existence test,
ACC_F_OK.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “open (BPX1OPN) — Open a File” on page 434
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the access service.

Examples
For an example using this callable service, see “BPX1ACC (access) Example” on
page 1067.

access (BPX1ACC)

20 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|

aio_suspend (BPX1ASP) — Wait for an Asynchronous I/O Request

Function
The aio_suspend callable service suspends the calling thread until a specified
asynchronous I/O event, specified timeout, or signal occurs.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ASP,(Aiocb_Ptr_List,
Aiocb_Ptr_Count,
Seconds,
Nanoseconds,
Return_value,
Return_code,
Reason_code)

Parameters
Aiocb_Ptr_List

Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of an
Aiocb. Each Aiocb represents a previously submitted asynchronous I/O
operation that the thread is to wait on for completion. The number of Aiocb
pointers in the list is represented by the Aiocb_Ptr_Count parameter.

Aiocb_Ptr_Count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the
Aiocb_Ptr_List. If you do not want to wait on any asynchronous I/O requests,
define Aiocb_Ptr_Count as the name of a fullword that contains 0.

Seconds
Supplied parameter

aio_suspend (BPX1ASP)

Chapter 2. Callable services descriptions 21

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer that is the maximum
number of seconds the calling program is willing to wait for one of specified
asynchronous I/O events to occur.

Notes:

1. Seconds can be any value greater than or equal to 0 and less than or equal
to 4 294 967 295.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value. A combined value of zero indicates that the aio_suspend
service will not wait at all. A value of AIO#NO_ASP_TIMEOUT (see
“BPXYAIO — Map asyncio Parameter List” on page 952) indicates that no
timeout value is set.

Nanoseconds
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer that is the number of
nanoseconds to be added to the value specified by the Seconds parameter.

Notes:

1. Nanoseconds can be any value greater than or equal to 0 and less than or
equal to 1 000 000 000.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the aio_suspend service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the aio_suspend service stores the return
code. The aio_suspend service returns Return_code only if Return_value is −1.
See z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The aio_suspend service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EINVAL One or more of the specified parameters are not valid. The following

reason codes unique to the aio_suspend service can accompany the
return code: JrNanoSecondsTooBig, JrMaxAiocbECB.

aio_suspend (BPX1ASP)

22 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EFAULT One of the parameters specified contains the address of a storage

area that is not accessible to the caller. The following reason codes
unique to the aio_suspend service can accompany the return code:
JrOK, JrBadAioEcb.

EINTR The service was interrupted by a signal. One or more of the
specified asynchronous I/O requests may have completed.

EAGAIN The service timed out before any of the specified asynchronous I/O
requests had completed.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the aio_suspend service stores the reason
code. The aio_suspend service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The number of pointers to Aiocbs that use application-supplied ECB pointers for

invocations of the aio_suspend service is limited to 254 when the Seconds and
Nanoseconds parameters are both set to zero, and to 253 if either is nonzero.
See “asyncio (BPX1AIO) — Asynchronous I/O for Sockets” on page 27 for
information on how to supply user-defined ECBs in the Aiocb data area.

2. If the Aiocbs are specified without application-supplied ECB pointers, there is no
limit on the number of Aiocb pointers.

3. The Aiocbs that are represented by the list of Aiocb pointers must reside in the
same storage key as the caller of the aio_suspend service. If the Aiocb Pointer
List or any of the Aiocbs represented in the list are not accessible by the caller,
an error of EFAULT may occur.

4. Aiocb pointers in the list with a value of zero are ignored.

5. A timeout value of zero (Seconds + Nanoseconds) means that the aio_suspend
service does not wait at all, but checks for any completed asynchronous I/O
requests. If it finds none, it returns with an error of EAGAIN; otherwise, it returns
with a Return_value of 0.

6. A passed timeout value of AIO#NO_ASP_TIMEOUT (see “BPXYAIO — Map
asyncio Parameter List” on page 952) means that no timeout value is set. The
aio_suspend service waits until an asynchronous I/O request completes or until
a signal is received.

7. The Aiocbs that are passed to the aio_suspend service must not be freed or
reused by other threads in the process while this service is still in progress. The
service may use the Aiocbs even after the asynchronous I/O completes. This
restriction prevents multiple threads from doing aio_suspend()s on the same
Aiocb at the same time. The results of modifying the Aiocb during an
aio_suspend are unpredictable.

Related services
v “asyncio (BPX1AIO) — Asynchronous I/O for Sockets” on page 27

aio_suspend (BPX1ASP)

Chapter 2. Callable services descriptions 23

Characteristics and restrictions
None.

Examples
For an example that uses this callable service, see “BPX1ASP (aio_suspend)
Example” on page 1073.

aio_suspend (BPX1ASP)

24 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

alarm (BPX1ALR) — Set an Alarm

Function
The alarm call generates a SIGALRM signal after the number of seconds specified
by the Seconds parameter have elapsed. The SIGALRM signal delivery is directed
to the calling thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ALR,(Seconds,
Return_value)

Parameters
Seconds

Supplied parameter

Type: Integer

Length: Fullword

The name of an unsigned fullword that contains the minimum number of
seconds that are to pass between receipt of this request and generation of the
SIGALRM signal. If the value is zero, any outstanding alarm request is
canceled; no new alarm call time is set. Processor scheduling delays can cause
the delivery of the SIGALRM signal to occur after the desired time.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of an unsigned fullword return value field. If there is a previous alarm
request with time remaining, the alarm service returns a nonzero value that is
the number of seconds until the previous request would have generated a
SIGALRM signal. The return value is rounded to the nearest second, except
when the time remaining is less than a half second. When the remaining time is
less than a half second and greater than zero, Return_value is set to 1. If there
is no previous alarm request with time remaining, Return value is set to zero.

alarm (BPX1ALR)

Chapter 2. Callable services descriptions 25

Usage notes
1. The alarm service is always successful, and no return value is reserved to

indicate an error.

2. An abnormal end is generated when failures are encountered that prevent the
alarm service from completing successfully.

3. Alarm requests are not stacked; only one SIGALRM generation is scheduled in
this manner. If SIGALRM was not generated, the call reschedules the time that
SIGALRM is generated.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “fork (BPX1FRK) — Create a New Process” on page 184
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time” on

page 774

Characteristics and restrictions
See Appendix E.

Examples
For an example using this callable service, see “BPX1ALR (alarm) Example” on
page 1071.

MVS-related information
Both the alarm service, BPX1ALR, and the sleep service, BPX1SLP, use the MVS
STIMERM macro. It is possible that two STIMERM SET requests can be set by
BPX1ALR and BPX1SLP. If the task invokes both STIMERM SET and BPX1ALR,
the limit of concurrent STIMERM SET requests for a task can be exceeded, which
results in an abnormal end.

alarm (BPX1ALR)

26 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

asyncio (BPX1AIO) — Asynchronous I/O for Sockets

Function
The asyncio callable service performs I/O operations against a socket
asynchronously. It also provides synchronous operations for compatibility with the
regular functions.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1AIO,(Aiocb_len,
Aiocb,
Return_value,
Return_code,
Reason_code)

Parameters
Aiocb_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Aiocb control block that is
being passed in the next parameter. To determine the value of Aiocb_length,
use the BPXYAIO macro (see “BPXYAIO — Map asyncio Parameter List” on
page 952).

Aiocb
Supplied parameter and returned parameter

Type: Structure

Length: Specified by the Aiocb_length parameter.

The name of an Aiocb structure to be used to control this I/O operation. See the
section “Aiocb Control Block” in the usage notes for details on setting the fields
of the Aiocb.

The BPXYAIO macro (see “BPXYAIO — Map asyncio Parameter List” on
page 952) maps the Aiocb.

Return_value
Returned parameter

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 27

Type: Integer

Length: Fullword

The name of a fullword in which the asyncio service returns the results of the
request:

v 0 — an asynchronous request has been successfully scheduled.

When the I/O completes, the return value, return code, and reason code of
the requested function are returned in the Aiocb, and the application is
notified. See the section “Asynchronous Input/Output” in the usage notes for
more information.

v −1 — the system could not schedule the request, or the request itself failed
immediately, for reasons such as parameter errors. Refer to Return_code
and Reason_code for more details. There is no I/O completion notification.

When the I/O function itself is rejected immediately, the return code and
reason code are specific to that function. They are documented with the
description of the regular version of the function.

v 1 — the operation has successfully completed synchronously. This happens
when one of the following occurs:

– AioOk2CompImd is specified, and the operation is able to be completed
immediately.

– AioSync is specified.

– The function is Aio#Cancel, and AioCancelNoWait is not specified.

The system returns the return value, return code, and reason code of the
requested function in the Aiocb. There is no I/O completion notification.

Note: This applies to successful completion only. Immediate failures are
always reported with a Return_value of −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the asyncio service stores the return code. The
asyncio service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The asyncio service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The AioFd field does not contain a valid descriptor or the

descriptor of a socket. The following reason codes can
accompany the return code: JRFileDesNotInUse, JRFileNotOpen.

EINVAL A parameter is not valid. For example, AioBuffSize is negative, or
AioCmd or AioNotifyType are unsupported values. The following
reason codes can accompany the return code:
JrAsyncBadAiocbLen, JrAsyncBadOffset, JrAsyncBadNotifyType,
JrAsyncBadMsgHdrLen, JrAsyncBadSockAddr, JrAsyncBadCmd.

EFAULT A supplied data area cannot be referenced.
EMVSINITIAL Support for unauthorized user exits failed to initialize.
EPERM The caller is not authorized. Consult Reason_code to determine

the exact reason the error occurred. Possible value:
JrAsyncAuthErr.

asyncio (BPX1AIO)

28 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOSYS The socket transport or physical file system does not support

asynchronous I/O. Possible value: JrAsyncOpNotSupp.
EIO There has been a network or transport failure.
EALREADY The Aiocb has already been canceled.
EAGAIN One of the following occurred:

v The maximum number of queued signals has been exceeded
for this process (JrMaxQueuedSigs). This limit is specified with
the MAXSIGQUEUE parameter of the BPXPRMxx parmlib
member.

v The maximum number of outstanding asynchronous requests
permitted for this process has been exceeded (JrMaxAsyncIO).
The Async I/O maximum is twice the sum of MAXSIGQUEUE,
the process’s file limit, which is taken from RLIMIT_NOFILE or
the BPXPRMxx MAXFILEPROC parameter.

Refer also to the regular versions of the various functions for errors that may be
detected before the system schedules the request.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the asyncio service stores the reason code.
The asyncio service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value.

The following reason codes may be reported: JrAsyncAuthErr,
JrAsyncBadAiocbLen, JrAsyncBadCmd, JrAsyncBadMsgHdrLen,
JrAsyncBadNotifyType, JrAsyncBadOffset, JrAsyncBadSigNo,
JrAsyncBadSockAddr, JrAsyncExitModeTCB, JrAsyncOpNotSupp,
JrAsyncSigKey0Err, JrReadUserStorageFailed, JrWriteUserStorageFailed,
JrSyscallAbend.

Usage notes
Asynchronous input/output

The asyncio service provides the capability to asynchronously perform those
functions that are potentially blocking. These include the accept, connect, and
receive and send types of functions.

The general flow of an asynchronous request is as follows:

1. All the parameters that are normally used on the regular version of the function
are specified through the Aiocb structure. Parameters necessary to control the
features of an asynchronous request are also specified here.

2. After some preliminary checking, the system schedules the request and returns
control to the caller. The AioRc field is set to EINPROGRESS. The application is
free to continue with other work until it is notified that the I/O has completed.

I/O completion usually occurs under the following conditions:

v For reads — data is available or arrives from the network.

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 29

v For writes — system buffers are available to hold the caller’s data. This is the
point at which the caller’s buffers can be reused or freed. It does not imply
anything about the progress of the actual data transmission.

v For accept — a connection request is available or arrives.

v For connect — this depends on the socket type and specific transport. It is
usually the point at which you can start sending and receiving on the socket.
This does not necessarily mean that the server has accepted this connection.

The Aiocb and any areas pointed to from the Aiocb, such as a receive buffer,
must remain valid until the I/O has completed.

3. When it can complete the I/O, the system schedules an SRB to the caller’s
address space to perform the following sequence:

a. Optionally, call the exit program for preprocessing. See AioCallB4 in the next
section.

b. If the operation has been successful up to this point, transfer the I/O data
from or to the caller’s buffers.

c. Update the AioRv, AioRc, and AioRsn fields of the Aiocb with the status of
the operation.

d. Perform the I/O completion notification as specified by AioNotifyType and
other fields in the Aiocb:

v Send a signal

v Call the exit program, passing the Aiocb

v Post the ECB

Only one type of notification is issued.

If no notification is requested, the application can check the AioRc field
periodically until it changes from EINPROGRESS.

Aiocb control block

The values set into this control block control the asyncio operation. The BPXYAIO
macro (see “BPXYAIO — Map asyncio Parameter List” on page 952) maps the
Aiocb. The caller is responsible for setting the following fields:

Field Description

Function-specific fields

AioCmd Specifies the function to be performed:
Aio#Accept — for accept (BPX1ACP)
Aio#Connect — for connect (BPX1CON)
Aio#Read — for read (BPX1RED)
Aio#Write — for write (BPX1WRT)
Aio#ReadV — for readv (BPX1RDV)
Aio#WriteV — for writev (BPX1WRV)
Aio#Recv — for recv (BPX1RCV)
Aio#Send — for send (BPX1SND)
Aio#RecvFrom — for recvfrom (BPX1RFM)
Aio#SendTo — for sendto (BPX1STO)
Aio#RecvMsg — for recvmsg (BPX1RMS)
Aio#SendMsg — for sendmsg (BPX1SMS)
Aio#SelPoll — for select (BPX1SEL) or poll
(BPX1POL). See “Asynchronous select and poll”
for more information.

asyncio (BPX1AIO)

30 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Aio#Cancel — to cancel a prior asyncio request.
See “Canceling an Operation” for more
information.

For details on their semantics and returned
information, refer to the descriptions of the regular
versions of these functions.

AioFd The socket descriptor.

AioBuffPtr The address of the buffer for the particular
operation:

v For read/write, recv/send, and recvfrom/sendto—
the address of the data buffer.

v For readv/writev — the address of the iov,
BPXYIOV (see “BPXYIOV — Map the I/O Vector
Structure” on page 978).

v For recvmsg/sendmsg — the address of the
msghdr, BPXYMSGH (see “BPXYMSGH — Map
the Message Header” on page 987).

v For selpoll — the address of a PollFD array,
BPXYPOLL (see “BPXYPOLL — Map poll
Syscall Parameters” on page 1000).

v For cancel — the address of the Aiocb to be
canceled, or 0 to cancel all outstanding asyncio
requests on the descriptor.

AioBuffSize Specifies the size of whatever AioBuffPtr points to:

v For read/write, recv/send, and recvfrom/sendto
— the length of the data buffer.

v For readv/writev — the number of elements in
the iov array.

v For recvmsg/sendmsg — the length of the
msghdr.

v For selpoll — the number of elements in the
PollFD array.

v For cancel — this field is ignored.

AioBuffAlet For read/write, recv/send, recvfrom/sendto, and
readv/writev operations, this field contains the ALET
of whatever is pointed to by AioBuffPtr. For all other
operations, this field is ignored. See “Using ALETS”
for more information.

AioSockAddrPtr Contains the address of a sockaddr structure in the
caller’s primary address space.

The sockaddr structure itself is supplied to the
sendto and connect functions and returned by the
recvfrom and accept functions.

AioSockAddrLen Contains the length of the sockaddr structure
pointed to by AioSockAddrPtr.

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 31

This field is supplied to all functions that use
AioSockAddrPtr. It is updated with the returned
sockaddr length by the recvfrom and accept
functions.

AioMsgIovAlet Specifies the ALET of the recvmsg/sendmsg
msghdr’s iov. See “Using ALETS” for more
information.

AioIovBufAlet Specifies the ALET of all buffers pointed to from the
iov that is used with the readv/writev and
recvmsg/sendmsg functions. See “Using ALETS” for
more information.

AioPosixFlags Contains the flags value for the recv/send,
recvfrom/sendto, and recvmsg/sendmsg functions
(such as OOB and PEEK). The flags value is
defined in BPXYMSGF.

Asynchronous feature fields

AioNotifyType Specifies the type of asynchronous notification:

v Aio#Posix — Sets the return value, code, and
reason fields of the Aiocb. Optionally, sends the
signal specified in the AioSigEvent structure.

v Aio#MVS — Sets the return value, code, and
reason fields of the Aiocb. Optionally, calls the
exit program or posts the ECB as specified
below.

Default: Aio#Posix.

AioExitPtr Specifies the address of a program that the system
is to call when the I/O completes. The Aiocb from
the original request is passed to the exit. See “I/O
Completion Exit” for details.

AioExitData An eight-byte area that is reserved for use by the
application and the exit program. The system does
not inspect or change this area.

AioExitModeTcb For authorized callers only, this specifies the mode
(SRB or TCB) in which the exit program is to be
called:

v 0 — on an SRB in the caller’s address space.
This is the default.

v 1 — on the caller’s TCB. This option is valid only
for calls that are made from a TCB, and is
assumed for non-authorized callers. If the caller’s
TCB ends before the I/O completes, the system
does not run the exit.

AioECBPtr Specifies the address of an ECB in the caller’s
home address space that the system is to post
when the I/O completes.

AioSigEvent For Aio#Posix, this is a SigEvent structure that
controls the signal generation. It contains the
following fields:

asyncio (BPX1AIO)

32 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v Sigev_Notify - Set to Sigev_Signal (0) to send
the signal, or Sigev_none (1) to not send any
signal. Default: Sigev_Signal.

v Sigev_Signo - Set to the signal number to be
sent.

AioTimeOut A word that contains the timeout value for SelPoll. It
can also be used to set a time limit for other
synchronous operations (AioSync), such as
Aio#Recv and Aio#Accept. This value is expressed
in milliseconds (1000ths of a second). If the
operation times out, it fails with a return code of
ETIMEDOUT.

v A value of Aio#Forever (0) (the default) means to
wait forever.

v For SelPoll only, a value of Aio#NoWaiting (-1)
means to not wait at all.

AioOk2CompImd Specifies that the system may complete an
asynchronous request immediately if it can do so
without waiting, and without making any task
switches. Otherwise, the system schedules the
request for normal asynchronous processing.

If the request completes successfully and
immediately, the Return_Value from asyncio is 1.
The system returns the results of the function itself
in the Aiocb. In this case there is no I/O completion
notification.

On an asynchronous read, if data has already
arrived, this option avoids the extra overhead of
scheduling the SRB and calling the exit. You must
code the program to handle the received data in
two places: after the call to asyncio and in the exit.

For the best performance, you should always set
AioOk2CompImd and be able to handle I/O
completion at the point of the call.

Default: Off, or it is not all right to complete
immediately. The system issues the I/O completion
notification.

AioSync Specifies that the system is to run the request
synchronously. The caller will wait or block, as
necessary, subject to the current value of the
nonblocking state of the socket.

If the request is successful, the Return_value from
asyncio is 1. The system returns the results of the
function itself in the Aiocb. There is no I/O
completion notification.

This option provides equivalence with the regular
versions of the functions. It is useful for
synchronous operations that must be cancelable,
for operations whose waits should be limited by
AioTimeOut, and for calling the select() function
with the much more efficient poll() interface.

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 33

Default: Off, or asynchronous.

AioTcbAffinity Specifies that the I/O request should be canceled if
the caller’s TCB terminates. This field should be set
if the Aiocb or buffer areas are in task-related
storage and therefore will be freed when the task
terminates.

Default: Off, or do not cancel the I/O for any type of
I/O complete notification other than TCB Exit. For
TCB Exits, the exit cannot be run after the TCB
terminates, so the I/O will be canceled.

AioCancelNoWait Specifies that a cancel operation is not to wait for
all I/O completion notifications to finish before it
returns to the caller. See “Canceling an Operation”
for more information.

Default: Off, or wait.

AioCancelNoNotify Specifies that a cancel operation is to skip the I/O
completion notifications that have not already been
issued. See “Canceling an Operation” for more
information.

Default: Off, or issue the notifications.

AioCallB4 For authorized callers only. When on, this specifies
that the exit program is to be called on the SRB for
preprocessing before arrived data is transferred to
the user’s buffer. This provides a way to defer read
buffer allocation until after the data has arrived.
This call is in addition to the call that is made after
the I/O has completed. See “I/O Completion Exit”
and “Preprocessing Exit”for more information.

Default: Off, or do not call the exit for
preprocessing.

AioUseUserKey For authorized callers only. When on, this specifies
that the storage key in AioUserKey is to be used for
all references to the functional parameters and data
buffers. Only the Aiocb will be referred to with the
caller’s key.

Default: Off, or use the caller’s key for all storage
references.

AioUserKey The caller’s user’s key. This is only used when
AioUseUserKey is on.

The following fields, which are set by the system, pass back the results of the
requested function, as defined for the regular version of that function:

AioRv — Return_Value
AioRc — Return_Code
AioRsn — Reason_Code

These fields are meaningful only after a successfully scheduled asynchronous
request has completed, or when the asyncio service has a Return_value of 1.

asyncio (BPX1AIO)

34 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The AioRc field is set to EINPROGRESS when a request is successfully scheduled.
This value is changed to reflect the final results of the operation when the I/O
completes.

The AioRc field is set to ETIMEDOUT for any function that times out because the
AioTimeOut field is used.

Note: There are two ways to request that there be no notification: Assuming that
the Aiocb has been initialized to zeros, you can set Sigev_Notify to
Sigev_none, or you can set AioNotifyType to Aio#MVS. If no notification is
used, the program can occasionally check the AioRc field until it is no longer
equal to EINPROGRESS.

Callers of BPX1AIO are considered authorized if the program is running in
supervisor state or a system key, or if the program is APF-authorized.

Unauthorized callers

Unauthorized callers are restricted in the following ways:

v Exits are run on the caller’s TCB. If that TCB ends before the I/O has completed,
the exit is not run.

There are restrictions on the use of exits; see below.

v Authorized TSO commands are not permitted while any asynchronous I/O is
outstanding in a TSO address space.

v The AioCallB4 and AioUseUserKey options are not available.

v The AioCancelNoWait option is not available if exits are pending for the TCB
from which the cancel call is made.

I/O completion exit

You specify an exit program by setting AioNotifyType to Aio#MVS and putting the
exit’s address into the AioExitPtr field.

The exit is passed the original Aiocb to correlate this completion with the original
request. The Aiocb contains an application area (AioExitData) that can be used to
communicate with the exit. Note that since the application allocates the Aiocb in the
first place, the areas before and after the control block are also available for related
use. The Aiocb can be embedded in a larger application control block that can
easily be reached from the Aiocb.

Authorized exits

When the calling program is authorized, the exit is run on a system SRB; it is
authorized and in key 0.

Because the exit program is running on an SRB, the rules for SRB-mode callers
must be followed if the exit makes any calls to z/OS UNIX functions. In particular,
register 2 must be set before a call, to identify the process to which the exit
belongs. Refer to Appendix H, “Callable services available to SRB mode routines”
on page 1339 for details. Note, though, that the discussion on recovery for user
SRBs is not relevant, because the exit is running on a z/OS UNIX SRB.

The AioExitModeTCB flag can be used to run the exit on the original TCB rather
than on the system SRB. In this case the restrictions that are listed for unauthorized

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 35

exits in the next section apply. The exit is entered in the key of the first caller of
BPX1AIO in this process. This key cannot be changed.

Unauthorized exits

When the calling program is not authorized, the exit is run on the caller’s TCB in
the caller’s state and key. There are some restrictions:

v A C program calling BPX1AIO with an exit specified must be POSIX(OFF).
POSIX signal handling and POSIX threading, as provided by Language
Environment®, are not supported for any task in the program’s process.

v A program may not have invoked the BPX1MSS service to register a signal
interrupt routine.

v The exit program is not in any way an extension of the main program. A C exit
must establish its own C environment on entry. (This is significantly different from
C signal handling.) In order for the I/O interrupt to be delivered, the thread that
calls BPX1AIO must remain dubbed.

v All callers on all threads of a given process that are doing BPX1AIO calls must
be running with the same storage key.

v The I/O interrupt targets the RB that made the original call to BPX1AIO for a
given thread. If the target RB is not the top RB, the interrupt is deferred until the
target RB becomes the top RB.

v A program must not have blocked the SIGIO signal, because the system uses
this signal to schedule the exits.

v If the exit program ends abnormally, the system cleans up that request and
continues with other exits that are waiting to be run on that TCB. There is no
dump, and the originator of that request is not notified of the problem. To have
these abends percolated to the TCB, so that the TCB’s mainline recovery will be
run or the TCB will be terminated, set the ThliTcbExitPerc bit on before you issue
the call to BPX1AIO.

The exit is free to do whatever is supported within the environment from which it is
called. It may issue another call to asyncio.

Recommendation: The exit should not issue any blocking calls, and should not
enter into long delays. This ties up the system SRB on which the exit is running.
There is an upper limit to the number of SRBs that are allowed to run at the same
time. If this limit is reached, other I/O completions remain queued until an SRB
becomes available. Unauthorized exits are blocking the TCB that made the original
request.

The exit is usually called to process received data, or free the storage that has
been tied up with this request. At this point, the Aiocb contains the final return
value, return code, and reason code of the function.

When a request has been canceled, the AioRv field is −1, and the AioRc field is set
to ECANCELED. See “Canceling an Operation” for more information.

Preprocessing exit

Authorized callers can call the exit for preprocessing before the data is transferred,
by using the AioCallB4 flag. This call is on the system SRB, and at a point before
arrived data is moved into the application’s receive buffer. It provides a way for the
application to defer committing the necessary storage until just before it is actually
needed.

asyncio (BPX1AIO)

36 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|

This deferred allocation applies to the receive buffers only. All other structures that
are related to the call must be present, and the total requested data length must be
specified correctly. For read, recv, and recvfrom, AioBuffPtr may be 0; but
AioBuffSize must be set to the amount that is being requested. For readv, the
following conditions must be met:

v AioBuffPtr must point to an iov.

v AioBuffSize must contain a nonzero number of iov entries.

v The sum of the length fields in those entries must equal the amount being
requested.

v The iov buffer pointers may be zero.

For recvmsg, there must be a valid msghdr structure with its associated sockaddr
area, and an iov structure as described for readv. You can specify a simple
one-element iov on the initial call to carry the length information, and replace this
with another iov to be used for the data transfer. Note that you cannot use deferred
allocation with AioOk2CompImd.

The AioRv value usually contains the amount of data that is available, up to the
requested amount. You can allocate smaller buffers when they will be sufficient. You
should be prepared for cases in which AioRv is zero, when you should allocate
buffers for the original requested amount. The actual amount of data that is
received is returned in AioRv on the I/O completion call to the exit.

The preprocessing call is only made when the operation:

1. Has up to this point been successful

2. Is in addition to, not a replacement of, the call that is made after the I/O
completes.

The exit can use the AioExitData area to record its entry, and thus distinguish
between the first and second calls during a successful operation. If AioRv is −1, this
is the only call that is made to the exit.

The preprocessing exit can change the following Aiocb fields to affect subsequent
processing: AioBuffPtr, AioBuffAlet, AioExitPtr, and AioECBPtr. You may not change
the function.

Process termination

When the caller’s process terminates:

v Exits for requests that have not yet completed are not called.

v SRB exits that are about to be called or are already running may continue to
completion, with some exceptions. If the process’s address space abnormally
ends, the exit is not able to finish. If the exit suspends, or calls a system service
that suspends, it can be abnormally ended with a 47B abend code. If you have
recovery, you should not take a dump or write an error record for 47B abends,
but retry and return.

SRB-mode routines should not call asyncio after it has entered process
termination. See Appendix H, “Callable services available to SRB mode routines”
on page 1339.

Environment at entry :

The exit program receives control in the asyncio caller’s address space and in the
following environment:

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 37

Authorization: Same as the caller of asyncio
Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters are addressable in the primary

address space in key 0 storage.

On entry, register 1 points to a parameter list that contains:

v The address of the Aiocb that was specified on the asyncio call now completing

v The address of a 2K work area for the exit’s use

v The address of the length of the work area

Aiocb AddressR1
Aiocb

Work
Area

Key0

2K

Work Area Addr

Length Address

For authorized exits on the SRB, the work area is in key 0. For unauthorized exits,
or authorized exits running on the TCB, it is in the key of the caller of asyncio.

Registers at entry :

The contents of the registers on entry to the exit are:

Register Contents
0 Undefined
1 Parameter list address
2-12 Undefined
13 Address of a 136-byte save area. The first two

words are reserved for standard save area
conventions, and must not be used.

14 Return address
15 Entry address
AR 0-15 Undefined

Environment at exit :

On return from the exit, the entry environment must be restored.

Registers at exit :

On return from the exit, the register contents must be:

Register Contents
2-13 Restored from the entry values
0,1,14,15 Undefined
AR 0-15 Restored from the entry values

asyncio (BPX1AIO)

38 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

No return of status information is defined for the exit program.

Canceling an operation

You can cancel prior requests to asyncio with the Aio#Cancel function of asyncio.

AioFd is set to the descriptor of the original operation, and:

v To cancel a specific request, AioBuffPtr is set to the address of the Aiocb of the
request that is to be canceled.

Your program does not have to worry about timing or serialization with regard to
the Aiocb that is being canceled. The Aiocb is not referred to directly from this
thread, so if that request has already finished, this attempt to cancel it will be
harmless.

v To cancel all outstanding asyncio requests on a specific descriptor, AioBuffPtr is
set to zero.

Note: SelPoll operations cannot be canceled this way. You cancel them by
specifying the Aiocb of the SelPoll request.

Cancel releases any blocked requests from their waits, and drives through the I/O
completion notifications as it does for a failed request. The original AioRc is set to
ECANCELED. Any requests that are not currently blocked are allowed to complete
normally. If they attempt to enter a blocked wait they are failed with ECANCELED.
Exits that are about to be called are still called normally, and those that are running
are not interrupted. Aio#Cancel only “cancels” blocked requests, causing them to
fail with ECANCELED.

Synchronous requests (those with AioSync) are also broken out of their blocking
waits. They are returned to with an AioRc of ECANCELED.

Usually the Aio#Cancel function waits until all I/O completion notifications have
finished before asyncio returns to the caller. When asyncio returns, all exits have
run, ECBs have been posted, and signals have been sent. The system is finished
with the original request Aiocbs and buffers, and they can be freed by the
application, subject to its own design. Note that for ECB and signal notifications,
there is no coordination with the waiter or signal receiver, so there may still be
application code running that is dealing with the request that has just been
canceled. Because of timing, you can never tell which requests will finish normally
and which requests will be canceled. You know, however, that the system is finished
with the request and that any I/O complete notifications that are to be issued have
been issued when asyncio returns to your program.

In this case the successful Return_value is 1, and AioRv contains one of the
following values:

AIO_CANCELED (1), if the requested operations were canceled.

AIO_NOTCANCELED (2), if at least one of the requested operations cannot be
canceled because it is in progress.

AIO_ALLDONE (3), if all of the operations have already completed; that is,
nothing was found to be canceled.

If you do not want to wait for all I/O completion notifications, you can set the
AioCancelNoWait flag. In this case the Return_value is 0 if any requests were found
to be canceled. Your program must maintain its own tally of requests still

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 39

outstanding if this is significant to it. If no requests were found to be canceled, the
Return_value is 1, and AIO_ALLDONE is returned in AioRv as above.

Note: A program cannot wait for a cancel operation if it is running on the same
TCB that pending exits would run on.

If you do not want the I/O completion notification to be issued, you can set the
AioCancelNoNotify flag. If the request is still outstanding at the time of the cancel,
the I/O completion notification is suppressed. This means that a specified exit
program that has not already run will not be run. Setting this flag also stops the
system from updating the Aiocb with the results of the operation, so that the AioRc
field tends to remain with a value of EINPROGRESS. TCB exits that were
scheduled to run at the time of an I/O completion but that have not yet run when
the cancel is issued are skipped.

Note: The effectiveness of this flag is unpredictable, because the I/O completion
notification may be in progress, or it may already have been made.

Canceling all requests on a given descriptor does not stop new requests from being
made, or otherwise affect the descriptor. The program can start afresh or close the
descriptor, depending on why it issued the cancel.

An exit cannot close the descriptor it was called for during cancel, because the
program that requested the cancel is still using it.

The asynchronous features of asyncio do not apply to Aio#Cancel; that is, you
cannot specify a signal, an exit program, or an ECB. AioTimeOut does not apply to
Aio#Cancel.

Cancel succeeds regardless of whether any outstanding requests have been found
to cancel.

An individual request can be canceled only once. Subsequent attempts to explicitly
cancel the same request fail with EALREADY.

Aio#Cancel cannot be used to cancel any operations other than those that are
started with asyncio. You cannot cancel a read(), for example.

A cancel operation is not itself cancelable.

Effect of close

Closing a descriptor deletes all requests that are still cancelable on that descriptor.
I/O completion notifications are not issued for these requests. If you need exits to
be run or ECBs to be posted, you must issue cancel for the descriptor before you
issue close for the descriptor.

In most cases, close() will flush out and wait for requests that are still in progress to
be deleted. However, it cannot wait for requests that are already in the I/O complete
exit programs; or that are just about to call these exits, post the I/O complete ECB,
or send the I/O complete signal. Consequently, application code related to asyncio
requests on the just-closed descriptor may still be in progress when the close()
function returns. You can avoid this situation by canceling the descriptor before you
close the descriptor.

asyncio (BPX1AIO)

40 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Descriptors that are part of an Aio#SelPoll request are removed from that operation.
The request remains outstanding, and may complete as a result of activity on one
of the other descriptors or when it times out. If all the descriptors for a particular
SelPoll happen to be closed, no special action is taken; the request either times out
or hangs forever.

Multiple asynchronous operations on a single socket

Not all asynchronous operations support being called to start another I/O before the
prior I/O has completed on that same socket. First of all, and most important, each
call must have its own Aiocb and buffer or data areas; otherwise a serious and
immediate error occurs for all of the operations, and the results are very
unpredictable if two operations are using the same areas. In general, starting two or
more asynchronous operations on a single socket is analogous to having two or
more threads calling the regular synchronous versions of these operations at the
same time, and the results are pretty much the same.

Aio#Accept may be called more than once. Each inbound connection request will
complete a distinct call.

Aio#Connect: Stream (TCP) sockets may not be connected more than once. It does
not make sense to connect UDP sockets several times simultaneously, because
each connection replaces the previous one, and results will be unpredictable. The
results of issuing requests that depend on the connection, such as Aio#Write,
before the connection has completed are unpredictable.

Aio#Read, Aio#ReadV, Aio#Recv, Aio#RecvMsg, Aio#RecvFrom: For stream (TCP)
sockets, the receive-type operations should not be called more than once before
each call completes, as the results are unpredictable. The main reason for this is
that the arrival of any data from the network can start the completion of one of
these requests while the actual data movement occurs later, and so the data on the
stream can be received by different threads out of order.

For datagram (UDP) sockets, an application may issue multiple concurrent
asynchronous receive-type operations for the same socket, and each distinct
datagram will complete one call.

Recommendation: This practice is not recommended, because having concurrent
asynchronous receive-type operations outstanding on the same
socket can result in a higher amount of processor cycles and
system storage being consumed than if the application were to
issue sequential asynchronous receive requests (that is, issue
the new request after the previous asynchronous request has
completed).

Aio#Write, Aio#WriteV, Aio#Send, Aio#SendTo, Aio#SendMsg: For stream (TCP)
sockets, the send-type operations should not be called more than once before each
call completes. Data may be transmitted on the network out of order, and, in
general, results are unpredictable. For datagram (UDP) sockets, the send-type
operations may be called more than once, because each distinct call defines a
single datagram, and there is no implied order of arrival in UDP for these
datagrams. Beware of sending too much data, though. If there is network
congestion, or the receiver is slow, you can tie up a large amount of system storage
with uncontrolled asynchronous sends, and eventually the BPX1AIO calls will start
to fail with ENOBUFS.

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 41

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Aio#SelPoll may be called more than once, but be aware that any one event will
complete all the calls at the same time.

Aio#Cancel is not an asynchronous operation.

Blocking and nonblocking

A socket must not be set to nonblocking state if you want I/O completion to wait for
data.

If the socket is in nonblocking state and there is no data available, either the
asyncio request has its I/O completion driven very quickly with an AioRc of
EWOULDBLOCK, or the asyncio call fails with a Return_code of EWOULDBLOCK.

Signal considerations

Signals do not interrupt asynchronous operations unless they lead to the
termination of the caller’s process.

Asynchronous select and poll

The Aio#SelPoll command can be used for either an asynchronous select() function
or an asynchronous poll() function. The poll() interface structure is used in both
cases. AioBuffPtr contains the address of a PollFD array, from BPXYPOLL, and
AioBuffSize contains the number of elements in the array.

v For the poll function, the PollFD structure is used in the same way as for poll
(BPX1POL).

v For the select function, the SelFlags member of the Sel structure from BPXYSEL
is mapped over the PollEvents and PollRevents members of the PollFD structure
for input and output, respectively. The select event bits have the same meaning
as they do for select (BPX1SEL), but they are input and output with the
technique used by poll events. The triple bit map scheme of select (BPX1SEL) is
not used.

These bits occupy different bytes in the PollEvents field, and the intended function
is determined according to which bits are used. If no bits are set, the operation is
considered to be a poll for nothing, rather than a select for nothing.

The entire PollFD array must consistently use only one type of bit. You cannot use
select and poll bits for the same file descriptor, nor can you use select bits for one
descriptor and poll bits for another. For the sake of performance, the input array is
not checked to enforce this rule, and results are unpredictable if the rule is broken.
The first occurrence of select bits that are turned on causes the operation to be a
select() rather than a poll().

The AioTimeOut field can be used to specify a timeout value for the operation.

Aio#SelPoll can only be used with socket descriptors.

Aio#SelPoll operations cannot be canceled by descriptor; the specific aiocb must be
canceled.

Negative descriptors in the PollFd array are ignored, as documented for poll().
Otherwise, the first bad descriptor causes the whole operation to fail at that point in
the array. This is a little different from the behavior of poll().

asyncio (BPX1AIO)

42 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

|

Recommendation: For performance reasons, do not use asynchronous select or
poll if you can use any other asynchronous operation on each
descriptor. For example, doing Aio#Read for each of five
sockets is much faster and more efficient than doing one
Aio#SelPoll for that same set of sockets. This is because when
an Aio#Read completes for one socket you have the data; the
other sockets are unaffected and remain ready for inbound
data. On the next Aio#Read only that one socket has to be
readied again. When Aio#SelPoll completes for any socket, all
the others are taken out of their prepared state. You still have
to issue another call to actually get the data. On the next
Aio#SelPoll all the sockets must be put back into their
prepared state again.

asyncio vs. synchronous (regular) select

Asynchronous I/O is similar to the select() and poll() functions in that you can wait
for data from many different descriptors at the same time. Asynchronous I/O,
though, is much faster and much more efficient for large numbers of descriptors.
With the asyncio service you also have control over when you wait for the next
event.

Using ALETS

ALETS are generally usable only for synchronous requests (AioSync), with the
exception of recvmsg/sendmsg. A preprocessing exit (AioCallB4) could update the
SRB it is running on with an ALET for a data space, but this would add too many
instructions to the operation to be practical for the general read or write. You could,
however, consider using a Common Area Data Space (CADS).

Related services
v “accept (BPX1ACP) — Accept a Connection Request from a Client Socket” on

page 10
v “connect (BPX1CON) — Establish a Connection Between Two Sockets” on

page 117
v “poll (BPX1POL) — Monitor Activity on File Descriptors and Message Queues” on

page 477
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 584
v “recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on

page 592
v “recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer” on

page 595
v “recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in

Message Buffers” on page 599
v “send (BPX1SND) — Send Data on a Socket” on page 642
v “select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues”

on page 619
v “sendmsg (BPX2SMS) — Send Messages on a Socket” on page 650
v “sendto (BPX1STO) — Send Data on a Socket” on page 654
v “write (BPX1WRT) — Write to a File or a Socket” on page 935
v “writev (BPX1WRV) — Write Data from a Set of Buffers” on page 939

Characteristics and restrictions
None.

asyncio (BPX1AIO)

Chapter 2. Callable services descriptions 43

Examples
For an example that uses this callable service, see “BPX1AIO (asyncio) Example”
on page 1070.

asyncio (BPX1AIO)

44 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

attach_exec (BPX1ATX) — Attach a z/OS UNIX Program

Function
The attach_exec callable service attaches a task to run a z/OS UNIX executable
program in a newly created child process of the caller. The child process that is
created has the same attributes that a child process would have if it were created
by the fork service and followed immediately by a call to the exec service. The new
process is created in the same address space as the caller, and is a subtask of the
caller’s task.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ATX,(Pathname_length,
Pathname,
Argument_count,
Argument_length_list,
Argument_list,
Environment_count,
Environment_data_length,
Environment_data_list,
Exit_routine_address,
Exit_parameter_list_address,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file. The
length can be up to 1023 bytes long.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

attach_exec (BPX1ATX)

Chapter 2. Callable services descriptions 45

The name of a field that contains the fully qualified pathname of the file to be
run. Each component of the pathname (directory name, subdirectory name, or
filename) can be up to 255 characters long. The complete pathname can be up
to 1023 characters long, and does not require an ending NUL character.

Argument_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for the
Argument_length_list and the Argument_list. If the program needs no
arguments, define Argument_count as the name of a fullword that contains 0.

Argument_length_list
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an argument to be passed to the specified
program. If the program needs no arguments, define Argument_length_list as
the name of a fullword that contains 0.

Argument_list
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an argument to be passed to the specified program.
Each argument is of the length specified by the corresponding element in the
Argument_length_list. If the program needs no arguments, define Argument_list
as the name of a fullword that contains 0.

Environment_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for the
Environment_data_length and the Environment_data. If the program needs no
environment data, define Environment_count as the name of a fullword that
contains 0.

Environment_data_length
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an environment variable to be passed to the

attach_exec (BPX1ATX)

46 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

specified program. If the program does not use environment variables, define
Environment_data_length as the name of a fullword containing 0.

Environment_data_list
Supplied parameter

Type: Structure

Length: Variable, specified by the
Environment_data_length

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an environment variable to be passed to the specified
program. Each environment variable is of the length specified by the
corresponding element in the Environment_data_length. If the program does not
use environment variables, define Environment_data_list as the name of a
fullword that contains 0. If the target executable file is a Language
Environment-enabled program, the environment variables that are supplied to
this service must include the null terminator as part of the data string and
length.

Exit_routine_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user’s exit routine. If a
user exit is not to be invoked, define Exit_routine_address as the name of a
fullword that contains 0.

Exit_parameter_list_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user exit parameter list.
The value contained in this fullword is in register 1 when the user exit receives
control. If the user exit is not to be invoked or does not require parameters,
define Exit_parameter_list_address as the name of a fullword that contains 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the attach_exec service returns the process ID
of the created child process, if it is successful. If it is not successful, the service
returns −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

attach_exec (BPX1ATX)

Chapter 2. Callable services descriptions 47

The name of a fullword in which the attach_exec service stores the return code.
The attach_exec service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The attach_exec service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EAGAIN The resources required for another process to be created are not

available now; or you have already reached the maximum
number of processes you are allowed to run. The following
reason codes can accompany the return code: JRMaxChild,
JRMaxProc, JRMaxUIDs.

EACCES The caller does not have appropriate permissions to run the
specified file. It may lack permission to search a directory named
in the Pathname parameter; it may lack execute permission for
the file to be run; or the file to be run is not a regular file, and the
system cannot run files of its type. The following reason code can
accompany the return code: JRExecNotRegFile.

EFAULT A bad address was received as an argument of the call, or the
user exit program checked. The following reason codes can
accompany the return code: JRExecParmErr and JRExitRtnError.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

EMVSSAF2ERR The executable file is a set_user_ID or set_group_ID file, and the
file, owner’s UID, or GID is not defined to RACF.

ENAMETOOLONG Pathname is longer than 1023 characters, or some component of
the Pathname is longer than 255 characters. Name truncation is
not supported.

ENOENT No Pathname was specified, or one or more of the components
of the specified Pathname were not found. The following reason
codes can accompany the return code: JRExecNmLenZero and
JRQuiescing.

ENOEXEC The specified file has execute permission, but it is not in the
proper format to be a process image. Reason_code contains the
loader reason code for the error.

ENOMEM The new process requires more memory than is permitted by the
hardware or the operating system. The following reason codes
can accompany the return code: JRExecFileTooBig and
JRNoSpace.

ENOTDIR A directory component of Pathname is not a directory.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the attach_exec service stores the reason
code. The attach_exec service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the majority of
reason codes, see z/OS UNIX System Services Messages and Codes. For the
ENOEXEC Return_code, Reason_code contains the loader reason code for the
error:

attach_exec (BPX1ATX)

48 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason Code Explanation
X'xxxx0C27' The target HFS file is not in the correct format to be an

executable file.
X'xxxx0C31' The target HFS file is built at a level that is higher than that

supported by the running system.

Usage notes
1. The new process (called the child process) has similarities to the process that

calls attach_exec (called the parent process), except for the following:

v The child process has a unique process ID (PID) that does not match any
active process group ID.

v The child has a different parent process ID (namely, the process ID of the
process that called attach_exec).

v The child has its own copy of the parent’s file descriptors. Each file
descriptor in the child refers to the same open file as the corresponding file
descriptor in the parent.

v If a file has its FCTLCLOFORK or FTCLOEXEC flag set on, it is not
inherited by the child process. These flags are set with the fcntl service. For
more information, see the fcntl service “Parameters” on page 174.

v All directories opened via a call to the opendir (BPX1OPD) service in the
parent process are not inherited by the child process.

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no interval timers (for example, alarms) set. This is
similar to a call to the alarm service with Wait_time specified as zero.

v The child process has no pending signals.

v The child process does not get a copy of the parent’s storage, as it would if
it were created via a call to the fork service.

v The child process can address a shared memory segment only while the
parent process maintains its attachment.

v The semaphore adjustment values (semadj) in the child process will be
zero.

v The child process created by this service is terminated when its parent
terminates.

2. The executable file to be run receives control with the following attributes:
v Problem program state
v TCB key of caller
v AMODE=31
v Primary ASC mode

3. The information that the service passes to the executable file that is to be run
is a parameter list pointed to by register 1. The parameter list consists of the
parameter addresses listed below. In the last parameter address, the

attach_exec (BPX1ATX)

Chapter 2. Callable services descriptions 49

high-order bit is 1.

@Argument count Argument count

Parameter list

@Plist

R1

@Argument length list Argument length list

@Argument data list Argument data list

@Environment count Environment count

@Environment length list Environment length

@Environment data list Environment data list

@Plist (high-order = ’1’) Parameter list
(Self-pointer)

The last parameter that attach_exec passed to the executable file identifies the
caller of the file as the attach_exec or exec service.

4. The user exit receives control with the following attributes:
v Problem program state
v PSW key of caller
v AMODE=31
v Primary ASC mode

See “Characteristics and restrictions” on page 52 for additional information
about the execution of the user exit.

5. The register usage on entry to the user exit is:

v R0: Undefined.

v R1: Address of the user exit parameter list, as specified by the caller of the
attach_exec service.

v R2–R12: Undefined.

v R13: Address of a 96-byte work area in the same key as the caller of the
attach_exec service.

v R14: The return address from the user exit to the attach_exec service. This
address must be preserved by the user exit.

v R15: Address of the user exit.

6. To support the creation and propagation of a STEPLIB environment to the new
process image, attach_exec allows for the specification of a STEPLIB
environment variable. The following are the accepted values for the STEPLIB
environment variable, and the actions taken for each value:

a. STEPLIB=NONE. No STEPLIB DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB, or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
attach_exec service are propagated to the new process image, if they are
found to be cataloged. Uncataloged data sets are not propagated to the
new process image.

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,
Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new process
image. The actual name of the DD is not STEPLIB, but a
system-generated name that has the same effect as a STEPLIB DD. The
data sets are concatenated in the order specified. The specified data sets
must follow standard MVS data set naming conventions. Those data sets
found to be in violation of this standard are ignored. If the data sets follow
the standard, but:

attach_exec (BPX1ATX)

50 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The caller does not have the proper security access to a data set, or

v A data set is uncataloged or is not in load library format

the data set is ignored. Because the data sets in error are ignored, the
executable file may run without the proper STEPLIB environment. If a data
set is in error due to improper security access, a X'913' abend will be
generated. The dump for this abend can be suppressed by your
installation.

If the STEPLIB environment variable is not specified, the default behavior of
the attach_exec service is the same as if STEPLIB=CURRENT were specified.

For information on STEPLIB performance considerations, see z/OS UNIX
System Services Planning.

7. A prior loaded copy of an HFS program is reused by this service under the
same circumstances that apply to the reuse of a prior loaded MVS
unauthorized program from an unauthorized library by the MVS XCTL service,
with the following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not
reused.

v If the calling process is not in Ptrace debug mode, but the only prior loaded
usable copy of the HFS program found is in storage modifiable by the caller,
the prior copy is not reused.

8. If the specified file name represents an external link or a sticky bit file, the
program is loaded from the caller’s MVS load library search order. For an
external link, the external name is used only if the name is eight characters or
less, otherwise the caller receives an error from the loadhfs service. For a
sticky bit program, the file name is used if it is eight characters or less.
Otherwise, the program is loaded from the HFS.

9. If the calling parent task is in a WLM enclave, the child task is joined to the
same WLM enclave. This allows WLM to manage the parent and child as one
″business unit of work″ entity for system accounting and management
purposes.

10. If the target executable program is a Language Environment-enabled program,
the environment variables supplied to the service must include the null
terminator as part of the string and length.

11. If the _BPX_PTRACE_ATTACH environment variable is set to YES, the target
executable program is loaded into user-modifiable storage to allow subsequent
debugging. Any additional programs loaded into storage during the execution
of the target program are also loaded into user-modifiable storage, with the
exception of modules loaded from the LPA.

12. If the BPXK_SIGDANGER environment variable is set to YES, the process will
receive a SIGDANGER signal rather than a SIGTERM signal when an OMVS
shutdown is initiated.

Related services
v “fork (BPX1FRK) — Create a New Process” on page 184
v “exec (BPX1EXC) — Run a Program” on page 133
v “attach_execmvs (BPX1ATM) — Attach an MVS Program” on page 54
v “spawn (BPX1SPN) — Spawn a Process” on page 784

attach_exec (BPX1ATX)

Chapter 2. Callable services descriptions 51

Characteristics and restrictions
The user exit is given control in the newly created child process on the attached
task before the invocation of the specified program. The user exit should not
attempt to use any kernel services. Signals cannot be delivered while in the user
exit because the attach_exec service is still in progress and signal delivery is
inhibited.

The setuid, setgid, setegid and seteuid services, if invoked from a process created
by this service, affect the calling process and any other processes that exist in the
address space. In a multiprocessing environment, however, when a process created
by this service attempts to change the security environment, the request is rejected.

If exec or execmvs is invoked from a process that was created via the attach_exec
service, the initial thread of the process and all of its subtasks are terminated, and a
new task is attached to run the specified program. This does not result in the
ending of any other tasks in the calling jobstep, nor does it end other processes in
the address space. Because of this behavior, only unauthorized, non-privileged
programs are supported on the invocation of exec and execmvs.

Because the HFS is not an authorized library, the following restrictions apply:

v Executing a program from the HFS causes the program environment to become
uncontrolled. This prevents future invocation of authorized programs like Program
Access to Data Sets (PADS) programs. These are programs given special
authorization by the installation by the installed security product (such as RACF)
to read or write to protected data sets. In addition, PADS programs should not
attempt to load programs from the HFS, because it is considered an
unauthorized library and may be modified by users that do not have the same
level of authorization as the PADS program.

v System key, supervisor state, and APF-authorized callers should not attempt to
execute a program from the HFS library, unless the HFS executable file has the
APF attribute turned on.

v Set-user-ID programs can only be called by processes running with the same
effective user ID as the user ID of the executable file.

v Set-group-ID programs can only be called by processes that are running with the
same effective group ID as the group ID of the executable file.

Sticky bit programs that are link-edited as APF-authorized may be called only by
callers that run APF-authorized.

The newly attached task created for the child process does not share user storage
subpools 0-127 with the caller.

Examples
For an example using this callable service, see “BPX1ATX (attach_exec) Example”
on page 1075.

MVS-related information
Because the newly created child process runs on a subtask in the same address
space as the caller, it has access to the same MVS environment as the caller. This
includes the same allocation (DDs) and storage environment. Because of this,
programs that run on each of these tasks should be careful not to interfere with
other programs running in the same environment. Although the child subtask has
access to the same storage as the calling task, it does not share any user subpools

attach_exec (BPX1ATX)

52 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

with the calling task; thus it cannot free any user storage obtained by the calling
task.

attach_exec (BPX1ATX)

Chapter 2. Callable services descriptions 53

attach_execmvs (BPX1ATM) — Attach an MVS Program

Function
The attach_execmvs service attaches a task to run an MVS executable program in
a newly created child process of the caller. The new process is run in a subtask in
the same address space.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ATM,(Program_name_length,
Program_name,
Argument_length,
Argument,
Exit_routine_address,
Exit_parameter_list_address,
Return_value,
Return_code,
Reason_code)

Parameters
Program_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length, in the range of 1 to 8 bytes, of
the name of the MVS program.

Program_name
Supplied parameter

Type: Character string

Character set: Conforms to naming conventions for members
of MVS PDSs

Length: Specified by the Program_name_length
parameter

The name of a field that contains the name of the MVS program to be run. The
MVS program name must conform to the naming conventions for members of
MVS partitioned data sets (PDSs). The program name is from 1 to 8 characters

attach_execmvs (BPX1ATM)

54 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

long; the program name is the member name without any qualifiers. The
specified Program_name must be in uppercase.

Argument_length
Supplied parameter

Type: Character string

Length: Fullword

The name of a fullword that contains the length of the argument that is to be
passed to the program. The argument can be from 0 to 4096 bytes long.

Argument
Supplied parameter

Type: Integer

Length: Specified by the Argument_length parameter

The name of a field of length Argument_length that contains the argument that
is to be passed to the MVS program.

Exit_routine_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user’s exit routine. If a
user exit is not to be invoked, define Exit_routine_address as the name of a
fullword that contains 0.

Exit_parameter_list_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user exit parameter list.
The value contained in this fullword is in register 1 when the user exit receives
control. If the user exit is not to be invoked or does not require parameters,
define Exit_parameter_list_address as the name of a fullword containing 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the attach_execmvs service returns the
process ID of the created child process, if it is successful. If it is not successful,
the service returns −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

attach_execmvs (BPX1ATM)

Chapter 2. Callable services descriptions 55

The name of a fullword in which the attach_execmvs service stores the return
code. The attach_execmvs service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The attach_execmvs service can return one of
the following values in the Return_code parameter:

Return_code Explanation
E2BIG The number of bytes used by the new process image’s argument

list is greater than the system-imposed limit of 4096 bytes. The
following reason code can accompany the return code:
JRMVSArgTooBig.

EFAULT The user exit program checked. The following reason code can
accompany the return code: JRExitRtnError.

ENAMETOOLONG The specified MVS program name is too long. The length
specified by Program_name_length is longer than 8 bytes.

ENOENT The specified MVS program was not found in the link pack area
(LPA) or in a link list data set (LNKLST); or the program name
argument points to an empty string. The following reason code
can accompany the return code: JRExecNmLenZero.

ENOMEM The new process requires more memory than is permitted by the
hardware or the operating system. The following reason codes
can accompany the return code: JRExecFileTooBig and
JRNoSpace.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the attach_execmvs service stores the reason
code. The attach_execmvs service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The result of a call to the attach_execmvs service is that a subtask is attached

to the calling task to run the specified program in a newly created child process.
The newly created subtask becomes the initial thread of the newly created child
process.

2. The new child process has similarities to the process that calls attach_execmvs
(called the parent process), except for the following:

v The child process has a unique process ID (PID) that does not match any
active process group ID.

v The child has a different parent process ID (namely, the process ID of the
process that called attach_execmvs).

v The child has its own copy of the parent’s file descriptors. Each file descriptor
in the child refers to the same open file as the corresponding file descriptor in
the parent.

v If a z/OS UNIX file has its FCTLCLOFORK or FCTLCLOEXEC flag set on, it
is not inherited by the child process. These flags are set with the fcntl
service. For more information, see the fcntl service “Parameters” on
page 174.

attach_execmvs (BPX1ATM)

56 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The child has its own copy of the parent’s open directory streams. Each open
directory stream in the child can share directory stream positioning with the
corresponding directory stream of the parent.

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no interval timers set. This is similar to the results of a
call to the alarm service with Wait_time specified as zero.

v The child has no pending signals.

v The child process does not get a copy of the parent’s storage, as it would if it
were created via a call to the fork service.

v The child process created by this service is terminated when its parent
terminates.

3. The input passed to the MVS executable program by the service is consistent
with the input passed to MVS programs. On input, the MVS program receives a
single-entry parameter list pointed to by register 1. The high-order bit of the sole
parameter entry is set to 1.

The sole parameter entry is the address of a 2-byte length field followed by an
argument string. The length field describes the length of the data that follows it.
If a null argument and argument length are specified in the call, the length field
specifies 0 bytes on input to the executable program.

4. The MVS program to be run receives control with the following attributes:
v Problem program state
v TCB key of caller
v AMODE=31
v Primary ASC mode

The specified program can be located in the link pack area (LPA), in a link list
data set, job library, step library, or task library. The program search order that is
followed is identical to that of the MVS Attach service when the EP parameter is
specified.

5. The user exit receives control with the following attributes:
v Problem program state
v PSW key of caller
v AMODE=31
v Primary ASC mode

6. The register usage on entry to the user exit is:

v R0: Undefined.

v R1: Address of the user exit parameter list as specified by the caller of the
exec service.

v R2–R12: Undefined

v R13: Address of a 96-byte work area in the same key as the caller of the
exec service.

v R14: The return address from the user exit to the exec service. This address
must be preserved by the user exit.

v R15: Address of the user exit.

7. The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active for
the calling task at the time of the call to the attach_execmvs service are
propagated to the new process image. This causes the program that is invoked
to run with exactly the same MVS program search order as its invoker.

8. To support the creation and propagation of a STEPLIB environment to the new
process image, attach_execmvs allows for the specification of a STEPLIB

attach_execmvs (BPX1ATM)

Chapter 2. Callable services descriptions 57

environment variable. The following are the accepted values for the STEPLIB
environment variable and the actions taken for each value:

a. STEPLIB=NONE. No Steplib DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
exec service are propagated to the new process image, if they are found to
be cataloged. Uncataloged data sets are not propagated to the new process
image.

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets, Dsn1:Dsn2:...DsnN,
are built into a STEPLIB DD in the new process image.

Note: The actual name of the DD is not STEPLIB, but a system-generated
name that has the same effect as a STEPLIB DD. The data sets are
concatenated in the order specified. The specified data sets must
follow standard MVS data set naming conventions. Data sets found to
be in violation of this standard are ignored. If the data sets do follow
the standard, but:

v The caller does not have the proper security access to a data set

v A data set is uncataloged, or is not in load library format

then the data set is ignored. Because the data sets in error are
ignored, the executable file may run without the proper STEPLIB
environment. If a data set is in error due to improper security access,
a X'913' abend is generated. The dump for this abend can be
suppressed by your installation.

If the STEPLIB environment variable is not specified, the default behavior of the
attach_execmvs service is the same as if STEPLIB=CURRENT were specified.

If the program to be invoked is a set-user-ID or set-group-ID file and the user-ID
or group-ID of the file is different from that of the current process image, the
data sets to be built into the STEPLIB environment for the new process image
must be found in the system sanction list for set-user-id and set-group-id
programs. Only those data sets that are found in the sanction list are built into
the STEPLIB environment for the new process image. For detailed information
regarding the sanction list, and for information on STEPLIB performance
considerations, see z/OS UNIX System Services Planning.

9. If the calling parent task is in a WLM enclave, the child task is joined to the
same WLM enclave. This allows WLM to manage the parent and child as one
“business unit of work” entity for system accounting and management purposes.

Related services
v “fork (BPX1FRK) — Create a New Process” on page 184
v “execmvs (BPX1EXM) — Run an MVS Program” on page 144
v “attach_exec (BPX1ATX) — Attach a z/OS UNIX Program” on page 45
v “spawn (BPX1SPN) — Spawn a Process” on page 784

Characteristics and restrictions
The user exit is given control in the newly created child process on the attached
task before the invocation of the specified program. This exit can be used by the
caller to alter the environment of the child process, similarly to the way in which a
program would alter the child’s environment after a call to fork, but before the call to
execmvs. The user exit should not attempt to use any kernel services from the exit.

attach_execmvs (BPX1ATM)

58 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Signals cannot be delivered while in the user exit, because the attach_execmvs
service is still in progress and signal delivery is inhibited.

The setuid, setgid, setegid and seteuid services, if invoked from a process created
by this service, affect the calling process and any other processes that exist in the
address space.

If exec or execmvs is invoked from a process that was created via the
attach_execmvs service, the initial thread task of the process and all of its subtasks
are terminated, and a new task is attached to run the specified program. The initial
thread task in such a process is the task that was created as a result of the call to
the attach_execmvs service. The call to exec or execmvs does not result in the
ending of any other tasks in the calling jobstep, nor does it end other processes in
the address space. Because of this behavior, only unauthorized, non-privileged
programs are supported on the invocation of exec and execmvs.

APF-authorized programs can be invoked from this service if the caller is APF
authorized.

Examples
For an example using this callable service, see “BPX1ATM (attach_execmvs)
Example” on page 1074.

MVS-related information
Because the newly created child process runs on a subtask in the same address
space as the caller, it has access to the same MVS environment as the caller. This
includes the same allocation (DDs) and storage environment. Because of this,
programs that run on each of these tasks should be careful not to interfere with
other programs running in the same environment. Although the child subtask has
access to the same storage as the calling task, it does not share any user subpools
with the calling task. For this reason, it cannot free user storage obtained by the
calling task.

attach_execmvs (BPX1ATM)

Chapter 2. Callable services descriptions 59

auth_check_resource_np (BPX1ACK) — Determine a User’s Access to
a RACF-Protected Resource

Function
The auth_check_resource_np service checks the authority of a RACF-defined user
to access a RACF-defined resource. (Note : Resources in the DATASET class
cannot be checked.) The authorization required to invoke this service is one of the
following:

v Read access to the BPX.SERVER FACILTY class profile

v A UID of 0 when the BPX.SERVER FACILTY class profile is not defined

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ACK,(Cell_UUID,
Principal_UUID,
Userid_Length,
Userid,
Security_Class_Length,
Security_Class,
Entity_Name_Length,
Entity_Name,
Access_Type,
Return_value,
Return_code,
Reason_code)

Parameters
Cell_UUID

Supplied parameter

Type: Character string

Length: 36 bytes

The name of a 36-byte area that contains the cell DCE UUID. If the cell DCE
UUID is not specified, the first byte of this 36-byte area must contain NUL
(X'00').

Principal_UUID
Supplied parameter

Type: Character string

auth_check_resource_np (BPX1ACK)

60 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: 36 bytes

The name of a 36-byte area that contains the principal DCE UUID. If the
principal DCE UUID is not specified, the first byte of this 36-byte area must
contain NUL (X'00').

Userid_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Userid parameter.
Userid_Length can be in the range of 0 to 8. If a user ID is not required, specify
the name of a fullword that contains zero.

Userid
Supplied parameter

Type: Character string

Character set: The XPG4 portable character set, which
includes upper and lower case letters (A-Z,a-z),
numerics (0-9), period (.), dash (-) and
underbar(_). In addition, the special characters
$, %, and # may be specified. (Since these
characters are not part of the XPG4 portable
character set, however, you should consider the
future possibility of program portability before
using these characters.)

Length: Specified by the Userid_Length parameter

The name of an area, 0 to 8 characters in length, that contains a user ID. If a
user ID is not required (Userid_Length is zero), this parameter is ignored.

Security_Class_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Security_Class. The
Security_Class_Length must be in the range of 1 to 8.

Security_Class
Supplied parameter

Type: Character string

Character set: Upper-case alphanumeric

Length: Specified by the Security_Class_Length
parameter

The name of an area, 1 to 8 characters in length, that contains the
Security_Class.

Entity_Name_Length
Supplied parameter

Type: Integer

auth_check_resource_np (BPX1ACK)

Chapter 2. Callable services descriptions 61

Length: Fullword

The name of a fullword that contains the length of the Entity_Name. The
Entity_Name_Length can be in the range of 1 to 246.

Entity_Name
Supplied parameter

Type: Character string

Character set: Upper case alphanumeric

Length: Specified by the Entity_Name_Length
parameter

The name of an area, 1 to 246 characters in length, that contains the
Entity_Name.

Access_Type
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a numeric value that identifies the type of
access to check for. The following Access_Type constants are defined by the
BPXYCONS macro. See “BPXYCONS — Constants Used by Services” on
page 956.

Constant Access
ACK_READ# check READ authority
ACK_UPDATE# check UPDATE authority
ACK_CONTROL# check CONTROL authority
ACK_ALTER# check ALTER authority

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the auth_check_resource_np service returns 0
if the request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the auth_check_resource_np service stores the
return code. The auth_check_resource_np service returns Return_code only if
Return_value is −1. For a complete list of possible return code values, see z/OS
UNIX System Services Messages and Codes. The auth_check_resource_np
service can return one of the following values in the Return_code parameter:

auth_check_resource_np (BPX1ACK)

62 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL One or more of the following conditions were detected:

v Access_Type specified is undefined

v Userid_Length is outside allowable range (0-8)

v Security_Class_Length is outside allowable range (1-8)

v Entity_Name_Length is outside allowable range (1-246)

The following reason codes can accompany the return code:
JRAccessUndefined, JRUserNameLenError, JRClassLenErr, or
JREntityLenErr.

ESRCH One or more of the following conditions were detected:

v The user ID is not defined to the security product

v No mapping to a user ID exists for the specified UUIDs

v The resource is not defined to the security product

v The DCEUUIDS class is not active

The following reason codes can accompany the return code:
JRSAFNoUser,JRSAFNoUUIDtoUser, JRSAFResourceUndefined,
or JRSAFNoDCEClass.

ENOSYS One or more of the following conditions were detected:

v No security product is installed

v SAF support for this function is not installed

The following reason codes can accompany the return code:
JRNoSecurityProduct, or JRSNoSAFSupport.

EMVSSAF2ERR An error occurred in the security product. One or more of the
following conditions were detected:

v An internal error occurred in the security product

v An error was detected in the parameter list

v There was an undefined return code or reason code

The following reason codes can accompany the return code:
JRSAFInternal, JRSAFParmListErr, or JRUnexpectedError.

EPERM One or more of the following conditions were detected:

v The caller’s address space does not have READ permission to
the BPX.SERVER FACILITY class profile, or BPX.SERVER is
not defined and the caller is not a superuser (UID=0).

v The user does not have the access specified to the resource.

v The caller’s address space has done a load from an
uncontrolled library

The following reason codes can accompany the return code:
JRNotServerAuthorized, JRNoResourceAccess, or JREnvDirty.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the auth_check_resource_np service stores the
reason code. The auth_check_resource_np service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. See
z/OS UNIX System Services Messages and Codes for the reason codes.

auth_check_resource_np (BPX1ACK)

Chapter 2. Callable services descriptions 63

Usage notes
1. The ability to query a user’s access to protected resources is a privileged

operation. An installation has the following ways of allowing an application to
use this service:

v For the highest level of security, the installation can define the BPX.SERVER
FACILITY class profile. In order for the application to access this service, it
must have at least read access to this profile. In addition, all load modules
executing in the application’s address space must be defined to RACF. For
more information on setting up this security, see z/OS UNIX System Services
Planning.

v For a lower security arrangement, assign a UID of 0 to the user ID with which
the application is run, so that it operates as a superuser.

2. This service may not be used to determine access to POSIX resources, such as
HFS files.

3. The access check can be made with several forms of identity. The first identity
specified in the following list will be used to make the authorization check:

a. User ID

b. Principal/Cell UUIDs

c. Caller’s task level ACEE

d. Caller’s address space level ACEE

4. When no identity is specified by the caller and the caller’s task has an ACEE
created with pthread_security_np (BPX1TLS) for a SURROGATE
(non-password) client, both the task and address space level ACEEs are used
in determining the type of access permitted to a resource.

5. Both the principal and cell UUIDs are in string form. A UUID string is 36
characters long. The string must contain the delimiter ’-’ in character positions 9,
14, 19, and 24. The general form of a UUID string is xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx, where x represents a valid numeric or hexadecimal character.

Related services
v “pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security

Environment for Caller’s Thread” on page 512
v “convert_id_np (BPX1CID) — Convert a DCE UUID to a userid or a userid to a

DCE UUID” on page 124

Characteristics and restrictions
The auth_check_resource_np service is restricted to users that have the
appropriate privileges as defined above.

Examples
For an example using this callable service, see “BPX1ACK
(auth_check_resource_np) Example” on page 1068.

auth_check_resource_np (BPX1ACK)

64 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor

Function
The bind callable service binds a unique local name to a socket descriptor.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1BND,(Socket_descriptor,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
bind is to be done.

Sockaddr_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Sockaddr.

Sockaddr
Supplied parameter

Type: Character

Length: Length specified by Sockaddr_length.

The name of a field that contains the name to be bound to the socket
descriptor. The format of Sockaddr is determined by the domain in which the

bind (BPX1BND)

Chapter 2. Callable services descriptions 65

socket descriptor was created. See “BPXYSOCK — Map SOCKADDR Structure
and Constants” on page 1027 for additional information on the format of
Sockaddr.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the bind service returns one of the following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the bind service stores the return code. The
bind service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The bind service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EADDRINUSE The specified address is already in use. The following reason

code can accompany the return code: JRNameExists.
EAFNOSUPPORT The address family specified in the address structure is not

supported.
EBADF The socket descriptor is incorrect. The following reason codes

can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINVAL One of the input parameters was not valid. The following reason
codes can accompany the return code: JRSocketCallParmError,
JRSockNoname.

EIO There has been a network or transport failure. The following
reason code can accompany the return code: JRPrevSockError.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPERM The user is not permitted to bind to the specified port. The
following reason code can accompany the return code:
JRUserNotPrivileged.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

bind (BPX1BND)

66 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the bind service stores the reason code. The
bind service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. An application can retrieve the assigned socket name with the getsockname

service.

2. Sockets in the AF_UNIX domain create a name in the file system that must be
deleted by the application (using unlink) when it is no longer needed.

3. For Sockaddr to be returned on an accept request for an AF_UNIX domain
socket, the client application doing the connect must bind a unique local
Sockaddr to the socket with the bind request before issuing the connect
request.

4. Server applications issue the bind request to register their addresses with the
system. Both connection and connectionless servers must do this before
accepting requests from clients.

5. For network sockets, the user must have appropriate privileges to bind to a port
in the range from 1 to 1023.

Related services
v “accept (BPX1ACP) — Accept a Connection Request from a Client Socket” on

page 10
v “listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection

Requests from Clients” on page 323
v “socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets” on

page 780

Characteristics and restrictions
There are no restrictions on the use of the bind service.

Examples
For an example using this callable service, see “BPX1BND (bind) Example” on
page 1076.

bind (BPX1BND)

Chapter 2. Callable services descriptions 67

|
|

chattr (BPX1CHR) — Change the Attributes of a File or Directory

Function
The chattr service modifies the attributes that are associated with a file. It can be
used to change the mode, owner, access time, modification time, change time,
reference time, audit flags, general attribute flags, file format and size, and file tag.
You identify the file by its pathname.

For the corresponding service using a file descriptor, see “fchattr (BPX1FCR) —
Change the Attributes of a File or Directory by Descriptor” on page 156.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHR,(Pathname_length,
Pathname,
Attributes_length,
Attributes,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file
whose attributes you want to change.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file. The length of this
field is specified in Pathname_length.

chattr (BPX1CHR)

68 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Attributes_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area containing the
attributes you want to change.

Attributes
Supplied parameter

Type: Structure

Length: Specified by the Attributes_length parameter

The name of the area that contains the attributes you want to change. The area
is mapped by BPXYATT. For information on the content of this area, see
“BPXYATT — Map File Attributes for chattr and fchattr” on page 953.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chattr service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chattr service stores the return code. The
chattr service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The chattr service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process did not have appropriate permissions.

Possible reasons include:

v The calling process was attempting to set access time or
modification time to current time, and the effective UID of the
calling process does not match the owner of the file; the
process does not have write permission for the file; or the
process does not have appropriate privileges.

v The calling process was attempting to truncate the file, and it
does not have write permission for the file.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters. (Filename truncation is
not supported.)

chattr (BPX1CHR)

Chapter 2. Callable services descriptions 69

Return_code Explanation
ENOENT No file named Pathname was found, or no pathname was

specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of Pathname is not a directory.
EPERM The operation is not permitted for one of the following reasons:

v The calling process was attempting to change the mode or the
file format, but the effective UID of the calling process does
not match the owner of the file, and the calling process does
not have appropriate privileges.

v The calling process was attempting to change the owner, but it
does not have appropriate privileges.

v The calling process was attempting to change the general
attribute bits, but it does not have write permission for the file.

v The calling process was attempting to set a time value (not
current time), but the effective user ID does not match the
owner of the file, and it does not have appropriate privileges.

v The calling process was attempting to set the change time or
reference time to current time, but it does not have write
permission for the file.

v The calling process was attempting to change auditing flags,
but the effective UID of the calling process does not match the
owner of the file, and the calling process does not have
appropriate privileges.

v The calling process was attempting to change the Security
Auditor’s auditing flags, but the user does not have auditor
authority.

EROFS Pathname specifies a file that is on a read-only file system.
Consult Reason_code to determine the exact reason the error
occurred. The following reason code can accompany the return
code: JRReadOnlyFS.

EINVAL The length of the Attributes parameter is too small, or the
Attributes structure containing the requested changes is not valid.
Consult Reason_code to determine the exact reason the error
occurred. The following reason codes can accompany the return
code: JrInvalidAtt, JrNegativeValueInvalid, JrTrNotRegFile,
JrTrNegOffset, JrFileNotEmpty, and JrInvalidFileTag.

EFBIG The calling process was attempting to change the size of a file,
but the specified length is greater than the maximum file size limit
for the process. Consult Reason_code to determine the exact
reason the error occurred. The following reason code can
accompany the return code: JRWriteBeyondLimit.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chattr service stores the reason code. The
chattr service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

chattr (BPX1CHR)

70 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
Table 1. Attribute fields modifiable by chattr

Set Flags Attribute Fields Input Description

ATTMODECHG ATTMODE Set the mode according to the
value in ATTMODE. See “chmod
(BPX1CHM) — Change the Mode
of a File or Directory” on page 82.

ATTOWNERCHG ATTUID

ATTGID

Set the owner user identifier (UID)
and group identifier (GID) to the
values specified in ATTUID and
ATTGID. See “chown (BPX1CHO)
— Change the Owner or Group of
a File or Directory” on page 86.

ATTSETGEN ATTGENVALUE

ATTGENMASK

Only the bits corresponding to the
bits set ON in the ATTGENMASK
are set to the value (ON or OFF) in
ATTGENVALUE. Other bits are
unchanged.

ATTTRUNC ATTSIZE Change the file size to ATTSIZE
bytes. See “ftruncate (BPX1FTR)
— Change the Size of a File” on
page 203.

ATTATIMECHG ATTATIME Set the access time of the file to
the value specified in ATTATIME.

ATTATIMETOD None Set the access time of the file to
the current time.

ATTMTIMECHG ATTMTIME Set the modification time of the file
to the value specified in ATTMTIME

ATTMTIMETOD None Set the modification time of the file
to the current time.

ATTMAAUDIT ATTAUDITORAUDIT Set the Security Auditor’s auditing
flags to the value specified in
ATTAUDITORAUDIT. See “chaudit
(BPX1CHA) — Change Audit Flags
for a File by Path” on page 75.

ATTMUAUDIT ATTUSERAUDIT Set the User’s auditing flags to the
value specified in ATTUSERAUDIT.
See “chaudit (BPX1CHA) —
Change Audit Flags for a File by
Path” on page 75.

ATTCTIMECHG ATTCTIME Set the change time of the file to
the value specified in ATTCTIME.

ATTCTIMETOD None Set the change time of the file to
the current time.

ATTREFTIMECHG ATTREFTIME Set the reference time of the file to
the value specified in
ATTREFTIME.

ATTREFTIMETOD None Set the reference time of the file to
the current time.

ATTFILEFMTCHG ATTFILEFMT Set the File Format of the file to
the value specified in ATTFILEFMT.

chattr (BPX1CHR)

Chapter 2. Callable services descriptions 71

||

|

|
|
|
|
|
|

Table 1. Attribute fields modifiable by chattr (continued)

Set Flags Attribute Fields Input Description

ATTCHARSETIDCHG ATTFILETAG Set the file tag. See BPXYSTAT
(“BPXYSTAT — Map the Response
Structure for stat” on page 1034)
for file tag mapping.

1. Flags in the Attributes parameter are set to indicate which attributes are to be
updated. To set an attribute, turn the corresponding Set Flag on, and set the
corresponding Attributes Field according to Table 1 on page 71. Multiple
attributes may be changed at the same time.

The Set Flag field should be cleared before any bits are turned on. It is
considered an error if any of the reserved bits in the flag field are turned on.

2. Some of the attributes that are changed by the chattr service can also be
changed by other services. See the related service (listed in Table 1 on
page 71) for a detailed description.

3. Changing mode (ATTMODECHG = ON):

v The file mode field in Attributes is mapped by the BPXYMODE macro (see
“BPXYMODE — Map the Mode Constants of the File Services” on
page 986). For information on the values for file type, see “BPXYFTYP —
File Type Definitions” on page 969.

v File descriptors that are open when the chattr service is called retain the
access permission they had when the file was opened.

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

v Setting the set-group-ID-on-execution permission (in mode) means that
when this file is run through the exec, attach_exec, or spawn service, the
effective GID of the caller is set to the file’s owner GID, so that the caller
seems to be running under the GID of the file, rather than that of the actual
invoker.

The set-group-ID-on-execution permission is set to zero if both of the
following are true:

– The caller does not have appropriate privileges.

– The GID of the file’s owner does not match the effective GID, or one of
the supplementary GIDs, of the caller.

v Setting the set-user-ID-on-execution permission (in mode) means that when
this file is run, the process’s effective UID is set to the file’s owner UID, so
that the process seems to be running under the UID of the file’s owner,
rather than that of the actual invoker.

4. Changing owner (ATTOWNERCHG = ON):

v To change the owner UID of a file, the caller must have appropriate
privileges.

v To change the owner GID of a file, the caller must have appropriate
privileges, or meet all of these conditions:

– The effective UID of the caller matches the file’s owner UID.

– The Owner_UID value that is specified in the change request matches
the file’s owner UID.

– The Group_ID value that is specified in the change request is the
effective GID, or one of the supplementary GIDs, of the caller.

chattr (BPX1CHR)

72 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v When the owner is changed, the set-user-ID-on-execution and
set-group-ID-on-execution permissions of the file mode are automatically
turned off.

v When the owner is changed, both UID and GID must be specified as they
are to be set, or set to −1 if the value is to remain unchanged. If only one of
these values is to be changed, the other can be set to its present value or
to −1 to remain unchanged.

5. Changing General Attribute bits (ATTSETGEN = ON):

v For General Attribute bits to be changed, the calling process must have
write permission for the file.

6. Changing the file size (ATTTRUNC = ON):

v The resizing of a file to ATTSIZE bytes changes the file size to ATTSIZE,
beginning from the first byte of the file. If the file was originally larger than
ATTSIZE bytes, the data from ATTSIZE to the original end of file is
removed. If the file was originally shorter than ATTSIZE, bytes between the
old and new lengths are read as zeros.

Full blocks are returned to the file system so that they can be used again.

The file offset is not changed.

v When a file size is changed successfully, it clears the set-user-ID, the
set-group-ID, and the save-text (sticky bit) attributes of the file, unless the
caller has appropriate privileges.

v The resizing of a file to ATTSIZE bytes, where ATTSIZE is greater than the
soft file size limit for the process, fails with EFBIG, and the SIGXFSZ signal
is generated for the process.

7. Changing times:

v All time fields in Attributes are in POSIX format.

v For the access time or the modification time to be set explicitly
(ATTATIMECHG = ON or ATTMTIMECHG = ON), the effective ID must
match the file’s owner, or the process must have appropriate privileges.

v For the access time or modification time to be set to the current time
(ATTATIMETOD = ON or ATTMTIMETOD = ON), the effective ID must
match the file’s owner, the calling process must have write permission for
the file, or the process must have appropriate privileges.

v For the change time or the reference time to be set explicitly
(ATTCTIMECHG = ON or ATTREFTIMECHG = ON), the effective ID must
match the file’s owner, or the process must have appropriate privileges.

v For the change time or reference time to be set to the current time
(ATTCTIMETOD = ON or ATTREFTIMETOD = ON), the calling process
must have write permission for the file.

v For any time field (atime, mtime, ctime, reftime), if both current time and
specific time are requested (for example, ATTCTIMETOD = ON and
ATTCTIMECHG = ON), the current time is set.

v When any attribute field is changed successfully, the file’s change time is
also updated.

8. Changing auditor audit flags (ATTMAAUDIT = ON):

v For auditor audit flags to be changed, the user must have auditor authority.
Users with auditor authority can set the auditor options for any file, even
those for which they do not have path access or authority to use for other
purposes.

You establish auditor authority by issuing the TSO/E command ALTUSER
Auditor.

chattr (BPX1CHR)

Chapter 2. Callable services descriptions 73

9. Changing user audit flags (ATTMUAUDIT = ON):

v For the user audit flags to be changed, the user must have appropriate
privileges (see “Authorization” on page 8) or be the owner of the file.

10. Changing file format (ATTFILEFMTCHG = ON):

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

11. Changing the file tag (ATTCHARSETIDCHG=ON):

v A file tag can be set for regular, FIFO, and character special files. If the
DeferTag bit is on in the file tag, the file must be empty.

Related services
v “fchattr (BPX1FCR) — Change the Attributes of a File or Directory by Descriptor”

on page 156
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86
v “chaudit (BPX1CHA) — Change Audit Flags for a File by Path” on page 75
v “utime (BPX1UTI) — Set File Access and Modification Times” on page 890
v “ftruncate (BPX1FTR) — Change the Size of a File” on page 203
v “truncate (BPX1TRU) — Change the Size of a File” on page 867

Characteristics and restrictions
1. The ATTEXTLINK flag in the ATTGENVALUE field of BPXYATT cannot be

modified with BPX1CHR.

2. The General Attribute fields (set by ATTSETGEN, ATTGENMASK, and
ATTGENVALUE fields) are not intended as a general-use programming interface
to BPX1CHR.

Examples
For an example using this callable service, see “BPX1CHR (chattr) Example” on
page 1084.

chattr (BPX1CHR)

74 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

chaudit (BPX1CHA) — Change Audit Flags for a File by Path

Function
The chaudit service changes the types of access to a file to be audited for the
security product. The chaudit service identifies the file by its pathname.

For the corresponding service using a file descriptor, see “fchaudit (BPX1FCA) —
Change Audit Flags for a File by Descriptor” on page 163.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHA,(Pathname_length,
Pathname,
Audit_flags,
Option_code,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file for which auditing is
to be changed.

Pathnames can begin with or without a slash:

chaudit (BPX1CHA)

Chapter 2. Callable services descriptions 75

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Audit_flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that indicates the access to be audited. This field is
mapped by the BPXYAUDT macro; see “BPXYAUDT — Map Flag Values for
chaudit and fchaudit” on page 954. Valid values for this field include any
combination of the following:

Value Description
AUDTREADFAIL Audit failing read requests.
AUDTREADSUCCESS Audit successful read requests.
AUDTWRITEFAIL Audit failing write requests.
AUDTWRITESUCCESS Audit successful write requests.
AUDTEXECFAIL Audit failing execute or search requests.
AUDTEXECSUCCESS Audit successful execute or search

requests.

Option_code
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that indicates whether you are changing the
auditing for the user or for the security auditor. When this field has the value:

v 0, the user’s auditing is being changed.

v 1, the security auditor’s auditing is being changed. A superuser who is not the
auditor cannot change the auditor’s authority.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chaudit service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chaudit service stores the return code. The
chaudit service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a list of possible return code values.
The chaudit service can return one of the following values in the Return_code

chaudit (BPX1CHA)

76 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

parameter:

Return_code Explanation
EACCES The calling process does not have search permission for some

component of the Pathname prefix.
EINVAL The Option_code parameter is incorrect. The following reason

code can accompany the return code: JRBadAuditOption.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or some component of
the pathname is longer than 255 characters. Name truncation is
not supported.

ENOENT No file named Pathname was found, or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR A component of the Pathname prefix is not a directory.
EPERM The effective UID of the calling process does not match the file’s

owner UID; the calling process does not have appropriate
privileges; or if Option_code indicated that the auditor audit flags
were to be changed, the user does not have auditor authority.

EROFS The file exists on a read-only file system. The following reason
code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chaudit service stores the reason code.
The chaudit service returns a Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If Option_code indicates that the auditor audit flags are to be changed, the user

must have auditor authority for the request to be successful. The user with
auditor authority can set the auditor options for any file, even those for which
they do not have path access or authority to use for other purposes.

You can get auditor authority by entering the TSO/E command ALTUSER
Auditor.

2. If Option_code indicates that the user audit flags are to be changed, the user
must have appropriate privileges (see “Authorization” on page 8) or be the
owner of the file.

Related services
v “fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor” on

page 163
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the chaudit service.

chaudit (BPX1CHA)

Chapter 2. Callable services descriptions 77

Examples
For an example using this callable service, see “BPX1CHA (chaudit) Example” on
page 1079.

chaudit (BPX1CHA)

78 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

chdir (BPX1CHD) — Change the Working Directory

Function
The chdir service changes your working directory from the current one to a new
one. The working directory is the starting point for path searches of pathnames that
do not begin with a slash.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHD,(Pathname_length,
Pathname,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the directory
that is to become your new working directory.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the new directory. This field
has the length specified in Pathname_length.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

chdir (BPX1CHD)

Chapter 2. Callable services descriptions 79

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chdir service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chdir service stores the return code. The
chdir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The chdir service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search one of

the components of Pathname.
EINVAL The Pathname parameter is not valid; it contains nulls.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of
Pathname is longer than 255 characters. Name truncation is not
supported.

ENOENT No directory named Pathname was found, or no Pathname was
specified. The following reason codes can accompany the return
code: JRChdNoEnt and JRQuiescing.

ENOTDIR Some component of Pathname is not a directory. The following
reason code can accompany the return code: JRChdNotDir.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chdir service stores the reason code. The
chdir service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Related services
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “chroot (BPX1CRT) — Change the Root Directory” on page 94
v “fchdir (BPX1FCD) — Change the Working Directory” on page 166

chdir (BPX1CHD)

80 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on
page 216

v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rmdir (BPX1RMD) — Remove a Directory” on page 610
v “realpath (BPX1RPH) — Resolve a Pathname” on page 588
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the chdir service.

Examples
For an example using this callable service, see “BPX1CHD (chdir) Example” on
page 1080.

chdir (BPX1CHD)

Chapter 2. Callable services descriptions 81

chmod (BPX1CHM) — Change the Mode of a File or Directory

Function
The chmod service modifies the permission bits that are used to control the owner
access, group access, and general access to a file. You can use it to set flags that
modify the user ID (UID) and group ID (GID) of the file when it is executed. You can
also use it to set the sticky bit to indicate from where the file should be fetched. You
identify the file by its pathname.

For the corresponding service using a file descriptor, see “fchmod (BPX1FCM) —
Change the Mode of a File or Directory by Descriptor” on page 168.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHM,(Pathname_length,
Pathname,
Mode,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file
whose mode you want to change.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file. This field has the
length that is specified in Pathname_length.

chmod (BPX1CHM)

82 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that describes the access. This field, which is mapped
by BPXYMODE, specifies the file type and permissions for the caller, for the
callers group, and for any others. For more information, see “BPXYMODE —
Map the Mode Constants of the File Services” on page 986.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chmod service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chmod service stores the return code. The
chmod service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The chmod service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search some

component of Pathname.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters. Filename truncation is
not supported.

ENOENT No file named Pathname was found, or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of Pathname is not a directory.
EPERM The effective UID of the calling process does not match the

owner of the file, and the calling process does not have
appropriate privileges.

chmod (BPX1CHM)

Chapter 2. Callable services descriptions 83

Return_code Explanation
EROFS Pathname specifies a file that is on a read-only file system. The

following reason code can accompany the return code:
JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chmod service stores the reason code. The
chmod service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. File descriptors that are open when the chmod service is called retain the

access permission they had when the file was opened.

2. For mode bits to be changed, the effective UID of the calling process must
match the file’s owner UID, or the caller must have appropriate privileges.

3. A user with READ authority to SUPERUSER.FILESYS.CHANGEPERMS in the
UNIXPRIV class can use the chmod service to change the permission bits of
any file.

4. When the mode is changed successfully, the file’s change time is also updated.

5. Setting the set-group-ID-on-execution permission means that when this file is
run, through the exec, spawn, or attach_exec service, the effective GID of the
caller is set to the file’s owner GID, so that the caller seems to be running under
the GID of the file rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the following
are true:

v The caller does not have appropriate privileges.

v The GID of the file’s owner does not match the effective GID, or one of the
supplementary GIDs, of the caller.

6. Setting the set-user-ID-on-execution permission means that when this file is run,
the process’s effective UID is set to the file’s owner UID, so that the process
seems to be running under the UID of the file’s owner, rather than that of the
actual invoker.

Related services
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86
v “fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor” on

page 168
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “open (BPX1OPN) — Open a File” on page 434
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the chmod service.

chmod (BPX1CHM)

84 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1CHM (chmod) Example” on
page 1081.

chmod (BPX1CHM)

Chapter 2. Callable services descriptions 85

chown (BPX1CHO) — Change the Owner or Group of a File or
Directory

Function
The chown service changes a file’s owner, group, or both owner and group. The
owner is identified by a user ID (UID) and a group ID (GID).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHO,(Pathname_length,
Pathname,
Owner_UID,
Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file
whose owner or group is to be changed.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file. This field has the
length that is specified in Pathname_length.

Pathnames can begin with or without a slash:

chown (BPX1CHO)

86 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Owner_UID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the new owner UID that is assigned
to the file. If there is no change, this field contains the present value or -1. This
parameter must be specified.

Group_ID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the new owner GID that is assigned
to the file. If there is no change, this field contains the present value or -1. This
parameter must be specified.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chown service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chown service stores the return code. The
chown service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The chown service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search some

component of the Pathname prefix.
EINVAL The Owner_UID or Group_ID parameter is incorrect.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters.

chown (BPX1CHO)

Chapter 2. Callable services descriptions 87

Return_code Explanation
ENOENT No file named Pathname was found, or no pathname was

specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of the Pathname prefix is not a directory.
EPERM The calling process does not have appropriate privileges.
EROFS Pathname is on a read-only file system. The following reason

code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chown service stores the reason code. The
chown service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The chown service changes the owner UID and owner GID of a file. Only a

caller with appropriate privileges can change the owner UID of a file. Refer to
“Authorization” on page 8 for information on appropriate privileges.

2. The owner GID of a file can be changed by a caller if the caller has appropriate
privileges, or if a caller meets all of these conditions:

v The effective UID of the caller matches the file’s owner UID.

v The Owner_UID value that is specified in the change request matches the
file’s owner UID.

v The Group_ID value that is specified in the change request is the effective
GID, or one of the supplementary GIDs, of the caller.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

4. If the change request is successful, the change time for the file is updated.

5. Values for both Owner_UID and Group_ID must be specified. To change only
one of these values, set the one that is to remain unchanged to its present
value or to -1.

Related services
v “fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by

Descriptor” on page 171
v “lchown (BPX1LCO) — Change the Owner or Group of a File, Directory, or

Symbolic Link” on page 315
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname” on page 335
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the chown service.

chown (BPX1CHO)

88 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1CHO (chown) Example” on
page 1082.

chown (BPX1CHO)

Chapter 2. Callable services descriptions 89

chpriority (BPX1CHP) — Change the Scheduling Priority of a Process

Function
The chpriority callable service changes the scheduling priority of a process, process
group, or user.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CHP,(Which,
Who,
PriorityType,
Priority,
Return_value,
Return_code,
Reason_code)

Parameters
Which

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates how the Who
parameter is to be interpreted. This parameter can have one of the following
values:

v PRIO_PROCESS = Indicates that the Who parameter is to be interpreted as
a process ID

v PRIO_PGRP = Indicates that the Who parameter is to be interpreted as a
process group ID

v PRIO_USER = Indicates that the Who parameter is to be interpreted as a
user ID

The PRIO_ constants are defined in the BPXYCONS macro.

Who
Supplied parameter

Type: Integer

Length: Fullword

chpriority (BPX1CHP)

90 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword that contains a value that indicates the exact process
ID, process group ID, or User ID whose priority is to be changed. The Which
parameter indicates how this parameter is to be interpreted. If this parameter is
interpreted as a process group ID or user ID, all processes with the specified
process group ID or user ID are to have their priority changed. A value of zero
for this parameter specifies the current process, process group, or User ID.

PriorityType
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates how the Priority
parameter is to be interpreted. This parameter can have one of the following
values:

v CPRIO_ABSOLUTE = Indicates that the Priority parameter is to be
interpreted as an absolute value. This causes the priority value of the target
process(es) to be set to the value specified by the Priority parameter.

v CPRIO_RELATIVE = Indicates that the Priority parameter is to be interpreted
as a relative value. This causes the priority value of the target process(es) to
be incremented or decremented by the value that is specified by the Priority
parameter.

The CPRIO_ constants are defined in the BPXYCONS macro.

Priority
Supplied parameter

Type: Signed Integer

Length: Fullword

The name of a fullword that contains a value that indicates the priority value
that the specific process or group of processes is to be set to or changed by.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chpriority service returns −1 if it is not
successful. If it is successful, the chpriority service returns a value of zero.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chpriority service stores the return code.
The chpriority service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The chpriority service can return one of the following values
in the Return_code parameter:

chpriority (BPX1CHP)

Chapter 2. Callable services descriptions 91

Return_code Explanation
EACCES The priority is being changed to a lower value, and the current

process does not have the appropriate privilege to do so.
EPERM A process was located, but the saved set-user-ID of the calling

process does not match the saved set-user-ID of the process
whose priority is being changed.

EINVAL The value of the Which parameter was not recognized; the value
of the Who parameter is not a valid process ID, process group ID
or user ID; or the value of the PriorityType parameter is not
supported.

ESRCH No process could be located using the Which and Who
parameter values specified.

EMVSSAF2ERR A Security product internal error has occurred. Consult the
Reason_code parameter for the exact reason for the error.

ENOSYS The system does not support this function. Your installation has
chosen not to enable this function.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chpriority service stores the reason code.
The chpriority service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the supplied Who and Which values specify more than one process, each of

the specified processes has its priority values set to the supplied value. If at
least one of the specified processes has its priority value successfully changed,
the chpriority service returns successfully.

2. The priority value of a process is an integer that can be in the range of -20 to
19. If the priority value that is supplied causes the priority value of a process to
be outside this range, the priority of the process is set to the corresponding limit
value. The default priority value for all processes is 0.

3. An increase in the priority value of a process results in a lower CPU priority for
the process. A decrease in the priority value of a process results in a higher
CPU priority for the process.

4. If the supplied priority value would result in a lower priority value for the
specified process(es), the caller must have appropriate privileges. Refer to
“Authorization” on page 8 for information on appropriate privileges. In addition to
being able to lower the priority value, a caller with appropriate privileges can
change the priority of any other process, regardless of the saved set-user-ID
value of the process.

5. The setting of the priority value of a process has a corresponding effect on its
nice value, as they both represent the relative CPU priority of the process. For
example, if you use the chpriority service to change the priority value of a
process to its maximum value (19), the nice value of the process is changed to
its maximum value (2*NICE_ZERO)-1. This is reflected on the nice, getpriority,
chpriority and setpriority services. The NICE_ZERO constant is defined in
BPXYCONS.

chpriority (BPX1CHP)

92 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

6. If the ENOSYS return code is received, your installation does not support this
service. Contact your system administrator if you require activation of this
service.

7. If the supplied Who and Which values specify a process in a multiple—process
address space, each of the processes in the address space will have their
priority values set to the supplied value.

8. See the documentation for the BPXPRMXX parmlib member in z/OS UNIX
System Services Planningfor information about the necessary system setup for
this service.

Related services
v “nice (BPX1NIC) — Change the nice Value of a Process” on page 422
v “getpriority (BPX1GPY) — Get the Scheduling Priority of a Process” on page 260
v “setpriority (BPX1SPY) — Set the Scheduling Priority of a Process” on page 695

Characteristics and restrictions
There are no restrictions on the use of the chpriority service.

Examples
For an example using this callable service, see “BPX1CHP (chpriority) Example” on
page 1083.

chpriority (BPX1CHP)

Chapter 2. Callable services descriptions 93

chroot (BPX1CRT) — Change the Root Directory

Function
The chroot service changes the root directory from the current one to a new one.
The root directory is the starting point for path searches of pathnames beginning
with a slash. The working directory of the process is unaffected by chroot().

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CRT,(Pathname_length,
Pathname,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the directory
that is to become your root directory.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the new directory. This field
has the length that is specified in Pathname_length.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the current root directory, and the search for the file starts at the
current root directory.

chroot (BPX1CRT)

94 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chroot service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chroot service stores the return code. The
chroot service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The chroot service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search one of

the components of Pathname.
EINVAL The Pathname parameter is not valid; it contains nulls.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of
Pathname is longer than 255 characters. Name truncation is not
supported.

ENOENT No directory named Pathname was found, or no Pathname was
specified. The following reason codes can accompany the return
code: JRChdNoEnt and JRQuiescing.

ENOTDIR Some component of Pathname is not a directory. The following
reason code can accompany the return code: JRChdNotDir.

EPERM The calling process is not a superuser. The following reason
code can accompany the return code: JRUserNotPrivileged.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the chroot service stores the reason code. The
chroot service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

chroot (BPX1CRT)

Chapter 2. Callable services descriptions 95

Usage notes
1. Upon completion of the chroot, the specified directory is now the logical root of

the file system for the process. All searches for pathname beginning with slash
(/) start from this directory, and all attempts to use dot dot (..) over the root
remain in the new root.

2. A new child process inherits a parent’s changed root directory.

3. If the current working directory is above the new root, chroot(.) can be used to
reset the root directory to equal the current working directory. However, when
the current working directory is above the root directory, getcwd() fails with
ENOENT return code.

Related services
v “chdir (BPX1CHD) — Change the Working Directory” on page 79
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on

page 216
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rmdir (BPX1RMD) — Remove a Directory” on page 610
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
To change the root directory, the caller must have appropriate privileges.

Examples
See “BPX1CRT (chroot) Example” on page 1090 for an example using this callable
service.

chroot (BPX1CRT)

96 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

close (BPX1CLO) — Close a File

Function
The close callable service closes a file. You identify the file by its file descriptor.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CLO,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the file descriptor of the file or socket the
caller wants closed. The file descriptor is returned by the open service (see
“open (BPX1OPN) — Open a File” on page 434) or by the socket service (see
“socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets” on
page 780).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the close service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

close (BPX1CLO)

Chapter 2. Callable services descriptions 97

The name of a fullword in which the close service stores the return code. The
close service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The close service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The service did not complete, because the file descriptor

specified is currently in use by another thread in the same
process.

EBADF The File_descriptor does not identify a valid, open file. The
following reason codes can accompany the return code:
JRClNeedClose and JRNotForDir.

EINTR The service was interrupted by a signal while it was processing
the close request. The file may or may not be closed.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the close service stores the reason code. The
close service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. Closing a file closes, or frees, the file descriptor by which the file was known to

the process. The system can then reassign the file descriptor to the same file or
to another file when it is opened.

2. Closing a file descriptor also unlocks all outstanding byte range locks that a
process has on the associated file.

3. If a file has been opened by more than one process, each process has a file
descriptor. When the last open file descriptor is closed, the file itself is closed. If
the file’s link count is zero at that time, the file’s space is freed and the file
becomes inaccessible. When the last open file descriptor for a pipe or FIFO
special file is closed, any data remaining in the file is discarded.

4. The close callable service is for files or sockets.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “fork (BPX1FRK) — Create a New Process” on page 184
v “open (BPX1OPN) — Open a File” on page 434
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475
v “socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets” on

page 780
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the close service.

close (BPX1CLO)

98 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1CLO (close) Example” on
page 1087.

close (BPX1CLO)

Chapter 2. Callable services descriptions 99

closedir (BPX1CLD) — Close a Directory

Function
The closedir callable service closes a directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CLD,(Directory_file_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_file_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the directory file descriptor that was
returned when the directory was opened.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the closedir service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the closedir service stores the return code. The
closedir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The closedir service can return one of the following values in the

closedir (BPX1CLD)

100 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code parameter:

Return_code Explanation
EBADF The Directory_file_descriptor parameter does not represent an

open directory.
EINTR The service was interrupted by a signal while it was processing a

closedir request. The directory may or may not be closed.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the closedir service stores the reason code.
The closedir service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on

page 608

Characteristics and restrictions
There are no restrictions on the use of the closedir service.

Examples
For an example using this callable service, see “BPX1CLD (closedir) Example” on
page 1086.

closedir (BPX1CLD)

Chapter 2. Callable services descriptions 101

cond_cancel (BPX1CCA) — Cancel Interest in Events

Function
The cond_cancel callable service allows the thread to cancel the effects of a call to
the cond_setup service (BPX1CSE).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CCA,(Return_value,
Return_code,
Reason_code)

Parameters
Return_Value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 to indicate that the
interest in event notifications has been canceled, or −1 if it has not.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service stores the return code. The
cond_cancel service stores a return code only if the return value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
reason code further qualifies the return code value. The cond_cancel service

cond_cancel (BPX1CCA)

102 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

stores a reason code only when the return value is −1. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. A program can use the cond_cancel service to clean up when it uses the

cond_setup service, but does not call cond_wait or cond_timed_wait. The
cond_setup service causes the thread to be eligible to receive event
notifications. If the program running on the thread is no longer interested in
these events, it should call cond_cancel to tell the system that event
notifications are no longer required.

2. If you intend to call cond_wait or cond_timed_wait at a later time to wait until
some event occurs, use the cond_setup service to make your program eligible
to receive event notifications. The system notes that your program will be
waiting for some other thread, either to send it a signal or to use the cond_post
service to send an event notification. Both of these require the use of z/OS
UNIX services. If z/OS UNIX determines that it has become impossible to send
a signal or event notification to your program, it checks to see whether your
program is or will be calling the cond_wait or cond_timed_wait services. If so,
z/OS UNIX abnormally terminates your program to prevent it from waiting for
something that cannot occur. For this reason, if your program uses the
cond_setup service but does not subsequently call either cond_wait or
cond_timed_wait, it should use the cond_cancel service to cancel the setup to
receive event notifications.

3. When the program cannot determine whether cond_wait or cond_timed_wait
has been called, it should call cond_cancel to ensure that the thread is not
eligible to receive event notifications.

Related services
v “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 107
v “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event” on page 110
v “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 114

Characteristics and restrictions
There are no restrictions on the use of the cond_cancel service.

Examples
For an example that uses this callable service, see “BPXICCA (cond_cancel)
Example” on page 1077.

cond_cancel (BPX1CCA)

Chapter 2. Callable services descriptions 103

cond_post (BPX1CPO) — Post a Thread for an Event

Function
The cond_post callable service notifies another thread in the process that an event
has occurred.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CPO,(Thread_ID,
Event,
Return_value,
Return_code,
Reason_code)

Parameters
Thread_ID

Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the thread ID for the thread that is to
be notified of the event. The target thread must be in the same process as the
caller.

Event
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an integer value that determines which
event notification is to be sent to the target thread. The Event value represents
an event for which the thread identified by Thread_ID may be waiting. If the
target thread is waiting, the cond_post service notifies it that the event has
occurred.

The value that is specified by Event must be one of the following two event
values, which are defined by the BPXYCW macro:

CW_CONDVAR causes the target thread to resume processing if it is
waiting for a CW_CONDVAR event.

cond_post (BPX1CPO)

104 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

CW_TIMEOUT causes the target thread to resume processing if it is waiting
for a timeout notification.

Notes:

1. You must specify exactly one event.

2. Use of cond_post to send a CW_TIMEOUT notification is restricted to
programs that run in supervisor state with protect key 0.

Return_Value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 if an event notification
was sent to the target thread, or −1 if it was not.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service stores the return code. This service
routine returns the return code only if the return value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The cond_post service may return one of the following values in
the return code parameter:

Error Explanation
EINVAL The value specified by Thread_ID is not valid. Either the Event

parameter contains an incorrect value, or Thread_ID contains a
lightweight thread ID. The following reason codes unique to the
cond_post call can accompany this return code:
JRLightWeightThID, JRNoEvents, JRTimeOutNotAuth,
JRTooMany, JRUndefEvents.

ESRCH The system determined that the value that was specified by
Thread_ID does not refer to a thread that currently exists in the
caller’s process. The following reason codes can accompany this
return code: JRThreadNotFound, JRAlreadyTerminated.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
The cond_post service attempts to send an event notification to the target thread.
Event notifications are delivered to a target thread only when the thread is set up to
receive them. If the target thread is not set up to receive it, the event notification is
discarded. The cond_post service does not check whether the target thread is set
up to receive the event, so the cond_post service can return a value of 0 even

cond_post (BPX1CPO)

Chapter 2. Callable services descriptions 105

though the event notification was discarded. Therefore, if you use the cond_wait
and cond_post services to synchronize threads, you must be certain that the target
thread is set up for the wait or in the wait before you use cond_post to send the
notification.

Related services
v “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event” on page 110
v “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 114

Characteristics and restrictions
The target thread must be in the same process as the caller.

Examples
For an example using this callable service, see “BPX1CPO (cond_post) Example”
on page 1089.

cond_post (BPX1CPO)

106 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

cond_setup (BPX1CSE) — Set Up to Receive Event Notifications

Function
The cond_setup callable service makes the calling thread eligible to receive event
notifications from other threads.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CSE,(Event_list,
Return_value,
Return_code,
Reason_code)

Parameters
Event_list

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that specifies which events are of
interest to the thread. The value contained in Event_list is the inclusive OR of
one or more of the following event values, which are defined by the BPXYCW
macro:

CW_INTRPT The program that is running on the thread
needs to know about signals sent to the thread.

CW_CONDVAR The program that is running on the thread
needs to suspend processing until some other
thread uses the cond_post service to send this
thread a notification of a CW_CONDVAR event.

You must specify at least one event; you may specify both.

Return_Value
Returned parameter

Type: Integer

Length: Fullword

cond_setup (BPX1CSE)

Chapter 2. Callable services descriptions 107

The name of a fullword in which the service returns a 0 upon normal
completion, or −1 otherwise.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the cond_setup call stores the return code. The
cond_setup call stores return code only if return value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The cond_setup call can return one of the following values in the
return code parameter:

Error Explanation
EINVAL The system determined that the event list that was passed to the

service is in error. The following reason codes unique to the
cond_setup call can accompany the return code:
JRAlreadySetup, JRNoEvents, JRUndefEvents.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
cond_setup service stores a reason code only when the return value is −1. The
reason code further qualifies the return code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The effects of the cond_setup request remain until the next service is

requested. The cond_setup service is intended to used to set up for a
subsequent call to cond_wait or cond_timed_wait. If the program invokes other
callable services between cond_setup, on the one hand, and cond_wait or
cond_timed_wait, on the other hand, cond_wait or cond_timed_wait may fail
with a return value of −1, a reason code of EINVAL, and a reason code of
JRNotSetup.

The only exception to this is the queue_interrupt service. You can use the
queue_interrupt service to “put back” the last signal delivered to the signal
interface routine.

2. If you use cond_setup to specify the events that cause the thread to resume
processing, you must repeat the setup before each call to cond_wait or
cond_timed_wait.

3. If you use cond_setup with cond_timed_wait, do not specify the CW_TIMEOUT
condition on the call to cond_setup. The cond_timed_wait service provides
setup for the CW_TIMEOUT event.

4. Calling the cond_setup service before the cond_wait and cond_timed_wait
services is optional. If the thread does not need to do any additional processing
between the time it becomes eligible to request event notification and the time it
suspends, you can specify the events on cond_wait or cond_timed_wait instead
of using cond_setup.

cond_setup (BPX1CSE)

108 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

5. If a thread has called cond_setup but has not called cond_wait or
cond_timed_wait, any cond_post services to it are remembered, and processed
following the setup. When the cond_wait or cond_timed_wait service is called,
the pending cond_post prevents the caller from waiting.

Related services
v “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 102
v “cond_post (BPX1CPO) — Post a Thread for an Event” on page 104
v “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event” on page 110
v “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 114
v “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 561

Characteristics and restrictions
The program running on the thread should eventually call one of the cond_wait,
cond_timed_wait, or cond_cancel services.

Examples
For an example using this callable service, see “BPX1CSE (cond_setup) Example”
on page 1091.

cond_setup (BPX1CSE)

Chapter 2. Callable services descriptions 109

cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time
or an Event

Function
The cond_timed_wait callable service suspends the calling thread until any one of a
set of events has occurred, or until a specified amount of time has passed.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CTW,(Seconds,
Nanoseconds,
Event_list,
Seconds_remaining,
Nanoseconds_remaining,
Return_value,
Return_code,
Reason_code)

Parameters
Seconds

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer that is the maximum
number of seconds that the calling program is willing to wait for one of the
specified events to occur.

Notes:

1. Seconds can be any value greater than or equal to 0, and less than or
equal to 4 294 967 295. The value specified for Seconds is an unsigned
integer.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value.

Nanoseconds
Supplied parameter

Type: Integer

cond_timed_wait (BPX1CTW)

110 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword that contains an unsigned integer that is the number of
nanoseconds to be added to the value specified by Seconds.

Notes:

1. Nanoseconds can be any value greater than or equal to 0, and less than or
equal to 1 000 000 000.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value.

Event_list
Supplied parameter

Type: Integer

Length: Fullword

Event_list specifies the name of a fullword that contains a value that determines
which events are to cause the thread to resume processing.

The value that is contained in the event list is the inclusive OR of one or more
of the following event values, which are defined by the BPXYCW macro:

CW_INTRPT Suspends processing until a signal is sent to
the thread. This is a cancelation point that is
described in the usage notes of “pthread_setintr
(BPX1PSI) — Examine and Change the
Interrupt State” on page 519.

CW_CONDVAR Suspends processing until some other thread in
the process sends this one a CW_CONDVAR
notification.

If the event list is zero, the caller has used the cond_setup service to specify
the events, and the thread is already eligible to be notified of events. In this
case, the cond_timed_wait service sets the timer for the specified interval, and
suspends thread processing until an event occurs, a signal arrives, or the time
limit is reached.

Seconds_remaining
Supplied returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the cond_timed_wait returns an unsigned
integer that is the number of seconds of unexpired time remaining in the time
interval.

Note: The Seconds_remaining value is valid only when the return value is 0 or
EINTR.

Nanoseconds_remaining
Supplied returned parameter

Type: Integer

Length: Fullword

cond_timed_wait (BPX1CTW)

Chapter 2. Callable services descriptions 111

The name of a fullword in which the cond_timed_wait returns an unsigned
integer that is the number of nanoseconds of unexpired time remaining in the
time interval.

Notes:

1. Nanoseconds_remaining can be any value greater than or equal to 0, and
less than or equal to 1 000 000 000.

2. The nanoseconds remaining value is valid only when the return value is 0 or
EINTR.

Return_Value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 if a CW_CONDVAR
event occurred, or −1 if it has not.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service stores the return code. The
cond_timed_wait service stores a return code only if the return value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. cond_timed_wait may return one of the following
values in the Return_code parameter:

Error Explanation
EAGAIN No signal or event notification arrived within the specified timeout

period. The thread resumed processing because the time interval
expired.
Note: If you specify a value of zero for both Seconds and
Nanoseconds, and no event notification is pending when you call
cond_timed_wait, the service returns this error.

EINTR A signal caused the cond_timed_wait service to resume
processing of the thread.
Note: The signal handler has already run.

EINVAL The system determined that one or more of the parameters that
were passed to the service are in error. The following reason
codes unique to the cond_timed_wait call can accompany the
return code: JRAlreadySetup, JRNanoSecondsTooBig,
JRNotSetup, JRUndefEvents.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
cond_timed_wait service stores a reason code only when the return value is −1.
The reason code further qualifies the return code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

cond_timed_wait (BPX1CTW)

112 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. The cond_timed_wait service is similar to the POSIX function nanosleep() .

(Refer to the POSIX standard for a description of nanosleep() .) If you need the
nanosleep() function, you can use cond_timed_wait to implement your own
version.

2. If your program uses cond_timed_wait to wait for events that it specified by
calling cond_setup, it must not call any other z/OS UNIX services between the
calls to cond_setup and cond_timed_wait. If the program invokes other callable
services between cond_setup and cond_timed_wait, the cond_timed_wait
callable service fails with a return value of −1, a return code of EINVAL, and a
reason code of JRNotSetup.

The only exception to this is the queue_interrupt service. You can use the
queue_interrupt service to “put back” the last signal delivered to the signal
interface routine. A signal can arrive after the program that is running on the
thread has called cond_setup, and before it gets a chance to call
cond_timed_wait. The program may choose to “put back” the signal to defer
handling of it until a later time.

3. If you use cond_setup to specify the events that are to cause the thread to
resume processing, you must repeat the setup before each call to cond_wait or
cond_timed_wait.

4. If the caller has a PSW key of 0 or a key that is different from the one that was
in effect when the process was created, cond_timed_wait gives a return value of
−1 with a return code of EMVSERR and a reason code of JRPswKeyNotValid.

5. If the thread has been set up for signals, the cond_timed_wait service must run
on the same request block (RB) that was used when the setup for signals was
performed.

6. If you do not include the CW_INTRPT event when you use cond_timed_wait,
some services that are used by other threads or processes cannot cause the
waiting thread to resume processing. In particular, the following services do not
cause an event notification unless CW_INTRPT is specified in the event list:
v kill
v pthread_cancel
v pthread_kill
v pthread_quiesce

Related services
v “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 102
v “cond_post (BPX1CPO) — Post a Thread for an Event” on page 104
v “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 107
v “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 114
v “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 561

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
For an example using this callable service, see “BPX1CTW (cond_timed_wait)
Example” on page 1092.

cond_timed_wait (BPX1CTW)

Chapter 2. Callable services descriptions 113

cond_wait (BPX1CWA) — Suspend a Thread for an Event

Function
The cond_wait callable service allows the caller’s thread to suspend processing
until any one of a set of events has occurred.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CWA,(Event_list,
Return_value,
Return_code,
Reason_code)

Parameters
Event_list

Supplied returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that determines which events will
cause the thread to resume processing.

The value contained in Event_list is the inclusive OR of one or more of the
following event values defined by the BPXYCW macro.

CW_INTRPT Suspends processing until a signal is sent to
the thread.

CW_CONDVAR Suspends processing until some other thread in
the process sends this one a CW_CONDVAR
event notification.

An Event_list of zero means that the caller has used the cond_setup service to
specify the events, and the thread is already eligible to be notified of events. In
this case, the cond_wait service suspends thread processing until an event
occurs or a signal arrives.

Return_Value
Returned parameter

cond_wait (BPX1CWA)

114 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 a CW_CONDVAR event
occurred, or −1 otherwise.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service stores the return code. The
cond_wait service stores a return code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The cond_wait service may return one of the following
values in the Return_code parameter:

Error Explanation
EINTR A signal caused the cond_wait service to resume processing of

the thread.
Note: The signal handler has already run.

EINVAL The system determined that one or more of the parameters that
were passed to the service are in error. The following reason
codes unique to the cond_wait call can accompany the return
code: JRAlreadySetup, JRNotSetup, JRUndefEvents.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
cond_wait service stores a reason code only when the return value is −1. The
reason code further qualifies the return code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. If your program uses cond_wait to wait for events that it specified by calling

cond_setup, it must not call any other z/OS UNIX services between the calls to
cond_setup and cond_wait. If the program invokes other callable services
between cond_setup and cond_wait, the cond_wait callable service fails with a
return value of −1, a return code of EINVAL, and a reason code of JRNotSetup.

The only exception to this is the queue_interrupt service. You may use the
queue_interrupt service to “put back” the last signal delivered to the signal
interface routine. A signal may arrive after the program that is running on the
thread has called cond_setup and before it gets a chance to call cond_wait. The
program may choose to “put back” the signal to defer handling it until a later
time.

If you use cond_setup to specify the events that will cause the thread to resume
processing, you must repeat the setup before each call to cond_wait or
cond_timed_wait.

cond_wait (BPX1CWA)

Chapter 2. Callable services descriptions 115

2. If the caller has a PSW key of 0 or a key that is different from the one that was
in effect when the process was created, cond_wait gives a return value of −1, a
return code of EMVSERR, and a reason code of JRPswKeyNotValid.

3. If the thread has been set up for signals, the cond_timed_wait service must run
on the same request block (RB) that was used when the setup for signals was
performed.

4. If you do not include the CW_INTRPT event when you use cond_wait, some
services that are used by other threads or processes cannot cause the waiting
thread to resume processing. In particular, the following services do not cause
an event notification unless CW_INTRPT is specified in the event list:
v kill
v pthread_cancel
v pthread_kill
v pthread_quiesce

Related services
v “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 102
v “cond_post (BPX1CPO) — Post a Thread for an Event” on page 104
v “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 107
v “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event” on page 110
v “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 561

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
See “BPX1CWA (cond_wait) Example” on page 1093 for an example using this
callable service.

cond_wait (BPX1CWA)

116 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

connect (BPX1CON) — Establish a Connection Between Two Sockets

Function
For stream sockets, the connect callable service establishes a connection from a
client socket to a socket at a server. For UDP (Universal Datagram Protocol)
sockets, the connect callable service specifies the peer for a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CON,(Socket_descriptor,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
connect is to be done.

Sockaddr_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Sockaddr.

Sockaddr
Supplied parameter

Type: Character

Length: Length specified by Sockaddr_length.

The name of a field that contains the address of the socket or the name of the
peer to which a connection is to be attempted.

connect (BPX1CON)

Chapter 2. Callable services descriptions 117

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the connect service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the connect service stores the return code. The
connect service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The connect service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAFNOSUPPORT The address family that was specified in the address structure is

not supported.
EBADF The socket descriptor is incorrect. The following reason codes

can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

ECONNREFUSED The attempt to connect was rejected. The connect request may
exceed the backlog count of the target socket, or the target
socket may be closed. The following reason codes can
accompany the return code: JRSocketNotFound,
JRExceedsBacklogCount, JRListenNotDone.

EINVAL The length that is specified in the Sockaddr_length or in the
name length field in the Sockaddr is not valid. The following
reason codes can accompany the return code:
JRSocketCallParmError, JRSockNoName.

EINTR A signal interrupted the connect service before this connection
was accepted. The following reason code can accompany the
return code: JRSignalReceived.

EIO There has been a network or transport failure. The following
reason codes can accompany the return code: JRPrevSockError,
JRTransportDriverNotAccessible.

EISCONN The socket is already connected.
ENOBUFS A buffer could not be obtained. The following reason code can

accompany the return code: JROutofSocketCells.
ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The

following reason code can accompany the return code:
JRMustBeSocket.

EOPNOTSUPP The socket is ready to accept connections. An accept request
was expected. The following reason code can accompany the
return code: JRListenAlreadyDone.

EPROTOTYPE The address specifies a socket that is not the correct type for this
request. The following reason code can accompany the return
code: JRIncorrectSocketType.

EWOULDBLOCK The socket is marked nonblocking, and the connection cannot be
completed immediately.

connect (BPX1CON)

118 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the connect service stores the reason code.
The connect service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. For connectionless sockets, the connect service may be advantageous because

the destination address need not be specified for every datagram sent. Once a
UDP (connectionless) socket is connected, the read, write, recv, and send
system calls can be used for I/O on those sockets. Otherwise, only the
sendto/recvfrom system calls can be used. Once a UDP socket is connected,
only datagrams from the specified sockaddr are received on the socket. To
disconnect a UDP socket from a previous connection, issue the connect system
call with an invalid (null) sockaddr.

2. The connect callable service can be used to test whether a target socket is
available for the connect. If the socket is not available, an ECONNREFUSED is
returned.

Characteristics and restrictions
There are no restrictions on the use of the connect service.

Examples
For an example using this callable service, see “BPX1CON (connect) Example” on
page 1088.

connect (BPX1CON)

Chapter 2. Callable services descriptions 119

__console() (BPX1CCS) — Communicate with Console
(Modify/Stop/WTO/DOM)

Function
The __console() service sends messages to the console and waits on a modify/stop
request from the console. Additional functions available under __console2() allow
you to specify routing and descriptor codes for messages sent to the console and
delete held messages from the console, using message IDs or tokens. These
functions are activated under the expanded BPXYCCA structure in the Version 2
section. See “Usage Notes” for information about using the __console2() functions.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CCS,(MsgAttributes_length,
MsgAttributes,
Modify_string_ptr,
Modify_string_length,
Console_command,
Return_value,
Return_code,
Reason_code)

Parameters
MsgAttributes_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area that contains the
message attributes of the message that is to be sent to the console. If the
length is zero, the MsgAttributes parameter is ignored, and no message is sent
to the console.

MsgAttributes
Supplied parameter

Type: Structure

Length: Specified by the MsgAttributes_length
parameter.

__console() (BPX1CCS)

120 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of the area that contains the message attributes of the message that
is to be sent to the console. Included in this macro mapping are the address
and length of the message to be sent. The area is mapped by BPXYCCA. For
information on the content of this area, see “BPXYCCA — Map Input/Output
Structure for __console()” on page 955.

Modify_buffer_ptr
Supplied parameter

Type: Address

Length: Fullword

The address of a 128-byte buffer that is to be used to receive a string of
EBCDIC data from the console modify command. All characters that appear to
the right of the ’APPL=’ are placed into this buffer, left justified. The length of
the string copied is returned in the Modify_string_length parameter. The data
returned is folded to uppercase. If this parameter is zero, this service does not
wait for or process any console modify/stop commands.

Modify_string_length
Returned parameter

Type: Integer

Character set: No restriction

Length: Fullword

The name of a fullword in which the __console() service returns the length of
the modify string that is returned at the location specified by Modify_buffer_ptr.
If the Modify_buffer_ptr is zero, this parameter is unchanged.

Console_command
Returned parameter

Type: Integer

Character set: No restriction

Length: Fullword

The name of a fullword in which the __console() service returns the type of
command that was issued. The values are CONSOLE_MODIFY and
CONSOLE_STOP.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __console() service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

__console() (BPX1CCS)

Chapter 2. Callable services descriptions 121

The name of a fullword in which the __console() service stores the return code.
The __console() service returns Return_code only if Return_value is 0. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The __console() service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL A message attribute was not valid. An error was detected in one

of the fields described by BPXYCCA (JrMsgLength,
JRMsgMaxLines, or JrMsgAttrErr).

EINTR The syscall was interrupted by a signal.
EFAULT An error was detected in one of the fields described by

BPXYCCA (JrMsgLength or JrMsgAttrErr).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __console() service stores the reason
code. The __console() service returns Reason_code only if Return_value is 0.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Only one thread per address space is allowed to wait on console commands. If

the Modify_buffer_ptr is nonzero, there can be no other instance of the
__console() service waiting for console input. This restriction applies to both
the multi-thread and the multiprocess models. Subsequent attempts fail with an
EMVSERR and JrNoMulti.

2. Messages sent to the console go to the last console that issued a modify
command to this job. If no modify has been issued to this job, the message
goes to the console that started this job. If this job was not started (that is,
invoker created by the fork service), the message goes to the default console
route code.

Routing codes specified in the message attribute area override the current
message routing.

3. If the invoker does not have appropriate privileges, a Message ID(BPXM023I)
and the invoker’s login name are prefixed to the specified message text. If the
invoker has appropriate privileges, the invoker is responsible for its own
message headers. Any message sent to the console should comply with MVS
message guidelines. See z/OS MVS System Messages, Vol 3 (ASB-BPX) for
more information on how to prefix messages with the correct message header.
These guidelines are not enforced by this service.

4. The length of the message must be between 1 and 17850 characters for
invokers with appropriate privileges, and between 1 and 17780 for invokers
without appropriate privileges. The number of lines written to the console is
limited to 255. In the case of an unprivileged user, one of those lines is used
for the message ID and the invoker’s login name. If the message length is
exceeded, no lines are written and the service returns an EINVAL. If the
number of lines is exceeded, the service returns an EINVAL, but the first 255
lines are written to the console.

__console() (BPX1CCS)

122 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

5. The __console() service provides limited formatting in that it recognizes the
NEWLINE character and attempts to break on word boundaries. If a blank is
found within the last 10 characters of the line, the __console() service breaks
the line there. If no blanks are found within the last 10 characters, the line
break occurs after the 70th character.

6. Use of QEDIT and console service control blocks to listen to console
commands, in combination with this service, may result in failures of
EMVSERR JrUnexpectedErr.

7. Although the modify string buffer is 128 bytes, the maximum modify string that
can be received from the console is less. The largest string that can be typed
in from the console is 126 bytes, and this must include the modify command,
jobname, and ’APPL=’ parameters. For example, ’F SERVER01,APPL=’
consumes 16 characters of the 126-character string.

8. If the modify_buffer_ptr is specified, the invoking thread waits until either a
modify command is issued to this thread’s job, or a caught or terminating
signal is generated to this thread. The __console() service is also an interrupt
point for pthread_cancel.

9. If the console operator enters nothing after the ’APPL=’, the Modify_buffer is
unchanged and a Modify_string_length of zero is returned.

10. If the Console_command type returned is CONSOLE_STOP, the
Modify_string_length is set to zero. Console stop commands do not pass string
data. It is up to the application to handle the stop command; the system takes
no action against the process in response to a stop command. The application
may choose to ignore the stop command, or terminate the process through
services such as BPX1EXI.

11. To use the functions available under console2(), specify the new version
(CCA_#Ver02) and the correct length (CCA#Ver2Len) in the CCA when
invoking the __console() service.

12. The three __console() operations (WTO, DOM, and WAIT) can be performed
in a single request. The order of operations is WTO (issue messages), DOM
(delete messages), and WAIT (for a MODIFY or STOP command).

Characteristics and restrictions
There are no restrictions on the use of the __console() service.

Examples
For an example using this callable service, see “BPX1CCS (__console()) Example”
on page 1078.

__console() (BPX1CCS)

Chapter 2. Callable services descriptions 123

convert_id_np (BPX1CID) — Convert a DCE UUID to a userid or a
userid to a DCE UUID

Function
The convert_id_np service is used to retrieve the DCE UUID associated with a
userid or the userid associated with a DCE UUID. The caller to this service must
have read access to the IRR.RDCERUID FACILTY class profile.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CID,(Function_code,
Principal_UUID,
Cell_UUID,
Userid_Length,
Userid,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a numeric value that identifies the function
that is to be performed. The following Function_code constants are defined by
the BPXYCONS macro. See “BPXYCONS — Constants Used by Services” on
page 956.

Constant Function
CID_GET_UUID# Get the DCE UUID(s) that is associated with the

userid supplied by the caller.
CID_GET_USERID# Get the userid that is associated with the DCE

UUID(s) supplied by the caller.

Principal_UUID
Parameter supplied or returned

Type: Character string

convert_id_np (BPX1CID)

124 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: 36 bytes

The name of a 36-byte field that contains the principal DCE UUID. The caller
must always supply this area. When CID_GET_USERID# is specified, the caller
must supply a valid principal DCE UUID for the service to complete
successfully. When CID_GET_UUID# is specified, the service stores the
principal DCE UUID into this location.

Cell_UUID
Parameter supplied or returned

Type: Character string

Length: 36 bytes

The name of a 36-byte field that contains the cell DCE UUID. The caller must
always supply this area. When CID_GET_USERID# is specified, the caller has
two options: specify the cell DCE UUID if it is known, or specify NUL (X'00') in
the first byte of the 36-byte area if it is unknown. When CID_GET_UUID# is
specified, the service stores the cell DCE UUID into this location.

Userid_Length
Parameter supplied or returned

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Userid. The caller must
always supply this area. When CID_GET_UUID# is specified, the caller must
specify the length of the Userid. When CID_GET_USERID# is specified, the
supplied length must be 9, to accommodate the largest possible userid. The
service stores the length of the returned Userid into this location.

Userid
Parameter supplied or returned

Type: Character string

Character set: The XPG4 portable character set, which
includes upper and lower case letters (A-Z,a-z),
numerics (0-9), period (.), dash (-) and
underbar(_). In addition, the special characters
$, %, and # may be specified. (Since these
characters are not part of the XPG4 portable
character set, however, the future possibility of
program portability should be considered before
using these characters.)

Length: Specified by the Userid_Length parameter

The name of an area that contains the Userid. The caller must always supply
this area. When CID_GET_UUID# is specified, the caller must specify a Userid.
When CID_GET_USERID# is specified, the caller must supply a 9–byte area for
the service to store the returned Userid into.

Return_value
Returned parameter

Type: Integer

Length: Fullword

convert_id_np (BPX1CID)

Chapter 2. Callable services descriptions 125

The name of a fullword in which the convert_id_np service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the convert_id_np service stores the return
code. The convert_id_np service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The convert_id_np service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EINVAL One or more of the following conditions were detected:

v The Function_Code that was specified is undefined

v CID_GET_USERID# was specified, and Userid_Length is not
9

v CID_GET_UUID# was specified, and Userid_Length is not in
the range 1 to 8

The following reason codes can accompany the return code:
JRFuncUndefined or JRUserNameLenError.

EMVSSAF2ERR An error occurred in the security product. One or more of the
following conditions were detected:

v An internal error occurred in the security product

v An error was detected in the parameter list

v There was an undefined return code or reason code

The following reason codes can accompany the return code:
JRSAFInternal, JRSAFParmListErr, or JRUnexpectedError.

ENOSYS One or more of the following conditions were detected:

v No security product is installed

v SAF support for this function is not installed

The following reason codes can accompany the return code:
JRNoSecurityProduct, or JRSNoSAFSupport.

EPERM The process does not have the appropriate authorization to use
this service. The following reason code can accompany the
return code: JRSAFNotAuthorized.

ESRCH One or more of the following conditions were detected:

v The Userid specified is not defined

v CID_GET_USERID# was specified, and no mapping to a
Userid exists for the specified UUID

v CID_GET_UUID# was specified, and no mapping to UUID(s)
exists for the specified Userid

v The DCEUUIDS class is not active

v CID_GET_UUID# was specified, and a cell UUID has not been
defined for the specified Userid

The following reason codes can accompany the return code:
JRSAFNoUser, JRSAFNoUUIDtoUser, JRSAFNoUsertoUUID,
JRSAFNoDCEClass, or JRSAFNoCellUUID.

convert_id_np (BPX1CID)

126 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the convert_id_np service stores the reason
code. The convert_id_np service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. This service can only provide Userid to DCE UUID conversion and DCE UUID

to Userid conversion for users that have:

v a DCE segment with a principal UUID and an optional cell UUID defined

v a DCEUUIDS class profile that associates a DCE UUID(s) with a userid.

2. All parameters, with the exception of the Function_code parameter, are input
and output parameters. Do not specify the name of any field that is not
writeable (a constant), or the function will not complete successfully.

3. See z/OS UNIX System Services Planning for details on setting up the userid to
UUID mappings.

4. Both the principal and cell UUIDs are in string form. A UUID string is 36
characters long. The string must contain the delimiter ’-’ in character positions 9,
14, 19, and 24. The general form of a UUID string is xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx, where x represents a valid numeric or hexadecimal character.

Related services
v “pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security

Environment for Caller’s Thread” on page 512
v “auth_check_resource_np (BPX1ACK) — Determine a User’s Access to a

RACF-Protected Resource” on page 60

Characteristics and restrictions
There are no restrictions on the use of this service.

Examples
For an example using this callable service, see “BPX1CID (convert_id_np)
Example” on page 1085.

convert_id_np (BPX1CID)

Chapter 2. Callable services descriptions 127

__cpl (BPX1CPL) — CPL Interface Service

Function
The __cpl callable service calculates coupling facility structure sizes required by the
CFRM (Coupling Facility Resource Manager) policy through a Web interface.

Requirements

Authorization: Problem program or supervisor state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1CPL,(FunctionCode,
Bufferlen,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
FunctionCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value indicating the type of CPL function
requested. The following are the supported values:

v 1 — Request data from available coupling facilities

v 2 — Request a structure size

These values are defined in __cpl.include.

Bufferlen
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the input length of the buffer.

Buffer
Supplied parameter

Type: Address

__cpl (BPX1CPL)

128 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Length specified by Bufferlen

The name of a fullword that represents the buffer in which the __cpl service
receives the input parameters from the Web and returns the results of the call.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __cpl service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __cpl service stores the return code. The
__cpl service stores a return code only if the return value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The __cpl service may return the following values in the
Return_code parameter:

Return code Explanation
EMVSCPLERROR A __cpl service request failed. Consult reason_code to determine

the reason the error occurred. The following reason codes can
accompany the return code: JRCPLInvStrucType,
JRCPLInvBuffLen, JRCPLBuffTooSmall.

EFAULT One of the parameters contained an address that was not
accessible to the caller.

EINVAL The FunctionCode parameter contains a value that is not correct.
The following reason code can accompany the return code:
JRCPLInvFcnCode.

EPERM The calling thread’s address space is not permitted to the BPXCF
FACILITY class profile. The caller’s address space must be
permitted to the BPXCF FACILITY class profile. The following
reason code can accompany the return code: JRCPLNotAuth.

ENOSYS The __cpl service request failed because the system is not at the
correct level. The following reason code can accompany the
return code: JRCPLCFNotFound.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __cpl service stores the reason code. The
__cpl service stores a reason code only when the return value is −1. The
reason code further qualifies the return code value. See z/OS MVS
Programming: Sysplex Services Reference for the reason codes.

__cpl (BPX1CPL)

Chapter 2. Callable services descriptions 129

Characteristics and restrictions
The __cpl service is a privileged service; the caller must have read access to the
BPXCF FACILITY class profile.

__cpl (BPX1CPL)

130 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

deletehfs (BPX1DEL) — Delete a Program from Storage

Function
The deletehfs service deletes a previously loaded program from the storage of the
caller’s process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1DEL,(Entrypt_address,
Return_value,
Return_code,
Reason_code)

Parameters
Entrypt_address

Supplied parameter

Type: Integer

Length: Fullword

A fullword pointer field that contains an entry point address that was returned by
the loadhfs service for an HFS program that was loaded into the caller’s
process.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the deletehfs service returns −1 if it is not
successful. If it is successful, the deletehfs service returns zero.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the deletehfs service stores the return code.
The deletehfs service returns Return_code only if Return_value is −1. For a

deletehfs (BPX1DEL)

Chapter 2. Callable services descriptions 131

complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The deletehfs service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL The entrypt_address parameter contains an entry point address

that is not valid. The entry point address does not represent a
currently loaded program in the caller’s process.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the deletehfs service stores the reason code.
The deletehfs service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A call to BPX1DEL to delete a program from storage may not actually cause the

program to be removed from storage. If the program has been loaded more
than once, the program remains in storage until BPX1DEL has been called the
same number of times that the program was loaded.

2. If a program that is loaded into storage with the loadHFS service is not deleted
from storage, the program remains in storage until the calling task terminates, if
it is not a pthread. If the caller is a pthread, the program remains in storage until
the Initial Pthread Creating Task (IPT) terminates,

3. When the calling process is being debugged via the Ptrace service, a call to the
deletehfs service generates a WastStopFlagDelete Ptrace event to the debugger
process.

Related services
v “loadhfs (BPX1LOD) — Load a Program into Storage by HFS Pathname” on

page 326

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1DEL (deleteHFS) Example”
on page 1094.

deletehfs (BPX1DEL)

132 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

exec (BPX1EXC) — Run a Program

Function
The exec callable service runs a hierarchical file system (HFS) executable file that
is either a program object or a REXX exec. The exec callable service replaces the
current process image that calls the exec service with a new process image for the
executable file that is being run.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1EXC,(Pathname_length,
Pathname,
Argument_count,
Argument_length_list,
Argument_list,
Environment_count,
Environment_data_length,
Environment_data_list,
Exit_routine_address,
Exit_parameter_list_address,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file. The
length can be up to 1023 bytes long.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

exec (BPX1EXC)

Chapter 2. Callable services descriptions 133

The name of a field that contains the fully qualified pathname of the file to be
run. Each component of the pathname (directory name, subdirectory name, or
filename) can be up to 255 characters long. The complete pathname can be up
to 1023 characters long, and does not require an ending NUL character.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory; the search for the file starts at the root directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Argument_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for the
Argument_length_list and the Argument_list. If the program needs no
arguments, define Argument_count as the name of a fullword that contains 0.

Argument_length_list
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an argument that is to be passed to the
specified program. If the program needs no arguments, define
Argument_length_list as the name of a fullword that contains 0.

Argument_list
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an argument to be passed to the specified program.
Each argument is of the length specified by the corresponding element in the
Argument_length_list. If the program needs no arguments, define Argument_list
as the name of a fullword that contains 0.

Environment_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for
Environment_data_length and Environment_data. If the program needs no
environment data, define Environment_count as the name of a fullword that
contains 0.

Environment_data_length
Supplied parameter

exec (BPX1EXC)

134 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an environment variable to be passed to the
specified program. If the program does not use environment variables, define
Environment_data_length as the name of a fullword that contains 0.

Environment_data_list
Supplied parameter

Type: Structure

Length: Variable, specified by Environment_data_length

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an environment variable to be passed to the specified
program. Each environment variable is of the length specified by the
corresponding element in Environment_data_length. If the program does not
use environment variables, define Environment_data_list as the name of a
fullword that contains 0. If the target executable file is a Language
Environment-enabled program, the environment variables that are supplied to
this service must include the null terminator as part of the data string and
length.

Exit_routine_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user’s exit routine. If a
user exit is not to be called, define Exit_routine_address as the name of a
fullword that contains 0.

Exit_parameter_list_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user exit parameter list.
The value that is contained in this fullword is in register 1 when the user exit
receives control. If the user exit is not to be called or does not require
parameters, define Exit_parameter_link_address as the name of a fullword that
contains 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the exec service returns −1 if it is not
successful. If it is successful, the exec service does not return.

Return_code
Returned parameter

exec (BPX1EXC)

Chapter 2. Callable services descriptions 135

Type: Integer

Length: Fullword

The name of a fullword in which the exec service stores the return code. The
exec service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The exec service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The caller does not have appropriate permissions to run the

specified file. It may lack permission to search a directory named
in the Pathname parameter; it may lack execute permission for
the file to be run; or the file to be run is not a regular file, and the
system cannot run files of its type. The following reason code can
accompany the return code: JRExecNotRegFile.

EFAULT A bad address was received as an argument of the call, or the
user exit program checked. The following reason code can
accompany the return code: JRExecParmErr and JRExitRtnError.

ELOOP A loop exists in symbolic links encountered during resolution of
the Filename argument. This error is issued if more than 24
symbolic links are detected in the resolution of Filename.

EMVSSAF2ERR The executable file is a set-user-ID or set-group-ID file, and the
file owner’s UID or GID is not defined to RACF.

ENAMETOOLONG File_name is longer than 1023 characters, or some component of
the filename is longer than 255 characters. Name truncation is
not supported.

ENOENT No filename was specified, or one or more of the components of
the specified Filename were not found. The following reason
codes can accompany the return code: JRExecNmLenZero and
JRQuiescing.

ENOEXEC The specified file has execute permission, but it is not in the
proper format to be a process image. Reason_code contains the
loader reason code for the error.

ENOMEM The new process requires more memory than is permitted by the
hardware or the operating system. The following reason code can
accompany the return code: JRExecFileTooBig.

ENOTDIR A directory component of Filename is not a directory.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the exec service stores the reason code. The
exec service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For most of the reason codes, see
z/OS UNIX System Services Messages and Codes. For the ENOEXEC
Return_code, Reason_code contains the loader reason code for the error:

Reason Code Explanation
X'xxxx0C27' The target HFS file is not in the correct format to be an executable

file.
X'xxxx0C31' The target HFS file is built at a level that is higher than that

supported by the running system.

exec (BPX1EXC)

136 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. The following characteristics of the calling process are changed when the

service gives control to the new executable file:

v The current process image is replaced with a new process image for the
executable file to be run.

v All directories that are opened via a call to the opendir (BPX1OPD) service
are closed in the new process image.

v All open file descriptors remain open unless the close-on-exec flag is set.

v Signals set to be caught are reset to their default.

If the SSTFNOSUID bit is set for the file system containing the new process
image file, the effective user ID, effective group ID, saved set-user-ID and
saved set-group-ID are unchanged in the new process image. Otherwise, if
the set-user-ID mode bit of the new process image file is set, the effective
user ID of the new process image is set to the owner ID of the new process
image file. Similarly, if the set-group-ID mode bit of the new process image
file is set, the effective group ID of the new process image is set to the
group ID of the new process image file. The real user ID, real group ID, and
supplementary group IDs of the new process image remain the same as
those of the calling process image. The effective user ID and effective group
ID of the new process image is saved (as the saved set-user-ID and the
saved set-group-ID) for use by the setuid and setgid functions. See
“BPXYMODE — Map the Mode Constants of the File Services”.

2. The executable file to be run receives control with the following attributes:
v Problem program state
v PSW key 8
v AMODE=31
v Primary ASC mode

3. The new process image inherits the following from the calling process image:
v Process ID
v Parent process ID
v The time left until an alarm signal is generated
v File mode creation mask
v Process signal mask
v Pending signals
v Time accounting information

For more information, see “times (BPX1TIM) — Get Process and Child
Process Times” on page 864 and “BPXYTIMS — Map the Response Structure
for times” on page 1049.

4. The information that the service passes to the hierarchical file system (HFS)
executable file to be run is a parameter list, which is pointed to by register 1.
The parameter list consists of the following parameter addresses. In the last

exec (BPX1EXC)

Chapter 2. Callable services descriptions 137

parameter address, the high-order bit is 1.

@Argument count Argument count

Parameter list

@Plist

R1

@Argument length list Argument length list

@Argument data list Argument data list

@Environment count Environment count

@Environment length list Environment length

@Environment data list Environment data list

@Plist (high-order = ’1’) Parameter list
(Self-pointer)

The last parameter that the exec service passed to the executable file
identifies the caller of the file as the exec service.

5. The register usage on entry to the user exit is:

v R0: Undefined.

v R1: Address of the user exit parameter list, as specified by the caller of the
exec service.

v R2–R12: Undefined.

v R13: Address of a 96-byte work area in the same key as the caller of the
exec service.

v R14: The return address from the user exit to the exec service. This address
must be preserved by the user exit.

v R15: Address of the user exit.

6. When the exec or execmvs service is called in any environment except single
task, single RB, and no linkage stack, z/OS UNIX issues an abend EC6. This
takes down the calling task and all of its subtasks. The subtasks receive a 33E
abend. All other thread tasks in the address space receive a 422 abend with a
reason code of 00000181, and their subtasks receive a 33E abend.

7. To support the creation and propagation of a STEPLIB environment to the new
process image, the exec service allows for the specification of a STEPLIB
environment variable. The following are the accepted values for the STEPLIB
environment variable and the actions taken for each value:

a. STEPLIB=NONE. No STEPLIB DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
exec service are propagated to the new process image, if they are found to
be cataloged. Uncataloged data sets are not propagated to the new
process image.

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,
Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new process
image.

Note: The actual name of the DD is not STEPLIB, but a system-generated
name that has the same effect as a STEPLIB DD. The data sets are
concatenated in the order specified. The specified data sets must
follow standard MVS data set naming conventions. Data sets found
to be in violation of this standard are ignored. If the data sets do
follow the standard, but:

exec (BPX1EXC)

138 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The caller does not have the proper security access to a data set

v A data set is uncataloged or is not in load library format

the data set is ignored. Because the data sets in error are ignored,
the executable file may run without the proper STEPLIB
environment. If a data set is in error due to improper security
access, a X'913' abend is generated. The dump for this abend can
be suppressed by your installation.

If the STEPLIB environment variable is not specified, the exec service’s default
behavior is the same as if STEPLIB=CURRENT were specified.

If the program to be invoked is a set-user-ID or set-group-ID file and the
user-ID or group-ID of the file is different from that of the current process
image, the data sets to be built into the STEPLIB environment for the new
process image must be found in the system sanction list for set-user-id and
set-group-id programs. Only those data sets that are found in the sanction list
are built into the STEPLIB environment for the new process image. For
detailed information regarding the sanction list, and for information on
STEPLIB performance considerations, see z/OS UNIX System Services
Planning.

8. The _BPX_JOBNAME environment variable can be used to change the
jobname of the new process image. The jobname change is allowed only if the
invoker has appropriate privileges and is running in an address space created
by fork. If these conditions are not met, the environment variable is ignored.
Accepted values are strings of 1–8 alpha-numeric characters. Incorrect
specifications are ignored.

9. The _BPX_ACCT_DATA environment variable can be used to change the
account data of the new process image. Specifying this environment variable
will trigger a new job. The rules for specifying the account data are:
v Up to 142 actual account data characters are allowed, including any

commas.
v Sub-parameters must be separated by commas.
v There is no restriction on the character set.

If the account data is greater than 142 characters, the data will be ignored. No
other validity or syntax checking will be done.

10. Each attached shared-memory segment attached to the calling process is
detached and the value of the number of processes attached to each detached
segment (shm_nattch) is decremented by 1. If this is the last process attached
to a shared memory segment and BPX1SCT (shmctl) IPC_RMID has been
issued for the shared memory segment, the segment will be removed from the
system.

11. The semaphore adjustment value, semadj, will be inherited by the new
process.

12. A prior loaded copy of an HFS program in the same address space is reused
under the same circumstances that apply to the reuse of a prior loaded MVS
unauthorized program from an unauthorized library by the MVS XCTL service,
with the following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not
reused.

v If the calling process is not in Ptrace debug mode, but the only prior loaded
usable copy of the HFS program found is in storage modifiable by the caller,
the prior copy is not reused.

exec (BPX1EXC)

Chapter 2. Callable services descriptions 139

13. If the specified file name represents an external link or a sticky bit file, the
program is loaded from the caller’s MVS load library search order. For an
external link, the external name is used only if the name is eight characters or
less; otherwise the caller receives an error from the exec service. For a sticky
bit program, the file name is used if it is eight characters or less. Otherwise,
the program is loaded from the HFS.

14. If the specified HFS file is not in the correct format to be an executable, but
contains the “magic number” (#!) in the first line, the program that is specified
in the magic number header is executed. The expected format of the magic
number header is as follows:
#! Path String

#! is the file magic number. It identifies the first line of the file as a special
header that contains the name of the program to be run and any argument
data to be supplied to it.

The Path parameter specifies the pathname of the file that is to be run. It is
separated by blank or tab characters from the #! characters, or can
immediately follow the characters.

The String parameter is an optional character string that can be used to pass
options to a target command interpreter (shell) that is to run the script. It must
be separated from the Path parameter by tab or blank characters, and cannot
itself contain tab or blank characters.

The argument data list and argument length list that are passed to the magic
number file are to contain the following argument data and corresponding
argument data lengths:

v The magic number pathname, ended by a null character (X'00')

v The string, if one is supplied, ended by a null character (X'00')

The remaining arguments in the list are to contain the list of arguments
specified by the caller of the exec service.

If the pathname that is specified in the magic number header cannot be
executed for some reason, the exec request fails with return code ENOEXEC,
regardless of the error. ENOEXEC is returned for compatibility purposes, so
that existing scripts can continue to run successfully when invoked from an
application such as a command interpreter (shell). The reason code indicates
the exact reason the magic number file could not be executed.

15. If the calling task is in a WLM enclave, the resulting task in the new process
image is joined to the same WLM enclave. This allows WLM to manage the
old and new process images as one “business unit of work” entity for purposes
of system accounting and of management.

16. If the target executable program is an IBM Language Environment-enabled
program, the environment variables supplied to the service must include the
null terminator as part of the string and length.

17. If the program being executed is APF-authorized, link-edited with AC=1, and is
being executed on the job step task, the address space is marked as
APF-authorized.

18. If the _BPX_PTRACE_ATTACH environment variable is set to YES, the target
executable program is loaded into user-modifiable storage to allow subsequent
debugging. Any additional programs loaded into storage during the execution

exec (BPX1EXC)

140 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

of the target program are also loaded into user-modifiable storage, with the
exception of modules loaded from the LPA.

19. The _BPXK_MDUMP environment variable can be used to specify where a
SYSMDUMP is to be written. The following are the allowable values:

Value Description

OFF The dump is to be written to the current
directory. This is the default.

MVS data set name The dump is to be written to an MVS data set.
The data set name must be fully qualified, and
can be up to 44 characters. It can be specified
in uppercase, lowercase, or both; it is folded to
uppercase.

HFS file name The dump is to be written to an HFS file. The
file name can be up to 1024 characters, and
must begin with a slash. The slash refers to
the root directory, in which the file is created.

20. The _BPXK_JOBLOG environment variable can be used to specify that WTO
messages are to be written to an open HFS job log file. The following are the
allowable values:

Value Description

nn Job log messages are to be written to open file
descriptor nn.

STDERR Job log messages are to be written to the
standard error file descriptor, 2.

NONE Job log messages are not to be written. This is
the default.

The file that is used to capture messages can be changed at any time by
calling the oe_env_np service (BPX1ENV) and specifying _BPXK_JOBLOG
with a different file descriptor.

Message capturing is turned off if the specified file descriptor is marked for
close on a fork or exec.

Message capturing is process-related. All threads under a given process share
the same job log file. Message capturing may be initiated by any thread under
that process.

Multiple processes in a single address space can each have different files
active as the JOBLOG file; some or all of them can share the same file; and
some processes can have message capturing active while others do not.

When the file that is used as a job log is shared by several processes (for
example, by a parent and child), the file should be opened for append. Failure
to do this causes unpredictable results.

Only files that can be represented by file descriptors may be used as job log
files; MVS data sets are not supported.

Message capturing is propagated on a fork() or spawn(). If a file descriptor is
specified, the physical file must be the same in order for message capturing to

exec (BPX1EXC)

Chapter 2. Callable services descriptions 141

continue in the forked or spawned process. If STDERR is specified, the file
descriptor may be remapped to a different physical file.

Message capturing may be overridden on exec() or spawn() by specifying the
_BPXK_JOBLOG environment variable as a parameter on the exec() or
spawn().

Message capturing only works in forked (BPXAS) address spaces.

This is not true joblog support: messages that would normally go to the
JESYSMSG data set are captured, but messages that go to JESMSGLG are
not.

21. If the BPXK_SIGDANGER environment variable is set to YES, the process will
receive a SIGDANGER signal rather than a SIGTERM signal when an OMVS
shutdown is initiated. This may be advantageous for an application that uses
the SIGTERM signal for other purposes.

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “fork (BPX1FRK) — Create a New Process” on page 184
v “sigpending (BPX1SIP) — Examine Pending Signals” on page 757
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “spawn (BPX1SPN) — Spawn a Process” on page 784
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “umask (BPX1UMK) — Set the File Mode Creation Mask” on page 875

Note: The exec service is not related to the exec shell command.

Characteristics and restrictions
The exec service dynamically inserts into a job a new job step that has no
allocations associated with it, with the exception of the MVS data sets that may be
built into the STEPLIB environment for the new process image.

If the exec service is invoked from a process that contains one task, one request
block (RB), and no linkage stack entries, the process is ended. This action results
in a normal return to the operating system. Almost all forked processes run in this
manner. In all other cases, the calling task receives a nonretryable EC6 abend with
reason code 0000FFFE to cause it to end. All other thread tasks in the address
space that are not subtasks of the calling task receive a 422 abend with reason
code 00000181.

The user exit is given control while the exec service is still in progress. The user
exit should not attempt to use any z/OS UNIX service that alters or terminates the
current process (that is, the exec, exit, and kill services). If such services are
attempted, the results are unpredictable. Signals cannot be delivered while in the
user exit, because the exec service is still in progress and signal delivery is
inhibited.

exec (BPX1EXC)

142 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The program that is being run by the exec service should have the APF extended
attribute turned on and should be linked AC=1. DLLs that are loaded by
APF-authorized applications should have the APF extended attribute set on and
should be linked AC=0.

Any shared memory segments attached to the caller will not be attached to the
newly created process image. Any shared memory segments attached to the caller
will be detached and the value of shm_nattch decremented by the number of
shared memory segments attached to the caller. If this is the last process attached
to a shared memory segment and an shmctl IPC_RMID has been issued, the
segment is removed from the system.

For semaphore users, when the process exec is issued, the SemAdj values will be
inherited by the new process image.

Examples
For an example using this callable service, see “BPX1EXC (exec) Example” on
page 1096.

MVS-related information
If the exec service is invoked from an address space containing a single process, it
tears down the existing process image by ending the currently running jobstep and
then inserting a new step for the specified file to run in. Any MVS task-related
resources that existed in the old job step are cleaned up. The new job step that is
created has no allocations associated with it, with the exception of the MVS data
sets that may be built into the STEPLIB environment for the new process image.
When the newly created job step ends, the flow of the job continues, as it normally
does, to the next sequential step in the job, depending on the completion code of
the ending step.

If the exec service is invoked from an address space containing multiple processes,
the following characteristics apply:

v If the calling process does not have any subtasks that are part of another
process, and if the calling process was created via a call to the attach_execmvs
or attach_exec service, only the initial thread task of the process and all of its
subtasks are terminated, and a new task is attached to the parent process
creator task to run the specified program. The initial thread task in such a
process is the task that was created as a result of the call to the attach_execmvs
or attach_exec service. This call to the exec service does not result in the ending
of any other tasks in the calling jobstep, nor does it end other processes in the
same address space.

v If the calling process has any subtasks that are part of another process, or if the
calling process was not created via a call to the attach_exec or attach_execmvs
service, the exec invocation is not allowed to prevent the unexpected termination
of other processes in the address space. The caller receives a return code and
reason code detailing the error.

If the exec service is invoked after a successful setuid that changes the MVS
identity and the _BPX_JOBNAME environment variable has not been specified, the
jobname of the new process image is set to the user ID associated with the new
UID specified on the setuid invocation.

exec (BPX1EXC)

Chapter 2. Callable services descriptions 143

execmvs (BPX1EXM) — Run an MVS Program

Function
The execmvs service runs an MVS executable program that is in the link pack area
(LPA) or LNKLST concatenation. If it is invoked from an address space that
contains multiple processes, the program can come from a STEPLIB.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1EXM,(Program_name_length,
Program_name,
Argument_length,
Argument,
Exit_routine_address,
Exit_parameter_list_address,
Return_value,
Return_code,
Reason_code)

Parameters
Program_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the name of the MVS
program.

Program_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Program_name_length
parameter

The name of a field that contains the name of the MVS program that is to be
run. The MVS program name must conform to the naming conventions for

execmvs (BPX1EXM)

144 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

members of MVS partitioned data sets (PDSs). The program name is from 1 to
8 characters long; the program name is the member name without any
qualifiers.

The specified Program_name must be in uppercase.

Argument_length
Supplied parameter

Type: Character string

Length: Fullword

The name of a fullword that contains the length of the argument that is to be
passed to the program. The argument can be from 0 to 4096 bytes long.

Argument
Supplied parameter

Type: Integer

Length: Specified by the Argument_length parameter

The name of a field of length Argument_length that contains the argument that
is to be passed to the MVS program.

The data that is contained in the Argument parameter should not include
pointers to private storage. The execmvs service frees all private storage while
cleaning up the previous job step.

Exit_routine_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user’s exit routine. If a
user exit is not to be invoked, define Exit_routine_address as the name of a
fullword that contains 0.

Exit_parameter_list_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user exit parameter list.
The value that is contained in this fullword is in register 1 when the user exit
receives control. If the user exit is not to be invoked or does not require
parameters, define Exit_parameter_list_address as the name of a fullword that
contains 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the execmvs service returns −1 if it is not
successful. If it is successful, the execmvs service does not return.

execmvs (BPX1EXM)

Chapter 2. Callable services descriptions 145

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the execmvs service stores the return code.
The execmvs service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The execmvs service can return one of the following values
in the Return_code parameter:

Return_code Explanation
E2BIG The number of bytes used by the new process image’s argument

list is greater than the system-imposed limit of 4096 bytes. The
following reason code can accompany the return code:
JRMVSArgTooBig.

EFAULT The user exit program checked. The following reason code can
accompany the return code: JRExitRtnError.

ENAMETOOLONG The specified MVS program name is too long. The length that is
specified by Program_name_length is longer than 8 bytes.

ENOENT The specified MVS program was not found in the link pack area
or in a link list data set, LNKLST; or the program name argument
points to an empty string. STEPLIB needs to be included in a
multiprocess environment. The following reason code can
accompany the return code: JRExecNmLenZero.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the execmvs service stores the reason code.
The execmvs service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The following characteristics of the calling process are changed when the new

executable is given control by the execmvs service:

v The prior process image is replaced with a new process image for the
executable program that is to be run.

v All open files that are marked close-on-exec and all open directory streams
are closed.

v All signals that have sigaction settings are reset to their default actions.

2. The input that is passed to the MVS executable file by the service is consistent
with the input that is passed to MVS programs. On input, the MVS program
receives a single-entry parameter list that is pointed to by register 1. The
high-order bit of the sole parameter entry is set to 1.

The sole parameter entry is the address of a 2-byte length field followed by an
argument string. The length field describes the length of the data that follows it.
If a null argument and argument length are specified in the call, the length field
specifies 0 bytes on input to the executable file.

3. The call can invoke both unauthorized and authorized MVS programs:

execmvs (BPX1EXM)

146 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v Unauthorized programs receive control in problem program state, with PSW
key 8.

v Authorized programs receive control in problem program state, with PSW key
8 and APF authorization.

4. The register usage on entry to the user exit is:

v R0: Undefined.

v R1: Address of the user exit parameter list, as specified by the caller of the
exec service.

v R2–R12: Undefined

v R13: Address of a 96-byte work area in the same key as the caller of the
exec service.

v R14: The return address from the user exit to the exec service. This address
must be preserved by the user exit.

v R15: Address of the user exit.

5. When the exec or execmvs service is called in any environment except single
task, single RB, and no linkage stack, z/OS UNIX issues a quiesce_force to
terminate all of its subtasks. The subtasks receive a 422 abend with a reason
code of 000001A0.

6. The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active for
the calling task at the time of the call to the execmvs service are propagated to
the new process image if the data sets that they represent are found to be
cataloged. Uncataloged data sets are not propagated to the new process image.
This causes the program that is invoked to run with exactly the same MVS
program search order as its invoker.

7. To support the creation and propagation of a STEPLIB environment to the new
process image, the execmvs service allows for the specification of a STEPLIB
environment variable. The following are the accepted values for the STEPLIB
environment variable and the actions taken for each value:

a. STEPLIB=NONE. No Steplib DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
exec service are propagated to the new process image, if they are found to
be cataloged. Uncataloged data sets are not propagated to the new process
image.

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets, Dsn1:Dsn2:...DsnN,
are built into a STEPLIB DD in the new process image.

Note: The actual name of the DD is not STEPLIB, but a system-generated
name that has the same effect as a STEPLIB DD. The data sets are
concatenated in the order that is specified. The specified data sets
must follow standard MVS data set naming conventions. Data sets
that are found to be in violation of this standard are ignored. If the
data sets follow the standard, but:

v The caller does not have the proper security access to a data set,
or

v A data set is uncataloged or not in load library format

the data set is ignored. Because the data sets that are in error are
ignored, the executable file may run without the proper STEPLIB

execmvs (BPX1EXM)

Chapter 2. Callable services descriptions 147

environment. If a data set is in error because of improper security
access, a X'913' abend is generated. The dump for this abend can be
suppressed by your installation.

If the STEPLIB environment variable is not specified, the default behavior of the
execmvs service is the same as if STEPLIB=CURRENT were specified.

If the program that is to be invoked is a set-user-ID or set-group-ID file and the
user-ID or group-ID of the file is different from that of the current process image,
the data sets that are to be built into the STEPLIB environment for the new
process image must be found in the system sanction list for set-user-id and
set-group-id programs. Only those data sets that are found in the sanction list
are built into the STEPLIB environment for the new process image. For detailed
information regarding the sanction list and information on STEPLIB performance
considerations, see z/OS UNIX System Services Planning.

8. If the calling task is in a WLM enclave, the new process image task is joined to
the same WLM enclave. This allows WLM to manage the old and new process
images as one “business unit of work” entity for system accounting and
management purposes.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133

Characteristics and restrictions
v When the execmvs service is called from any process except one that was

created via the attach_exec or attach_execmvs service, the program must be
located either in the link pack area (LPA) or in a link list data set (LNKLST).

v When the execmvs service is called from a process that was created via the
attach_exec or attach_execmvs service, the specified program can be located in
the link pack area, in a link list data set, job library, step library, or task library.
The program search order that is followed is identical to that of the MVS Attach
service when the EP parameter is specified.

v If the execmvs service is invoked from a process that contains one task, one
request block (RB), and no linkage stack entries, the process is ended by an
SVC 3 instruction. This action results in a normal return to the operating system.
Almost all forked processes run in this manner. In all other cases, the system
ends all tasks (threads) in the caller with a nonretryable 422 abend, reason code
000001A0.

v The user exit cannot invoke any z/OS UNIX services. If it attempts to invoke a
z/OS UNIX service, the service fails or the caller is abended, depending on the
service that is attempted. Signals cannot be delivered to the caller of the exec
service while the user exit is in control.

v The program that is invoked by the execmvs service must be enabled to run in
31-bit addressing mode (AMODE=31).

Examples
For an example using this callable service, see “BPX1EXM (execmvs) Example” on
page 1098.

MVS-related information
Because the service must create a new process image for the specified program to
run within, the prior process image is completely cleaned up. In MVS terms, the
system ends a step within a job and then inserts a new step for the specified

execmvs (BPX1EXM)

148 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

program to run in. Any MVS task-related resources that existed in the old job step
are cleaned up. The new job step that is created has no allocations associated with
it, with the exception of the MVS data sets that may be built into the STEPLIB
environment for the new process image. When the newly created job step ends, the
flow of the job continues, as it normally does, to the next sequential step in the job,
depending on the completion code of the ending step.

execmvs (BPX1EXM)

Chapter 2. Callable services descriptions 149

_exit (BPX1EXI) — End a Process and Bypass the Cleanup

Function
The _exit callable service ends the calling thread task and all its subtasks. In most
environments, this results in the ending of the process, with the specified status
being reported to its parent.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1EXI,(Status_field)

Parameters
Status_field

Supplied parameter

Type: Structure

Length: 4 bytes

The name of a 4-byte status field. If the call to _exit results in a process ending
and contents of the status field conform to the allowable exit status values, the
service provides the contents to the parent when a wait service is issued. For a
mapping of the status field and a description of the conforming status values,
see “BPXYWAST — Map the Wait Status Word” on page 1053.

Usage notes
1. A call to _exit results in the ending of the calling task and all its subtasks, and

the cleaning up of their associated MVS and z/OS UNIX resources. In most
environments, this results in the ending of the calling process.

2. In some environments the call to _exit does not result in a process ending. An
example of such an environment is the TSO/E TMP environment, where multiple
MVS tasks can be concurrently dubbed as threads. A call to the _exit service
from one of these threads results only in the ending of the calling thread task
and its subtasks. In such an environment, if only one task is currently dubbed
as a thread, a call to the _exit service from this thread task ends the process.

3. The ending of a process results in the following actions:

v All file descriptors and directory streams that are open in the ending process
are closed. Open file descriptors are inherited by the child. Literally speaking,
the child did not open the file, yet it will still be closed.

_exit (BPX1EXI)

150 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v If the parent of the ending process has issued a wait call and is waiting for
the ending process to end, has not used sigaction to set its SA_NOCLDWAIT
flag for the SIGCHLD signal, and has not set the action for SIGCHLD to
ignore, the status is returned to the parent at once.

If the parent of the ending process is not waiting, has not used sigaction to
set its SA_NOCLDWAIT flag for the SIGCHLD signal, and has not set the
action for SIGCHLD to ignore, the status is saved. It is returned to the parent
if the parent later issues a wait call for the now-ended child.

v If the parent of the ending process has set the SA_NOCLDWAIT flag for the
SIGCHLD signal, or has set the action for SIGCHLD to ignore, the status is
discarded and will not be seen by the parent if the parent issues a wait. The
ending process is assigned the parent process ID of the initialization process
(whose process ID is 1) that frees the PID and system resources associated
with the ending process.

If the parent of the ending process does not later wait for the ending process,
and has not used sigaction to set its SA_NOCLDWAIT flag for the SIGCHLD
signal, and has not set the action for SIGCHLD to ignore, the ending
process’s ID (PID) remains in use until the parent ends. Because the number
of process IDs is a limited system resource, user and system availability for
process IDs may be affected.

v If the ending process is a session leader, the controlling terminal is
disassociated from the session. The controlling terminal can then be acquired
by a new controlling process.

v Child processes of a process that ends are assigned the parent process ID of
the initialization process (whose process ID is 1). The status of these child
processes is reported to the initialization process that frees the PID and
system resources associated with the ending process.

v A SIGCHLD signal is sent to the parent of the ending process.

v Ending a process does not end its child processes directly, however; under
the following circumstances a SIGHUP signal is sent to a child process that
can cause a child process to end:

– If the ending process is a controlling process, a SIGHUP signal is sent to
each process in the foreground process group of the controlling terminal
belonging to the caller.

– If the ending process is a dubbed process that has not been a controlling
process of a terminal session—for example, a batch job step that has
issued z/OS UNIX service calls—a SIGHUP signal is sent to each process
in the ending process’s process group.

– If ending a process leaves a process group orphaned and any member of
that process group is stopped, each member of the process group is sent
a SIGHUP signal followed by a SIGCONT signal.

4. If the ending of the calling task results in the ending of a job step, the specified
status code is used as the completion code for the ending job step.

5. The _exit service does not return to the caller. If it cannot complete its
processing successfully, the caller receives an EC6 abend.

6. If the caller specifies an incorrect exit status value, the caller receives an EC6
abend with an appropriate reason code identifying the error.

7. If you are going to use this service in a multiple-pthread environment, see
Appendix F, “Using threads with callable services” on page 1327.

8. Each shared-memory segment attached to the calling process is detached and
the value of the number of processes attached to each detached segment
(shm_nattch) is decremented by 1. If this is the last process attached to a

_exit (BPX1EXI)

Chapter 2. Callable services descriptions 151

shared memory segment and BPX1SCT (shmctl) IPC_RMID has been issued
for the shared memory segment, the segment is removed from the system.

9. When the process is terminated, the semadj values are applied to the
semaphores. Adjustments to each semaphore set are made atomically.

Related services
v “close (BPX1CLO) — Close a File” on page 97
v “mvsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 408
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Note: The _exit service is not related to the exit shell command and is different
from the exit() ANSI C routine.

Characteristics and restrictions
If the _exit service is invoked with a normal exit status completion code from a task
that has no subtasks, one request block (RB), and no linkage stack entries, the task
ends with an SVC 3 instruction. This action results in a normal return to the
operating system. Almost all forked processes end in this manner. In all other
cases, the calling task receives a nonretryable EC6 abend with a reason code that
varies with the type of exit status specified. If the exit status value indicates that the
process is to end with:

v A normal exit status code, an abend reason code of 0000FFFF is received.

v An ending signal, an abend reason code of 0000FFxx is received, where xx is
the signal number specified in the exit status.

v A terminating signal with a core dump to be taken, an abend reason code of
0000FDxx is received, where xx is the signal number specified in the exit status.

All subtasks of the calling thread task receive a 33E abend when the calling thread
task is abended.

If the calling thread task was created with the pthread_create service, the initial
pthread-creating task abends with a 422 abend code, and reason code 000001xx.
The value of xx is the signal number if signal exit status is specified, or 82 if a
normal exit status is specified.

For a detailed description of the conforming exit status values see “BPXYWAST —
Map the Wait Status Word” on page 1053.

Examples
For an example using this callable service, see “BPX1EXI (_exit) Example” on
page 1097.

_exit (BPX1EXI)

152 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

extlink_np (BPX1EXT) — Create an External Symbolic Link

Function
The extlink_np service creates a symbolic link to an external name. A file named
Link_name, of type “symbolic link”, is created. The content of the symbolic link file
is the external name specified in Ext_name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1EXT,(Ext_name_length,
Ext_name,
Link_name_length,
Link_name,
Return_value,
Return_code,
Reason_code)

Parameters
Ext_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the length of Ext_name. The Ext_name can
be up to 1023 bytes long.

Ext_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Ext_name_length parameter

The name of a field containing the external name for which you are creating a
symbolic link. An external name is the name of an object outside the
hierarchical file system.

Link_name_length
Supplied parameter

Type: Integer

extlink_np (BPX1EXT)

Chapter 2. Callable services descriptions 153

Length: Fullword

The name of a fullword containing the length of Link_name. The Link_name can
be up to 1023 bytes long; each component of the name (between delimiters)
can be up to 255 bytes long.

Link_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by Link_name_length parameter

The name of a field containing the symbolic link being created.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the extlink_np service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the extlink_np service stores the return code.
The extlink_np service returns Return_code only if Return_value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The extlink_np service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search a

directory in the Link_name, or does not have permission to write
in the directory to contain the symbolic link file.

EEXIST Link_name already exists.
EINVAL Parameter error. Possible reasons are:

v Ext_name_length exceeds the maximum allowed.

v Ext_name_length is zero.

v Link_name has a slash as its last component, which indicates
that the preceding component is a directory. A symbolic link
cannot be a directory.

The following reason codes can accompany the return code:
JRInvalidSymLinkLen, JREndingSlashSymLink.

ELOOP A loop exists in symbolic links encountered during resolution of
the Link_name argument. This error is issued if more than 24
symbolic links are detected in the resolution of Link_name.

ENAMETOOLONG Link_name is longer than 1023 characters, or some component
of that name is longer than 255 characters. Name truncation is
not supported.

extlink_np (BPX1EXT)

154 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOSPC The directory in which the entry for the symbolic link is being

placed cannot be extended; not enough space remains in the file
system.

ENOTDIR A component of the path prefix of Link_name is not a directory.
EROFS The requested operation requires writing in a directory on a

read-only file system.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the extlink_np service stores the reason code.
The extlink_np service returns a Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The extlink_np service creates an external symbolic link (Link_name) with the

object you specify by Ext_name.

2. The object identified by Ext_name need not exist when the symbolic link is
created, and refers to an object outside a hierarchical file system.

3. The external name contained in an external symbolic link is not resolved. The
Link_name cannot be used as a directory component of a pathname.

Related services
v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname” on page 335
v “readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 581
v “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1EXT (extlink_np) Example” on
page 1099.

extlink_np (BPX1EXT)

Chapter 2. Callable services descriptions 155

fchattr (BPX1FCR) — Change the Attributes of a File or Directory
by Descriptor

Function
The fchattr service modifies the attributes that are associated with a file. It can be
used to change the mode, owner, access time, modification time, change time,
reference time, audit flags, general attribute flags, file size, and file tag. You identify
the file by its file descriptor.

For the corresponding service using a pathname, see “chattr (BPX1CHR) —
Change the Attributes of a File or Directory” on page 68.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCR,(File_descriptor,
Attributes_length,
Attributes,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the file descriptor of the file whose attributes
you want to change.

Attributes_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the length of the area containing the
attributes you want to change.

fchattr (BPX1FCR)

156 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Attributes
Supplied parameter

Type: Structure

Length: Specified by the Attributes_length parameter

The name of the area containing the attributes you want to change. The area is
mapped by BPXYATT. For information on the content of this area, see
“BPXYATT — Map File Attributes for chattr and fchattr” on page 953.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchattr service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fchattr service stores the return code. The
fchattr service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fchattr service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter is not a valid file descriptor.
EACCES The calling process did not have appropriate permissions.

Possible reasons include:

v Attempting to set access time or modification time to current
time, the effective UID of the calling process does not match
the owner of the file, the process does not have write
permission for the file, or the process does not have
appropriate privileges.

v Attempting to change the file size, the calling process does not
have write permission for the file.

fchattr (BPX1FCR)

Chapter 2. Callable services descriptions 157

Return_code Explanation
EPERM The operation is not permitted for one of the following reasons:

v Attempting to change the mode or the file format, the effective
UID of the calling process does not match the owner of the
file, and the calling process does not have appropriate
privileges.

v Attempting to change the owner, and the calling process does
not have appropriate privileges.

v Attempting to change the general attribute bits, and the calling
process does not have write permission for the file.

v Attempting to set a time value (not current time), the effective
user ID of the calling process does not match the owner of the
file, and the calling process does not have appropriate
privileges.

v Attempting to set the change time or reference time to current
time, and the calling process does not have write permission
for the file.

v Attempting to change auditing flags, the effective UID of the
calling process does not match the owner of the file, and the
calling process does not have appropriate privileges.

v Attempting to change the Security Auditor’s auditing flags, and
the user does not have auditor authority.

EROFS The specified file is on a read-only file system. The following
reason code can accompany the return code: JRReadOnlyFS.

EINVAL The length of the Attributes parameter is too small, or the
Attributes structure containing the requested changes is not valid.
The following reason codes can accompany the return code:
JrInvalidAtt, JrNegativeValueInvalid, JrTrNotRegFile,
JrTrNegOffset, JrFileNotEmpty, and JrInvalidFileTag.

EFBIG Attempting to change the size of a file, the specified length is
greater than the maximum file size limit for the process. The
following reason code can accompany the return code:
JRWriteBeyondLimit.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchattr service stores the reason code. The
fchattr service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
Table 2. Attribute fields modifiable by fchattr

Set Flags Attribute Fields Input Description

ATTMODECHG ATTMODE Set the mode according to the
value in ATTMODE. See “fchmod
(BPX1FCM) — Change the Mode
of a File or Directory by Descriptor”
on page 168.

fchattr (BPX1FCR)

158 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 2. Attribute fields modifiable by fchattr (continued)

Set Flags Attribute Fields Input Description

ATTOWNERCHG ATTUID

ATTGID

Set the owner user identifier (UID)
and group identifier (GID) to the
values specified in ATTUID and
ATTGID. See “chown (BPX1CHO)
— Change the Owner or Group of
a File or Directory” on page 86.

ATTSETGEN ATTGENVALUE

ATTGENMASK

Only the bits corresponding to the
bits set ON in the ATTGENMASK
are set to the value (ON or OFF) in
ATTGENVALUE. Other bits will be
unchanged.

ATTTRUNC ATTSIZE Change the file size to ATTSIZE
bytes. See “ftruncate (BPX1FTR)
— Change the Size of a File” on
page 203.

ATTATIMECHG ATTATIME Set the Access time of the file to
the value specified in ATTATIME.

ATTATIMETOD None Set the Access time of the file to
the current time.

ATTMTIMECHG ATTMTIME Set the Modification time of the file
to the value specified in ATTMTIME

ATTMTIMETOD None Set the Modification time of the file
to the current time.

ATTMAAUDIT ATTAUDITORAUDIT Set the Security Auditor’s auditing
flags to the value specified in
ATTAUDITORAUDIT. See “fchaudit
(BPX1FCA) — Change Audit Flags
for a File by Descriptor” on
page 163.

ATTMUAUDIT ATTUSERAUDIT Set the User’s auditing flags to the
value specified in ATTUSERAUDIT.
See “fchaudit (BPX1FCA) —
Change Audit Flags for a File by
Descriptor” on page 163.

ATTCTIMECHG ATTCTIME Set the Change Time of the file to
the value specified in ATTCTIME.

ATTCTIMETOD None Set the Change Time of the file to
the current time.

ATTREFTIMECHG ATTREFTIME Set the Reference Time of the file
to the value specified in
ATTREFTIME.

ATTREFTIMETOD None Set the Reference Time of the file
to the current time.

ATTFILEFMTCHG ATTFILEFMT Set the File Format of the file to
the value specified in ATTFILEFMT.

ATTCHARSETIDCHG ATTFILETAG Set the file tag. See BPXYSTAT
(“BPXYSTAT — Map the Response
Structure for stat” on page 1034)
for file tag mapping.

fchattr (BPX1FCR)

Chapter 2. Callable services descriptions 159

||

|

|
|
|
|
|
|

1. Flags in the Attributes parameter are set to indicate which attributes should be
updated. To set an attribute, turn the corresponding Set Flag on, and set the
corresponding Attributes Field according to Table 2 on page 158. Multiple
attributes may be changed at the same time.

The Set Flag field should be cleared before any bits are turned on. It is
considered an error if any of the reserved bits in the flag field are turned on.

2. Some of the attributes changed by the fchattr service can also be changed by
other services. See the related service (listed in Table 2 on page 158) for a
detailed description.

3. Changing mode (ATTMODECHG = ON):

v The file mode field in Attributes is mapped by the BPXYMODE macro (see
“BPXYMODE — Map the Mode Constants of the File Services” on
page 986). For information on the values for file type, see “BPXYFTYP —
File Type Definitions” on page 969.

v File descriptors that are open when the fchattr service is called retain the
access permission they had when the file was opened.

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

v Setting the set-group-ID-on-execution permission (in mode) means that
when this file is run through the exec service, the effective GID of the caller
is set to the file’s owner GID, so that the caller seems to be running under
the GID of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the
following are true:

– The caller does not have appropriate privileges.

– The GID of the file’s owner does not match the effective GID or one of
the supplementary GIDs of the caller.

v Setting the set-user-ID-on-execution permission (in mode) means that when
this file is run, the process’s effective UID is set to the file’s owner UID, so
that the process seems to be running under the UID of the file’s owner,
rather than that of the actual invoker.

4. Changing owner (ATTOWNERCHG = ON):

v To change the owner UID of a file, the caller must have appropriate
privileges.

v To change the owner GID of a file, the caller must have appropriate
privileges, or meet all of these conditions:

– The effective UID of the caller matches the file’s owner UID.

– The Owner_UID value specified in the change request matches the file’s
owner UID.

– The Group_ID value specified in the change request is the effective GID,
or one of the supplementary GIDs, of the caller.

v When owner is changed, the set-user-ID-on-execution and
set-group-ID-on-execution permissions of the file mode are automatically
turned off.

v When the owner is changed, both UID and GID must be specified as they
are to be set, or set to −1 if the value is to remain unchanged. If only one of
these values is to be changed, the other can be set to its present value or
to −1 to remain unchanged.

5. Changing general attribute bits (ATTSETGEN = ON):

v For General Attribute bits to be changed, the calling process must have
write permission for the file.

fchattr (BPX1FCR)

160 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

6. Changing the size of a file (ATTTRUNC = ON):

v The resizing of a file to ATTSIZE bytes changes the file size to ATTSIZE,
beginning from the first byte of the file. If the file was previously larger than
ATTSIZE bytes, the data from ATTSIZE to the original end of file is
removed. If the file was previously shorter than ATTSIZE, bytes between the
old and new lengths are read as zeros.

Full blocks are returned to the file system so that they can be used again.

The file offset is not changed.

v When a file is changed successfully, it clears the set-user-ID, the
set-group-ID and the save-text (sticky bit) attributes of the file unless the
caller has appropriate privileges.

v The changing of a file to ATTSIZE bytes, where ATTSIZE is greater than the
soft file size limit for the process, will fail with EFBIG and the SIGXFSZ
signal will be generated for the process.

v If write access is removed at some time after the File_descriptor was
opened for writing, a change request will fail with EACCES. In such a case,
a call to “ftruncate (BPX1FTR) — Change the Size of a File” on page 203
could be used to change the file size.

7. Changing times:

v All time fields in Attributes are in POSIX format.

v For the Access Time or the Modification Time to be set explicitly
(ATTATIMECHG = ON or ATTMTIMECHG = ON), the effective ID must
match the file’s owner, or the process must have appropriate privileges.

v For the Access Time or Modification Time to be set to the current time
(ATTATIMETOD = ON or ATTMTIMETOD = ON), the effective ID must
match the file’s owner, the calling process must have write permission for
the file, or the process must have appropriate privileges.

v For the Change Time or the Reference Time to be set explicitly
(ATTCTIMECHG = ON or ATTREFTIMECHG = ON), the effective ID must
match the file’s owner, or the process must have appropriate privileges.

v For the Change Time or Reference Time to be set to the current time
(ATTCTIMETOD = ON or ATTREFTIMETOD = ON), the calling process
must have write permission for the file.

v For any time field (atime, mtime, ctime, reftime), if both current time and
specific time are requested (for example, ATTCTIMETOD = ON and
ATTCTIMECHG = ON), the current time will be set.

v When any attribute field is changed successfully, the file’s change time is
updated as well.

8. Changing auditor audit flags (ATTMAAUDIT = ON):

v For auditor audit flags to be changed, the user must have auditor authority.
The user with auditor authority can set the auditor options for any file, even
those for which they do not have path access or authority to use for other
purposes.

Auditor authority is established by issuing the TSO/E command ALTUSER
Auditor.

9. Changing user audit flags (ATTMUAUDIT = ON):

v For the user audit flags to be changed, the user must have appropriate
privileges (see “Authorization” on page 8) or be the owner of the file.

10. Changing file format (ATTFILEFMTCHG = ON):

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

fchattr (BPX1FCR)

Chapter 2. Callable services descriptions 161

11. Changing the file tag (ATTCHARSETIDCHG=ON):

v A file tag can be set for regular, FIFO, and character special files. If the
DeferTag bit is on in the file tag, the file must be empty.

Related services
v “chattr (BPX1CHR) — Change the Attributes of a File or Directory” on page 68
v “fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor” on

page 163
v “fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor” on

page 168
v “fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by

Descriptor” on page 171
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “ftruncate (BPX1FTR) — Change the Size of a File” on page 203
v “truncate (BPX1TRU) — Change the Size of a File” on page 867
v “utime (BPX1UTI) — Set File Access and Modification Times” on page 890

Characteristics and restrictions
1. The ATTEXTLINK flag in the ATTGENVALUE field of BPXYATT cannot be

modified with BPX1FCR.

2. The General Attribute bits (set by ATTSETGEN, ATTGENMASK, and
ATTGENVALUE fields) are not intended as a general-use programming interface
to BPX1FCR.

Examples
For an example using this callable service, see “BPX1FCR (fchattr) Example” on
page 1105.

fchattr (BPX1FCR)

162 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor

Function
The fchaudit callable service changes the types of access to a file to be audited for
the security product. You identify the file by its file descriptor.

For the corresponding service using a pathname, see “chaudit (BPX1CHA) —
Change Audit Flags for a File by Path” on page 75.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCA,(File_descriptor,
Audit_flags,
Option_code,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the file descriptor of the file to be changed.

Audit_flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword indicating the access to be audited. This field is mapped
by the BPXYAUDT macro; see “BPXYAUDT — Map Flag Values for chaudit and
fchaudit” on page 954. Values for this field include any combination of the
following:

Value Description
AUDTREADFAIL Audit failing read requests.
AUDTREADSUCCESS Audit successful read requests.

fchaudit (BPX1FCA)

Chapter 2. Callable services descriptions 163

Value Description
AUDTWRITEFAIL Audit failing write requests.
AUDTWRITESUCCESS Audit successful write requests.
AUDTEXECFAIL Audit failing execute or search requests.
AUDTEXECSUCCESS Audit successful execute or search

requests.

Option_code
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that indicates whether you are changing the
auditing for flags of the user or of the auditor. When this field has the value:
v 0: User audit flags are changed.
v 1: Auditor audit flags are changed.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchaudit service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

Return_code Explanation
EBADF The File_descriptor parameter is not a valid file descriptor.
EINVAL The Option_code parameter is incorrect, or File_descriptor refers

to an unnamed pipe and fchaudit is not allowed on such a file.
EPERM The effective user ID of the calling process does not match the

owner of the file, the calling process does not have appropriate
privileges, or if Option_code indicated that the auditor audit flags
were to be changed, then the user may not have had auditor
authority.

EROFS The specified file is on a read-only file system. The following
reason code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchaudit service stores the reason code. The
fchaudit service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

fchaudit (BPX1FCA)

164 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. If Option_code indicates that the auditor audit flags are to be changed, the user

must have auditor authority for the request to be successful. The user with
auditor authority can set the auditor options for any file, even those for which
they do not have path access or authority to use for other purposes.

You can get auditor authority by issuing the TSO/E command ALTUSER Auditor.

2. If Option_code indicates that the user audit flags are to be changed, the user
must have appropriate privileges (see “Authorization” on page 8), or be the
owner of the file.

Related services
v “chaudit (BPX1CHA) — Change Audit Flags for a File by Path” on page 75
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the fchaudit service.

Examples
See “BPX1FCA (fchaudit) Example” on page 1101 for an example using this callable
service.

fchaudit (BPX1FCA)

Chapter 2. Callable services descriptions 165

fchdir (BPX1FCD) — Change the Working Directory

Function
The fchdir service changes your working directory from the current one to a new
one. The working directory is the starting point for path searches of pathnames not
beginning with a slash.

For corresponding service using a pathname, see “chdir (BPX1CHD) — Change the
Working Directory” on page 79.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCD,(Directory_file_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_file_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the directory file descriptor that was returned
when the directory was opened (see “opendir (BPX1OPD) — Open a Directory”
on page 439), which is to become the new working directory. It may also be
specified as the name of a fullword containing the file descriptor of an open
directory (see “open (BPX1OPN) — Open a File” on page 434).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchdir service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

fchdir (BPX1FCD)

166 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword in which the fchdir service stores the return code. The
fchdir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fchdir service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have search permission for the

directory referenced by the file descriptor.
EBADF The file descriptor parameter is not a valid file descriptor.
ENOTDIR The open file descriptor does not refer to a directory. The

following reason code can accompany the return code:
JRChdNotDir.

EINTR A signal was caught during the execution of fchdir().
EIO An I/O error occurred while reading from or writing to the file

system. The following reason codes can accompany the return
code: JRQuiescing.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchdir service stores the reason code. The
fchdir service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Related services
v “chdir (BPX1CHD) — Change the Working Directory” on page 79
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on

page 216
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rmdir (BPX1RMD) — Remove a Directory” on page 610
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the fchdir service.

Examples
For an example using this callable service, see “BPX1FCD (fchdir) Example” on
page 1102.

fchdir (BPX1FCD)

Chapter 2. Callable services descriptions 167

fchmod (BPX1FCM) — Change the Mode of a File or Directory by
Descriptor

Function
The fchmod service modifies the permission bits used to control the owner access,
group access, and general access to a file. It can be used to set flags that modify
the user ID (UID) and group ID (GID) of the file when it is executed. It can also be
used to set the sticky bit to indicate where the file should be fetched from. You
identify the file by its file descriptor.

For the corresponding service using a pathname, see “chmod (BPX1CHM) —
Change the Mode of a File or Directory” on page 82.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCM,(File_descriptor,
Mode,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

Specifies the name of a fullword containing the file descriptor of the file whose
mode you want to change.

Mode
Supplied parameter

Type: Structure

Length: Fullword

Specifies the name of a fullword in which the mode field is specified. The mode
field, mapped by BPXYMODE, specifies the file type and the permissions you
grant to yourself, to your group, and to any user. See “BPXYMODE — Map the
Mode Constants of the File Services” on page 986 for the parameter options.

fchmod (BPX1FCM)

168 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

Specifies the name of a fullword to which the fchmod service returns 0 if
successful, or −1 if not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fchmod service stores the return code. The
fchmod service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fchmod service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter is not a valid file descriptor.
EPERM The effective UID of the calling process does not match the

owner of the file, and the calling process does not have
appropriate privileges.

EROFS The specified file is on a read-only file system. The following
reason code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fchmod service stores the reason code. The
fchmod service returns a Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. File descriptors open at the time of the call to the fchmod service retain the

access permission they had at the time the file was opened.

2. For mode bits to be changed, the effective UID of the calling process must
match the file’s owner UID, or the process must have appropriate privileges.

3. When the mode is changed successfully, the file’s change time is updated as
well.

4. Setting the set-group-ID-on-execution permission means that when this file is
run, through the exec call, the effective GID of the process is set to the file’s
owner GID, so that the process seems to be running under the GID of the file,
rather than that of the actual invoker.

The set-group-ID-on-execution permission is suppressed (the bit is turned off) if
both of the following are true:

v The calling process does not have appropriate privileges.

fchmod (BPX1FCM)

Chapter 2. Callable services descriptions 169

v The file’s owner GID does not match the effective GID or one of the
supplementary GIDs of the calling process.

5. Setting the set-user-ID-on-execution permission means that when this file is run
the process’s effective UID will be set to the file’s owner UID, so that the
process seems to be running under the UID of the file’s owner, rather than that
of the actual invoker.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “open (BPX1OPN) — Open a File” on page 434
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the fchmod service.

Examples
For an example using this callable service, see “BPX1FCM (fchmod) Example” on
page 1103.

fchmod (BPX1FCM)

170 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

fchown (BPX1FCO) — Change the Owner and Group of a File or
Directory by Descriptor

Function
The fchown callable service changes the owner, group, or both owner and group of
a file. You identify the file by its file descriptor.

For the corresponding service using a pathname, see “chown (BPX1CHO) —
Change the Owner or Group of a File or Directory” on page 86.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCO,(File_descriptor,
Owner_UID,
Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the file for which you
wish to change the owner, group, or both owner and group.

Owner_UID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the new owner UID assigned to the
file, or the present value or -1 if there is no change. This parameter must be
specified.

Group_ID
Supplied parameter

fchown (BPX1FCO)

Chapter 2. Callable services descriptions 171

Type: Integer

Length: Fullword

The name of a fullword field that contains the new group ID (GID) to be
assigned to the file, or the present value or -1 if there is no change. This
parameter must be specified.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which the fchown service returns 0 if the request is
successful, or −1 if it is unsuccessful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fchown service stores the return code. The
fchown service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fchown service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter is not a valid file descriptor.
EINVAL The Owner_UID or Group_ID parameter is incorrect; or

File_descriptor refers to an unnamed pipe, and fchown is not
allowed on such a file.

EPERM The calling process does not have appropriate privileges.
EROFS The specified file is on a read-only file system. The following

reason code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fchown service stores the reason code.
The fchown service returns a Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The fchown service changes the owner UID and owner GID of a file. Only a

process with “appropriate privileges” can change the owner UID of a file. Refer
to “Authorization” on page 8 for information on appropriate privileges.

2. The owner GID of a file can be changed by a process if the process has
appropriate privileges, or if a process meets all of these conditions:

v The effective UID of the process matches the file’s owner UID.

fchown (BPX1FCO)

172 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The Owner_UID value specified in the change request matches the file’s
owner UID.

v The Group_ID value specified in the change request is the effective GID, or
one of the supplementary GIDs, of the calling process.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

4. If the change request is successful, the change time for the file is updated.

5. Values for both Owner_UID and Group_ID must be specified. If you want to
change only one of these values, you must set the other to its present value or
to -1 in order for it to remain unchanged.

Related services
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86
v “fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor” on

page 168
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195

Characteristics and restrictions
There are no restrictions on the use of the fchown service.

Examples
See “BPX1FCO (fchown) Example” on page 1104 for an example using this callable
service.

fchown (BPX1FCO)

Chapter 2. Callable services descriptions 173

fcntl (BPX1FCT) — Control Open File Descriptors

Function
The fcntl callable service performs general control functions for open files: it
retrieves or sets file descriptor flags, file status flags, locking information, and file
tags. It also controls the automatic conversion of text data within files.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FCT,(File_descriptor,
Action,
Argument,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the file. This
parameter must specify an opened file descriptor, except when the Action
parameter is F_CLOSFD, in which case this file descriptor is not expected to be
in use.

Action
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains an integer value, mapped in the
BPXYFCTL macro, that indicates the action to be performed. For a list of
actions, see “BPXYFCTL — Command Values and Flags for fcntl” on page 968.

Argument
Parameter supplied and returned

Type: Structure

fcntl (BPX1FCT)

174 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword that contains an argument, or zero. The type of
argument depends upon the action requested:

Action Argument

F_CLOSFD File_descriptor_2

F_CONTROL_CVT fcntl convert (F_CVT) structure

F_DUPFD File_descriptor_2

F_DUPFD2 File_descriptor_2

F_GETFD 0

F_GETFL 0

F_GETLK Lock_information

F_GETOWN 0

F_SETFD File_descriptor_flags

F_SETFL File_status_flags

F_SETLK Lock_information

F_SETLKW Lock_information

F_SETOWN Pid

F_SETTAG File_Tag

Argument Options
The options you can use as an argument follow:

File_descriptor_2
The name of a fullword that contains a file descriptor.

When Action is F_DUPFD, fcntl returns the lowest file descriptor equal to or
greater than File_descriptor_2 that is not already associated with an open
file. When Action is F_DUPFD2, the file descriptor that is returned is equal
to File_descriptor_2. File_descriptor_2 is closed if it is already in use.
File_descriptor is duplicated. If File_descriptor is equal to File_descriptor_2,
the F_DUPFD2 action returns File_descriptor_2 without closing it.

When Action is F_CLOSFD, File_descriptor_2 specifies the upper limit for
the range of file descriptors to be closed, and File_descriptor specifies the
lower limit. If a −1 is specified for File_descriptor_2, all file descriptors
greater than or equal to the lower limit are closed.

File_descriptor_flags
The name of a fullword that contains the file descriptor flags that are to be
set or retrieved for File_descriptor.

To get File_descriptor_flags, specify action F_GETFD. If the action is
successful, Return_value maps to the bit settings of File_descriptor_flags

Similarly, to set File_descriptor_flags, specify action F_SETFD and use the
mapping to set or reset File_descriptor_flags to the desired value.

Note: After the FCTLCLOFORK flag has been set on, it cannot be set off
again.

fcntl (BPX1FCT)

Chapter 2. Callable services descriptions 175

File descriptor flags are mapped by the BPXYFCTL macro; see
“BPXYFCTL — Command Values and Flags for fcntl” on page 968.

File_status_flags
The name of a fullword that contains the file status flags to be set or
retrieved for File_descriptor.

To get File_status_flags, specify action F_GETFL. If the action is
successful, Return_value maps to the bit settings of File_status_flags

Similarly, to set File_status_flags, specify action F_SETFL and use the
mapping to set or reset File_status_flags to the desired value. Only the
O_ASYNCSIG, O_APPEND, O_NONBLOCK, and O_SYNC flags are set
when Action is F_SETFL; any other flags specified are ignored.

File status flags are used to set some of the open flags that are mapped by
the BPXYOPNF macro. For the mapping of the file status flags, see
“BPXYOPNF — Map Flag Values for open” on page 993.

Two masks are available for use with the return value from an F_GETFL
request. You can use the O_ACCMODE mask to extract the file access
mode flags from the return value, or you can use the O_GETFL mask to
extract both the file access mode and the file status flags.

Lock_information
The name of a fullword that contains a pointer to a structure that contains
information on a file segment for which locks are to be set, cleared, or
queried.

The Lock_information is mapped by the BPXYBRLK macro as follows:

Word Description
0 l_type: Bytes 0–1 specify the type of lock that is being set, cleared,

or queried. For more information, see “File Locking” in the usage
notes.

0 l_whence: Bytes 2–3 specify how the lock offset is to be determined.
For more information, see “File Locking” in the usage notes.

1–2 l_start specifies the starting byte offset of the lock that is to be set,
cleared, or queried. This is a doubleword value.

3–4 l_len specifies the length of the byte range that is to be set, cleared,
or queried. This is a doubleword value.

5 l_pid: On return from a F_GETLK request, this field contains the
process ID of the process that is holding the blocking lock, if one
was found.

For more information, see “File Locking” in the usage notes.

Pid
The name of a fullword that contains either the process ID or the process
group ID that is to receive the SIGIO or SIGURG signals for the socket
associated with File_descriptor.

Every socket has an associated process group number, which is initialized
to zero. You set it by calling the fcntl service and specifying the F_SETOWN
action. This value can also be set using the w_ioctl callable service. The
Argument value for the F_SETOWN can be a positive integer, specifying a
process ID, or a negative integer (other than -1), specifying a process group
ID. The F_GETOWN command returns in the return value field either the
process ID or the process group ID that is associated with the socket. The
difference between specifying a process ID and specifying a process group
ID is that in the first case only a single process receives the signal, while in

fcntl (BPX1FCT)

176 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

the second case all processes in the process group receive the signal. The
F_SETOWN and F_GETOWN actions are only available for AF_INET stream
sockets.

File_Tag
The name of a fullword that describes the file tag. The file tag is mapped in
BPXYSTAT (“BPXYSTAT — Map the Response Structure for stat” on
page 1034).

When Action is F_SETTAG, the fcntl service sets the file tag attributes for
the file. The file must be a regular, FIFO, or character special file; and be
opened in write mode. The file must be empty. If the file is not empty and
the DeferTag bit is set, no error is returned and no processing occurs,
assuming that the command would otherwise have worked. This allows the
caller to issue F_SETTAG without checking the file size, but not incur an
error.

When the DeferTag bit is off, the file tag is set immediately. When the
DeferTag bit is on, the setting of the file tag is deferred until the first write
by a call to BPX1WRT. The file tag is lost if no write ever occurs and the file
is closed. If the write fails, file tagging might or might not have occurred.

fcntl convert structure
The name of a two-word structure that describes how conversion is to occur
for this file. The two-word structure is mapped in BPXYFCTL (“BPXYFCTL
— Command Values and Flags for fcntl” on page 968; see F_CVT). The
first word is one of four possible subcommands, followed by a 2-byte
program CCSID and a 2-byte file CCSID.

When Action is F_CONTROL_CVT, the fcntl service controls how
conversion occurs when the opened file is being read from (via BPX1RED)
or written to (via BPX1WRT). The file must be a regular, FIFO, or character
special file.

The subcommands are:

Subcommand Description

SetCvtOff Turns off any conversion that may be in
effect. The CCSID values are ignored.

SetCvtOn Turns on conversion, and specifies the
CCSIDs that are to be used in place of
those currently in effect. A value of 0 for the
program CCSID indicates that the current
value in ThliCcsid is to be used for each
read or write. ThliCcsid is initially 1047, but
it can be reset directly by the program, or
indirectly with the appropriate environmental
variable.

A value of 0 for the file CCSID indicates
that the current setting is not to be
changed. The values do not affect the
stored file tag or program CCSID (that is,
the ThliCcsid); they only change the values
that are being used to control conversion
on this data stream.

SetAutoCvtOn If conversion is enabled for the environment
(by AUTOCVT in BPXPRMxx or with the

fcntl (BPX1FCT)

Chapter 2. Callable services descriptions 177

appropriate environment variable), this
subcommand behaves identically to
SetCvtOn. Otherwise, it has no effect.

QueryCvt Returns information about whether or not
conversion is in effect, and the program
and file CCSIDs that are being used. On
input, the subcommand is QueryCvt; on
output, the subcommand is reset to
SetCvtOn or SetCvtOff, indicating that
conversion is currently on or off,
respectively. The current CCSIDs are
returned in their respective positions in the
F_CVT structure.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fcntl service returns 0 or greater, if the
request is successful; or −1, if it is not successful. The following table lists the
possible values of Return_value for each action specified:

Action Argument Return_value
F_CLOSFD File_descriptor_2 0
F_CONTROL_CVT F_CVT 0
F_DUPFD File_descriptor_2 File_descriptor
F_DUPFD2 File_descriptor_2 File_descriptor
F_GETFD 0 File_descriptor_flags
F_GETFL 0 File_status_flags
F_GETLK Lock_information Lock_information
F_GETOWN 0 Pid
F_SETFD File_descriptor_flags 0
F_SETFL File_status_flags 0
F_SETLK Lock_information 0
F_SETLKW Lock_information 0
F_SETOWN Pid 0
F_SETTAG File_Tag 0

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fcntl service stores the return code. The
fcntl service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fcntl service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The calling process asked to set a lock, but the lock conflicts with

a lock on an overlapping part of the file that is already set by
another process.

fcntl (BPX1FCT)

178 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EBADF The request was not accepted, for one of these reasons:

v The File_descriptor parameter does not specify a valid, open
file descriptor.

v The request was to set a read lock, but the file is open for
writing only.

v The request was to set a write lock, but the file is open for
reading only.

v File_descriptor was opened with an opendir request. Many of
the other requests are rejected for an opendir filedes.

v If the action requested was F_DUPFD2, this error indicates
that File_descriptor_2 was negative, or was equal to or greater
than the highest file descriptor value allowed for the process.
The MAXFILEPROC parmlib option is used to specify the
largest file descriptor value for the system.

The following reason code can accompany the return code:
JRFdTooBig.

EDEADLK The action requested was F_SETLKW; the potential for deadlock
was detected.

EINTR While processing a F_SETLKW request, fcntl was interrupted by
a signal.

EINVAL The request was not accepted, for one of these reasons:

v If the action requested was F_DUPFD, File_descriptor_2 was
negative, or it was equal to or greater than the highest file
descriptor value that is allowed for the process. The
MAXFILEPROC parmlib option is used to specify the largest
file descriptor value for the system.

v If the action requested was F_SETLK or F_SETLKW, the file
specified by File_descriptor does not support locking, or the
Lock_information parameter contains incorrect values.

v The action requested was F_CLOSFD and the file descriptor
specified by File_descriptor_2 was less than File_descriptor,
but not equal to −1.

v The action requested was F_SETTAG or F_CONTROL_CVT,
and either incorrect input data was supplied, or the file was
inappropriate for this use.

v An incorrect action was requested.

The following reason codes can accompany the return code:
JRFdTooBig, JRFd2TooSmall, JrBrlmBadFileType,
JrBrlmBadL_Type, JrBrlmInvalidRange, JrBrlmBadL_Whence,
JrNotsupportedForFileType, JrBadInputBufAddr, JrFileNotEmpty,
JrWFildeRdOnly, JrInvalidFileTag, JrInvalidCcsid, JrBadOptCode.

EMFILE The action requested was F_DUPFD. The process has already
reached its maximum number of file descriptors, or there is no
file descriptor available greater than File_descriptor_2.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPERM The action requested was F_CLOSFD, and at least one of the
file descriptors in the specified range remains open. For a
description of the file descriptors that cannot be closed with
F_CLOSFD, see the usage notes.

Reason_code
Returned parameter

fcntl (BPX1FCT)

Chapter 2. Callable services descriptions 179

Type: Integer

Length: Fullword

The name of a fullword in which the fcntl service stores the reason code. The
fcntl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
Closing files

A process can use the BPX1FCT service to close a range of file descriptors.
File_descriptor_2 must be greater than or equal to File_descriptor, or it can be −1,
which indicates that all file descriptors greater than or equal to File_descriptor are to
be closed.

Use of F_CLOSFD is meant to be consistent with use of the close service
(BPX1CLO). You cannot close file descriptors that could not also be closed using
the close service.

If a file descriptor cannot be closed, it is considered an error, but the request
continues with the next file descriptor in the range. File descriptors that are not in
use are ignored.

File locking

A process can use the BPX1FCT service to lock out other cooperating processes
from part of a file, so that the process can read or write to that part of the file
without interference from others. This ensures data integrity when several
processes are accessing a file concurrently.

File locking can only be performed on file descriptors that refer to regular files.
Locking is not permitted on file descriptors that refer to directories, fifos, pipes,
character special files, or any other type of file.

Locking operations are controlled with a structure mapped by BPXYBRLK, whose
format is described above in “Parameters” on page 174. This structure is needed
whether the request is for setting a lock, releasing a lock, or querying a particular
byte range for a lock. The following is a more detailed description of the
BPXYBRLK structure.

The l_type field is used to specify the type of lock that is to be set, cleared, or
queried. Valid values for l_type are as follows:

Type Description

F_RDLCK A read lock. Specified as a halfword integer value
of 1, this is also known as a shared lock. This type
of lock specifies that the process can read the
locked part of the file, and other processes cannot
write on that part of the file while it is doing so. A
process can change a held write lock, or any part of
it, to a read lock, thereby making it available for
other processes to read. Multiple processes can
have read locks on the same part of a file

fcntl (BPX1FCT)

180 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

simultaneously. To establish a read lock, a process
must have the file accessed for reading.

F_WRLCK A write lock. Specified as a halfword integer value
of 2, this is also know as an exclusive lock. This
type of lock indicates that the process can write on
the locked part of the file, without interference from
other processes. If one process puts a write lock on
part of a file, no other process can establish a read
lock or write lock on that same part of the file. A
process cannot put a write lock on part of a file if
there is already a read lock on an overlapping part
of the file, unless that process is the only owner of
that overlapping read lock. In such a case, the read
lock on the overlapping section is replaced by the
write lock that is being requested. To establish a
write lock, a process must have the file accessed
for writing.

F_UNLCK Indicates unlock. Specified as a halfword integer
value of 3, this is used to unlock all locks held on
the given range by the requesting process.

The use of the l_whence and l_start fields for BPX1FCT service parallels their
processing for the lseek service, BPX1LSK. See “lseek (BPX1LSK) — Change a
File’s Offset” on page 332 for more information.

The l_whence field is used to specify how the byte range offset is to be found within
the file. Valid values for l_whence are as follows:

Value Description

SEEK_SET Stands for the start of the file, and is specified as a
halfword integer value of 0.

SEEK_CUR Stands for the current file offset in the file, and is
specified as a halfword integer value of 1.

SEEK_END Stands for the end of the file, and is specified as a
halfword integer value of 2.

The l_start field is used to identify the part of the file that is to be locked, unlocked,
or queried. The part of the file that is affected by the lock begins at this offset from
the location specified by the l_whence field. For example, if l_whence is
SEEK_CUR and l_start is the value 10, a F_SETLK request attempts to set a lock
beginning 10 bytes past the current cursor position. The l_start value may be
negative, provided that when it is added to the offset indicated by the l_whence
position, the resulting offset does not extend beyond the beginning of the file.

Note: Although you cannot request a byte range that begins or extends beyond the
beginning of the file, you can request a byte range that starts or extends
beyond the end of the file.

The l_len field is used to give the size of the locked part of the file, in bytes. The
value specified for l_len may be negative. If l_len is positive, the area affected
begins at l_start and ends at l_start+l_len-1. If l_len is negative, the area affected
begins at l_start and ends at l_start+l_len and ends at l_start-1. If l_len is zero, the
locked part of the file begins at the position specified by l_whence and l_start, and
extends to the end of the file.

fcntl (BPX1FCT)

Chapter 2. Callable services descriptions 181

The l_pid field identifies the process ID of the process that holds the lock found on
an F_GETLK request, if one was found.

Obtaining locks

You can set locks by specifying F_SETLK as the Action parameter for the
BPX1FCT service. If the lock cannot be obtained, a Return_value of −1 is returned
along with an appropriate Return_code and Reason_code. You can also use
F_SETLK to release locks that are already held, by setting l_type to F_UNLCK.

You can also set locks by specifying F_SETLKW as the Action parameter for the
BPX1FCT service. If the lock cannot be obtained because another process has a
lock on all or part of the requested range, the F_SETLKW request waits until the
specified range becomes free and the request can be completed. You can also use
F_SETLKW to release locks that are already held, by setting l_type to F_UNLCK

If a signal interrupts a call to the BPX1FCT service while it is waiting in an
F_SETLKW operation, the function returns with a Return_value of −1 and a
Return_code of EINTR.

F_SETLKW operations can encounter deadlocks. This happens when process A is
waiting for process B to unlock a region, and process B is waiting for process A to
unlock a different region. If the system detects that an F_SETLKW might cause a
deadlock, the BPX1FCT service returns with a Return_value of −1 and a
Return_code of EDEADLK.

Determining lock status

A process can determine locking information about a file by using F_GETLK as the
Action parameter for the BPX1FCT service. In this case, Argument should specify a
pointer to a structure that is mapped by the BPXYBRLK macro. This structure
should describe a lock operation that the caller would like to perform. When the
BPX1FCT service returns, the structure is modified to describe the first lock found
that would prevent the proposed lock operation from completing successfully.

If a lock is found that would prevent the proposed lock from being set, the
F_GETLK request returns a modified structure whose:

v l_whence value is always SEEK_SET

v l_start value gives the offset of the locked portion from the beginning of the file

v l_len value is set to the length of the locked portion of the file

v l_pid value is set to the process ID of the process that is holding the lock

If there are no locks that would prevent the proposed lock operation from
completing successfully, the returned structure is modified to have an l_type of
F_UNLCK, but otherwise remains unchanged.

Multiple lock requests

A process can have several locks on a file simultaneously, but it can have only one
type of lock set on any given byte. If a process puts a new lock on part of a file that
it has previously locked, the process has only one lock on that part of the file and
the lock type is the one given by the most recent locking operation.

Releasing locks

fcntl (BPX1FCT)

182 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

When an F_SETLK or F_SETLKW request is made to unlock a byte region of a file,
all locks that are held by that process within the specified region are released. In
other words, each byte specified on an unlock request is freed from any lock that is
held against it by the requesting process.

All of a process’s locks on a file are removed when the process closes a file
descriptor for that file. Locks are not inherited by a child process created with the
fork service. See “fork (BPX1FRK) — Create a New Process” on page 184 for more
information about the fork service.

Important note
All locks are advisory only. Processes can use locks to inform each other that
they want to protect parts of a file, but locks do not prevent I/O on the locked
parts. A process that has appropriate permissions on a file can perform any
I/O it chooses, regardless of which locks are set. Therefore, file locking is only
a convention, and it works only when all processes respect the convention.

Related services
v “close (BPX1CLO) — Close a File” on page 97
v “exec (BPX1EXC) — Run a Program” on page 133
v “fork (BPX1FRK) — Create a New Process” on page 184
v “lseek (BPX1LSK) — Change a File’s Offset” on page 332
v “open (BPX1OPN) — Open a File” on page 434

Characteristics and restrictions
There are no restrictions on the use of the fcntl service.

Examples
For an example using this callable service, see “BPX1FCT (fcntl) Example” on
page 1106.

fcntl (BPX1FCT)

Chapter 2. Callable services descriptions 183

fork (BPX1FRK) — Create a New Process

Function
The fork callable service creates a new process, called a child process.

Requirements

Authorization: Supervisor state or problem state, PSW key 8, TCB key 8.
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FRK,(Process_ID,
Return_code,
Reason_code)

Parameters
Process_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fork service places the process ID of the
newly created child process, 0, or −1.

Upon successful completion, fork returns the process ID of the newly created
child to the calling (parent) process.

Because the child is a duplicate, it contains the same service request to the fork
service as the parent. Execution of the child begins with this fork service
returning a process ID value of zero; the child then proceeds with normal
execution.

If Process_ID is returned as −1, no child process was created, for the reason
shown by Return_code.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fork service stores the return code. The
fork service returns Return_code only if Process_ID is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return

fork (BPX1FRK)

184 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

code values. The fork service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The resources required to let another process be created are not

available now; or you have already reached the maximum
number of processes you are allowed to run.

The following reason codes can accompany the return code:
JRForkExitRcChildNoStorage, JRForkExitRcParentBadEnv,
JRForkExitRcParentNoRoom, JRForkNoAccess,
JRForkNoResource, JRForkVsmListTooLarge, JRKernelReady,
JRMaxChild, JRMaxProc, JRMaxUIDs, JRNoSecurityProduct,
JRNotKey8, and JRWlmWonErr.

EINVAL The following reason code can accompany the return code:
JRJsrRacXtr.

ENOMEM The process requires more space than is available.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fork service stores the reason code. The fork
service returns Reason_code only if Return_value is −1. Reason_code further
qualifies the Return_code value. For the reason codes, see z/OS UNIX System
Services Messages and Codes.

Usage notes
1. The new process (called the child process) is a duplicate of the process that

calls the fork service (called the parent process), except for the following:

v The child process has a unique process ID (PID) that does not match any
active process group ID.

v The child has a different parent process ID (namely, the process ID of the
process that called the fork service).

v The child has its own copy of the parent’s file descriptors. Each file descriptor
in the child refers to the same open file as the corresponding file descriptor in
the parent.

v If a hierarchical file system (HFS) file has its FCTLCLOFORK flag set on, it is
not inherited by the child process. This flag is set with the fcntl service. For
more information, see “fcntl (BPX1FCT) — Control Open File Descriptors” on
page 174.

v The child has its own copy of the parent’s open directory streams. Each open
directory stream in the child can share directory stream positioning with the
corresponding directory stream of the parent.

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no interval timers set (similar to the results of a call to
the alarm service with Wait_time specified as zero).

v The child has no pending signals.

In other respects, for z/OS UNIX the child is identical to the parent.

fork (BPX1FRK)

Chapter 2. Callable services descriptions 185

2. The child process inherits all shared memory attachments attached to the
calling process. The internal values of the number of processes attached to
each shared memory segment (shm_nattch) are incremented.

3. If the calling address space uses the macro IARVSERV to capture storage,
these pages are not copied to the child address space.

4. The semaphore adjustment values (semadj) are cleared in the child process.

The child address space inherits the following address space attributes of the
parent address space:

1. Region size

2. Time limit

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “exec (BPX1EXC) — Run a Program” on page 133
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “setrlimit (BPX1SRL) — Set Resource Limits” on page 705
v “times (BPX1TIM) — Get Process and Child Process Times” on page 864
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Characteristics and restrictions
Following is a list of characteristics or restrictions for the fork call:

v The fork service can be requested from either an MVS or kernel address space.

v The fork service is supported from programs running in PSW key 8 only. An
additional requirement is that the storage protection key value in the TCBPKF
field of the task control block (TCB) must be 8. The fork service from authorized
or problem-state programs with a PSW key other than 8 or a TCBPKF value
other than 8 is rejected with an error code.

v Only the following storage subpools are copied by fork: 0–127, 129–132, and
251–252.

v With the exception of subpool 252, which is all key-0 storage, only the caller’s
key-8 storage is copied to the child. For subpools that support multiple
keys—that is, subpool 129 to subpool 132—only storage obtained with a key of 8
is copied.

v When the fork service is called from a single-process address space, all storage
obtained by all the tasks in the calling jobstep in the subpools identified above
are copied to the child address space.

When the fork service is called from a multiple-process address space, only
storage obtained by the tasks in the calling process in the subpools identified
above are copied to the child address space.

v The child process always runs in problem program state key of 8, even when it is
forked by an APF-authorized MVS process.

v One task (thread) and one request block (RB) are present in the child address
space after the fork service request.

If the parent was single-task with multiple RBs, only a single RB is created in the
child address space after the fork service request. If multiple tasks exist in the
parent process, only the task issuing the fork service request is replicated. There
is no serialization among the different tasks.

v The TCB address and the addresses of other MVS control blocks are likely to be
different in the child.

fork (BPX1FRK)

186 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The fork service does not copy any system subpools or MVS control blocks from
the parent to the child, except as noted.

For example, the task I/O table (TIOT) is not copied. This means that MVS data
sets that were allocated in the parent are not allocated to the child, with the
exception of the propagated TASKLIB, STEPLIB, or JOBLIB DD data sets.
Because user data in user subpools are copied, it is possible that some of those
control blocks can point to system control blocks that are no longer present in the
child.

As another example, a user’s data control block (DCB) that has been opened in
the parent still appears as an opened DCB in the child, but the corresponding
system control blocks pointed to by the DCB are not present in the child.

Only services that are specifically documented as supported can be used across
the fork service. For further details, see “MVS-related information” below.

v There is a limit on the total number of “living” or “zombied” children the parent
can have at a time. This limit is set with the MAXPROCUSER parameter in a
BPXPRMxx parmlib member. You can retrieve this count with the sysconf
service, BPX1SYC.

Although the child process resembles the parent process in many ways, it has
specific differences from the parent process. Besides the differences described in
POSIX.1 (under fork), the following are some examples of elements in the parent
process that are not propagated to the child process:

v Linkage stack. The caller can have a linkage stack, but the child does not inherit
it. If the caller intends to do an exec service request in the child, the loss of the
linkage stack is not a problem. It is a problem only if the child process executes
a PR (Program Return) instruction that requires the linkage stack.

v Access list (that is, PASN-AL, DU-AL). The parent’s access lists are not
propagated to the child.

v Access registers. Access registers are not propagated to the child, because the
child process does not inherit the parent’s access list, which would be needed to
use the access registers.

v Virtual pages. Virtual pages that were page-fixed in the parent are not
page-fixed in the child.

v Dynamic resource managers (RESMGRs). Dynamic resource managers that
were established for the parent are not propagated to the child.

v MVS files. Any MVS files that were opened for the parent are not opened for the
child process, with the exception of the TASKLIB, STEPLIB or JOBLIB DD data
sets that were propagated from the parent process. Only z/OS UNIX files are
opened in the child process.

Examples
For an example using this callable service, see “BPX1FRK (fork) Example” on
page 1108.

MVS-related information
1. Following is a list of services in the child that relate to the services done in the

parent:

v GETMAIN or FREEMAIN, or STORAGE. If the parent process has issued a
GETMAIN macro for a storage block, the child process can issue a
FREEMAIN macro for the same storage block.

v LOAD or DELETE. If a problem state parent process issues a LOAD macro
for a module, the child process can issue a DELETE macro to remove the

fork (BPX1FRK)

Chapter 2. Callable services descriptions 187

module from storage. If the child process issues a LOAD macro for the same
module that was loaded in the parent, the copied version of the module is
used and the use count is incremented.

If a supervisor state parent process issues a LOAD macro for a module, the
child process cannot issue a DELETE macro for the module, and it cannot
use a LOAD macro to load a new copy of the module.

A LOAD macro for global storage, however, is not reflected in the child; the
child cannot issue a DELETE macro to remove a module that was loaded to
a common storage by the parent.

v CSVQUERY. The EPTOKEN (entry point token) returned as OUTEPTKN on a
CSVQUERY macro in the parent can be used by the child as the INEPTKN
parameter on a CSVQUERY macro to refer to the same module.

v ESTAE. The child process can issue an ESTAE macro with a 0 parameter to
delete an ESTAE routine established by the parent process.

v ESPIE. The child process can delete an ESPIE routine established by the
parent process.

Note: No other MVS services are carried across fork. They can be freely
used in either the parent process or the child process, as long as it is
understood that the result of these services (if performed in the parent
process) cannot be available to the child process.

2. The system propagates the contents directory related information (including
extent lists) for the job pack queue for the job step task related to the task
issuing the fork call. It also propagates the information on all modules (whether
private or in the LPA) that have been loaded by the task issuing the fork call.

3. The system propagates the current task’s SPIE or ESPIE and STAE or ESTAE
status to the child process.

v STAE or ESTAE control blocks representing the current RB are propagated to
the child process. Control blocks associated with older RBs are not
propagated, nor are STAI or ESTAI control blocks.

v SPIE or ESPIE control blocks representing the current RB are propagated to
the child process. SPIE or ESPIE control blocks associated with older RBs
are not propagated.

4. Security information from the parent’s address space is propagated to the
child’s address space. As a result, the child has a security environment
equivalent to that of the parent.

5. The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active for
the current task are propagated to the child’s address space. This causes the
child address space to have the same MVS program search order as the calling
parent task.

6. The accounting information of the parent’s address space is propagated to the
child’s address space. (See z/OS UNIX System Services Planning.)

7. The jobname of the parent is propagated to the child and appended with a
numeric value in the range of 1–9 if the jobname is 7 characters or fewer. If the
jobname is 8 characters, the jobname is propagated as is. When a jobname is
appended with a numeric value, the count wraps back to 1 when it exceeds 9.

8. If the calling parent task is in a Work Load Manager (WLM) enclave, the child is
joined to the same WLM enclave. This allows WLM to manage the parent and
child as one ″business unit of work″ entity for system accounting and
management purposes.

fork (BPX1FRK)

188 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

fpathconf (BPX1FPC) — Determine Configurable Pathname Variables
Using a Descriptor

Function
The fpathconf callable service determines the current values of a configurable limit
or option (variable) that is associated with a file or directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FPC,(File_descriptor,
Name,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the file.

Name
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates which configurable
limit or option (variable) is to be returned in the Return_value. Use the
BPXYPFC macro (see “BPXYPCF — Command Values for pathconf and
pathconf” on page 993) to specify the pathname variable you want returned.
The following table shows the variables that can be returned:

fpathconf (BPX1FPC)

Chapter 2. Callable services descriptions 189

Variable Returned Description
PC_CHOWN_RESTRICTED The change ownership (“chown (BPX1CHO) —

Change the Owner or Group of a File or Directory”
on page 86) function is restricted to processes with
appropriate privileges. The group ID (GID) of a file
can be changed only to the effective group ID of the
process, or to one of its supplementary group IDs.

PC_LINK_MAX The maximum value of a file’s link count.
PC_MAX_CANON The maximum number of bytes in a terminal

canonical input line.
PC_MAX_INPUT The minimum number of bytes for which space will

be available in a terminal input queue. This is the
maximum number of bytes a portable application
may require to be typed as input before it reads
them.

PC_NAME_MAX The maximum number of bytes in a filename (not a
string length; the count excludes a terminating null).

PC_NO_TRUNC Pathname components longer than 255 bytes
generate an error.

PATH_MAX The maximum number of bytes in a pathname (not
a string length; the count excludes a terminating
null).

PIPE_BUF The maximum number of bytes that can be written
atomically when writing to a pipe.

_POSIX_VDISABLE Terminal special characters maintained by the
system can be disabled using this character value.
For information on querying and setting these
special characters, see “tcgetattr (BPX1TGA) — Get
the Attributes for a Terminal” on page 837 or
“tcsetattr (BPX1TSA) — Set the Attributes for a
Terminal” on page 850.

PC_ACL The security product supports access control lists.
PC_ACL_ENTRIES_MAX The maximum number of entries that can be placed

in an access control list for the specified file.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fpathconf service returns the current value
of the Pathname variable that corresponds to the Name specified, or −1 if the
request is not successful.

If the named Pathname variable does not have a limit for the specified file,
Return_value is set to −1 and the Return_code and Reason_code remain
unchanged.

If PC_CHOWN_RESTRICTED is specified for Name, and
PC_CHOWN_RESTRICTED is active, Return_value is set to 1.

If PC_CHOWN_RESTRICTED is specified for Name, and
PC_CHOWN_RESTRICTED is not active, Return_value is set to 0.

If PC_NO_TRUNC is specified for Name, and PC_NO_TRUNC is active,
Return_value is set to 1.

fpathconf (BPX1FPC)

190 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If PC_NO_TRUNC is specified for Name, and PC_NO_TRUNC is not active,
Return_value is set to 0.

If PC_ACL is specified for Name, and PC_ACL is supported, Return_value is
set to 1.

If PC_ACL is specified for Name, and PC_ACL is not supported, Return_value
is set to 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fpathconf service stores the return code.
The fpathconf service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes.

If the named Pathname variable does not have a limit for the specified file,
Return_value is −1 and Return_code is unchanged. Otherwise, the fpathconf
service can return one of the following values in the Return_code parameter:

Return_code Explanation
EBADF The File_descriptor argument is not a valid file descriptor.
EINVAL Refer to “Usage notes” for situations in which this is returned.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fpathconf service stores the reason code.
The fpathconf service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If Name refers to MAX_CANON, MAX_INPUT, or _POSIX_VDISABLE, the

following applies:
v If File_descriptor does not refer to a terminal file, the function returns −1 in

Return_value and sets the Return_code to EINVAL.

2. If Name refers to NAME_MAX, PATH_MAX, or _POSIX_NO_TRUNC, the
following applies:
v If File_descriptor does not refer to a directory, the function still returns the

requested information using the parent directory of the specified file.

3. If Name refers to PC_PIPE_BUF, the following applies:
v If File_descriptor refers to a pipe or a FIFO, the value returned applies to the

referred-to object itself. If File_descriptor refers to a directory, the value
returned applies to any FIFOs that exist or that can be created within the
directory. If File_descriptor refers to any other type of file, the function returns
−1 in Return_value and sets the Return_code to EINVAL.

4. If Name refers to PC_LINK_MAX, the following applies:

fpathconf (BPX1FPC)

Chapter 2. Callable services descriptions 191

v If File_descriptor refers to a directory, the value returned applies to the
directory.

Related services
v “pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a

Pathname” on page 459

Characteristics and restrictions
There are no restrictions on the use of the fpathconf service.

Examples
For an example using this callable service, see “BPX1FPC (fpathconf) Example” on
page 1107.

fpathconf (BPX1FPC)

192 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

freeaddrinfo (BPX1FAI) — Free Addr_Info Structures

Function
The freeaddrinfo callable service frees the Addr_Info structure(s) that are obtained
by the getaddrinfo callable service (“getaddrinfo (BPX1GAI) — Get the IP Address
and Information for a Service Name or Location” on page 206).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FAI,(Addr_Info_Ptr,
Return_value,
Return_code,
Reason_code)

Parameters
Addr_Info_Ptr

Supplied parameter

Type: Pointer

Length: Fullword

The name of a fullword field that contains a pointer to an Addr_Info structure or
a linked list of Addr_Info structures returned by the getaddrinfo callable service.
See Addr_Info – AddrInfo Data Structure in the EZBREHST assembler macro
for more information about the format of this structure. The EZBREHST macro
is shipped in the installation’s MACLIB SMP/E DDEF location.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the freeaddrinfo service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

freeaddrinfo (BPX1FAI)

Chapter 2. Callable services descriptions 193

|
|

|

|
|
|

|

|||
||
||
||
||
||
||
||
|
|

|

|
|
|
|
|
|

|

|
|

||

||

|
|
|
|
|

|
|

||

||

|
|

|

|

|
|

Type: Integer

Length: Fullword

The name of a fullword in which the freeaddrinfo service stores the return code.
The freeaddrinfo service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS Communications Server:
IP and SNA Codes. The freeaddrinfo service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EAI_AGAIN The resolver address space has not been started. Try the request

later.
EAI_FAIL An unrecoverable error occurred.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the freeaddrinfo service stores the reason
code. The freeaddrinfo service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS Communications Server: IP and SNA Codes.

Usage notes
1. The freeadrinfo service supports a thread-safe environment.

2. The pointer that is returned in the Results_Ptr parameter of the getaddrinfo
callable service can be specified with the Addr_Info_Ptr parameter on the
freeaddrinfo callable service.

3. When the Addr_Info_Ptr parameter points to a linked list of Addr_Info structures,
the linked list of Addr_Info structures is freed with one invocation of the
freeaddrinfo callable service.

Related services
v “getaddrinfo (BPX1GAI) — Get the IP Address and Information for a Service

Name or Location” on page 206

v “getnameinfo (BPX1GNI) — Get the Host Name and Service Name from a
Socket Address” on page 251

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1FAI(freeaddrinfo)Example” on
page 1100.

freeaddrinfo (BPX1FAI)

194 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||

||

|
|
|
|
|

|||
||
|
||
|

|
|

||

||

|
|
|
|

|

|

|
|
|

|
|
|

|

|
|

|
|

|

|

|

|
|

fstat (BPX1FST) — Get Status Information about a File by Descriptor

Function
The fstat callable service obtains status information about a file. You identify the file
by its file descriptor.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FST,(File_descriptor,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the file.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area to which the fstat
call returns Status_area. To determine the value of Status_area_length, use the
BPXYSTAT macro (see “BPXYSTAT — Map the Response Structure for stat” on
page 1034).

Status_area
Parameter supplied and returned

Type: Structure

Length: The length of BPXYSTAT or
Status_area_length, whichever is less.

fstat (BPX1FST)

Chapter 2. Callable services descriptions 195

The name of an area to which the fstat call returns the status information for the
file. Status_area is mapped by the BPXYSTAT macro. For information on the
contents of this macro, see “BPXYSTAT — Map the Response Structure for
stat” on page 1034.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fstat service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fstat service stores the return code. The
fstat service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fstat service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter does not identify a known file. One

possible reason for this is that the file descriptor specified is from
an opendir instead of an open, in which case JrNotForDir is
returned as the reason code.

EINVAL Parameter error; for example, a zero-length buffer was passed.
The following reason code can accompany the return code:
JRBuffTooSmall.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fstat service stores the reason code. The
fstat service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. All time fields in the Status_area are in POSIX format.

2. The file mode field in the Status_area is mapped by BPXYMODE, and the file
type field within the mode area is mapped by BPXYFTYP. For information about
these fields, see “BPXYMODE — Map the Mode Constants of the File Services”
on page 986 and “BPXYFTYP — File Type Definitions” on page 969.

3. When the mode of an open file is changed using a service such as chmod(), an
fstat() reflects the change in mode. However, no change in access authorization
is apparent when the file is accessed through a previously opened file
descriptor.

fstat (BPX1FST)

196 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “open (BPX1OPN) — Open a File” on page 434
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the fstat service.

Examples
For an example using this callable service, see “BPX1FST (fstat) Example” on
page 1109.

fstat (BPX1FST)

Chapter 2. Callable services descriptions 197

fstatvfs (BPX1FTV) — Get the File System Status

Function
The fstatvfs callable service obtains status information about a file system. The file
system is specified by a file descriptor that refers to a file from the desired file
system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FTV,(File_descriptor,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the file.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area to which the service
returns status information.

Status_area
Parameter supplied and returned

Type: Structure

Length: Specified by the Status_area_length parameter

The name of an area of length Status_area_length to which the service returns
the status information for the file system. The BPXYSSTF macro maps this

fstatvfs (BPX1FTV)

198 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

area. For information on this macro, see “BPXYSSTF — Map Response
Structure for File System Status” on page 1033.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fstatvfs service returns the length of the
status written to the Status_area if the request is successful, or −1 if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fstatvfs service stores the return code. The
fstatvfs service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The fstatvfs service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN Information is temporarily unavailable. This can occur because

the mount process for the file system is incomplete.
EBADF The File_descriptor parameter does not specify a valid, open file

descriptor.
EINVAL Parameter error; for example, Status_area_length is too small.

The following reason code can accompany the return code:
JRBuffTooSmall.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the fstatvfs service stores the reason code. The
fstatvfs service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. If the passed Status_area_length is not less than or equal to zero, it is not

considered an error for the Status_area_length to be insufficient to hold the
requested information. (In other words, future expansion is allowed for.) As
much information as can fit is written to Status_area, and this amount is
returned.

2. The amount of valid data returned in the Status_area is indicated by the
Return_value. This allows for differences in the release levels of z/OS UNIX and
the physical file systems.

fstatvfs (BPX1FTV)

Chapter 2. Callable services descriptions 199

Related services
v “statvfs (BPX1STV) — Get the File System Status” on page 812
v “w_statvfs (BPX1STF) — Get the File System Status” on page 932

Characteristics and restrictions
There are no restrictions on the use of the fstatvfs service.

Examples
For an example using this callable service, see “BPX1FTV (fstatvfs) Example” on
page 1112.

fstatvfs (BPX1FTV)

200 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

fsync (BPX1FSY) — Write Changes to Permanent Storage

Function
The fsync callable service writes changes on the permanent storage device that
holds the file.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FSY,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the file for which
changes are to be written to permanent storage.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fsync service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fsync service stores the return code. The
fsync service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return

fsync (BPX1FSY)

Chapter 2. Callable services descriptions 201

code values. The fsync service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter does not specify a valid, open file.
EINVAL The file is not a regular file.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the fsync service stores the reason code. The
fsync service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The fsync service causes all modified data in the specified file to be written to

the permanent storage device that holds the file. On return from a successful
call, all updates have been saved on the permanent storage device that holds
the file.

2. If the file represented by the file_descriptor was opened with synchronous
updates specified, there is no need to use the fsync callable service, because
each write causes all updates to be written to permanent storage.

Related services
v “open (BPX1OPN) — Open a File” on page 434
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

Characteristics and restrictions
The file identified by File_descriptor must be open for writing when the fsync service
is called.

Examples
For an example using this callable service, see “BPX1FSY (fsync) Example” on
page 1110.

fsync (BPX1FSY)

202 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

ftruncate (BPX1FTR) — Change the Size of a File

Function
The ftruncate service changes the size of a file. The file is identified by its file
descriptor.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1FTR,(File_descriptor,
File_length,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the file whose size is
to be changed.

File_length
Supplied parameter

Type: Integer

Length: Doubleword

The name of a doubleword that contains the number of bytes the file is to
contain after its size has been changed.

This field is a doubleword to accommodate large files. For normal processing
with a singleword value, propagate the sign bit through the second word, so
that the final doubleword value has a valid sign. The ftruncate service accepts
only positive values.

Return_value
Returned parameter

Type: Integer

ftruncate (BPX1FTR)

Chapter 2. Callable services descriptions 203

Length: Fullword

The name of a fullword in which the ftruncate service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ftruncate service stores the return code.
The ftruncate service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The ftruncate service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter does not specify a valid, open file.
EINVAL The file is not a regular file; it is opened Read Only; or the

File_length specified is negative. The following reason codes can
accompany the return code: JRTrNegOffset, JRTrNotRegFile, and
JRTrOpenedRO.

EROFS The specified file is on a read-only file system. The following
reason code can accompany the return code: JRTrMountedRO.

EFBIG The File_length parameter is greater than the maximum file size
limit for the process. The following reason code can accompany
the return code: JRWriteBeyondLimit.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ftruncate service stores the reason code.
The ftruncate service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The ftruncate service changes the file size to File_length bytes, beginning from

the first byte of the file. If the file was originally larger than File_length bytes, the
data from File_length to the original end of the file is removed. If the file was
originally shorter than File_length, bytes between the old and new lengths are
read as zeros.

2. If File_length is greater than the soft file size limit for the process, the request
fails with EFBIG, and the SIGXFSZ signal is generated for the process.

3. Full blocks are returned to the file system so that they can be used again.

4. The file offset is not affected by an ftruncate request.

Related services
v “open (BPX1OPN) — Open a File” on page 434
v “truncate (BPX1TRU) — Change the Size of a File” on page 867

ftruncate (BPX1FTR)

204 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
The file specified must be a regular file, open for writing.

Examples
For an example using this callable service, see “BPX1FTR (ftruncate) Example” on
page 1111.

ftruncate (BPX1FTR)

Chapter 2. Callable services descriptions 205

getaddrinfo (BPX1GAI) — Get the IP Address and Information for a
Service Name or Location

Function
The getaddrinfo callable service translates the name of a service location (for
example, a host name) or a service name (for example, FTP) into a set of socket
addresses and other associated information. This information can be used to open
a socket and connect to, or to send a datagram to, the specified service. The
TCP/IP Services resolver attempts to resolve the host name through a name server,
if one is present, or through the local data sets.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GAI,(Node_Name,
Node_Name_Length,
Service_Name,
Service_Name_Length,
Hints_Ptr,
Results_Ptr,
Canonical_Length,
Return_value,
Return_code,
Reason_code)

Parameters
Node_Name

Supplied parameter

Type: Character

Character set: EBCDIC

Length: Specified by Node_Name_Length

Node_Name can be specified as one of the following:
1. An EBCDIC character string, up to 255 characters long, set to the node

name (host name) that is being queried.
2. An EBCDIC character string set to the IP address of the node (host) where

the service resides.

You must specify Node_Name or Service_Name, or both.

getaddrinfo (BPX1GAI)

206 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

|

|

|
|
|
|
|
|

|

|||
||
||
||
||
||
||
||
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

||

||

||

|
|
|
|
|

|

Node_Name_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Node_Name parameter.

Service_Name
Supplied parameter

Type: Character

Character set: EBCDIC

Length: Specified by Service_Name_Length

Service_Name can be specified as one of the following:
1. An EBCDIC character string, up to 32 characters long, set to the service

name that is being queried.
2. An EBCDIC character string set to the port number of the required service.

You must specify Node_Name or Service_Name, or both.

Service_Name_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Service_Name
parameter.

Hints_Ptr
Supplied parameter

Type: Pointer

Length: Fullword

The name of a field that contains a pointer to an input Addr_Info structure. The
following information can be specified in the input Addr_Info:

v A set of flags (ai_flags) for interpreting the request. Current® flag settings are:
AI_PASSIVE, AI_CANONNAMEOK, AI_NUMERICHOST, AI_NUMERICSERV,
AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

v The address family (ai_family) that the caller expects to be returned by the
resolver. Valid settings are AF_UNSPEC, AF_INET, and AF_INET6.

v The socket type (ai_socktype) that the caller can accept as a response.

v The protocol (ai_protocol) that the caller can accept as a response.

All other fields in the Addr_Info structure must be set to zero.

See Addr_Info – AddrInfo Data Structure in the EZBREHST assembler macro
for more information about the format of this structure. The EZBREHST macro
is shipped in the installation’s MACLIB SMP/E DDEF location.

If the Hints_Ptr parameter is not specified (zero), the invocation is treated as if
ai_family=AF_UNSPEC, ai_socktype=0, ai_protocol=0, and all the ai_flags are
specified as off.

getaddrinfo (BPX1GAI)

Chapter 2. Callable services descriptions 207

|
|

||

||

|

|
|

||

||

||

|
|
|
|

|

|
|

||

||

|
|

|
|

||

||

|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|

Results_Ptr
Returned parameter

Type: Pointer

Length: Fullword

The name of a field that contains a pointer to an output Addr_Info structure. If
more than one address is returned, this field contains a linked list of output
Addr_Info structures. Each output Addr_Info structure contains the following
information:

v A set of flags (ai_flags) for interpreting the address that is returned in this
Addr_Info structure. For output Addr_Info structures, this value is
unpredictable.

v The address family (ai_family) for the address returned in this Addr_Info
structure.

v The socket type (ai_socktype) for the address returned in this Addr_Info
structure.

v The protocol (ai_protocol) for the address returned in this Addr_Info structure.

v The length (ai_addrlen) of the sock_inet_sockaddr or sock_inet6_sockaddr
structure returned in the ai_addr field.

v The canonical name (ai_canonname) associated with the input Node_Name,
if this was requested using the input AI_CANONNAMEOK flag. If more than
one Addr_Info structure is returned, the canonical name is supplied in only
the first Addr_Info structure.

The length of the canonical name is returned in the Canonical_Length
parameter. If no canonical name exists, this field contains the input value that
was passed in the Node_Name parameter. If AI_CANONNAMEOK in the
input Addr_Info structure was zero, ai_canonname in the output Addr_Info
structure is set to zero.

v The socket address (ai_addr) returned by the resolver in this Addr_Info
structure, in the form of a sock_inet_sockaddr or sock_inet6_sockaddr
address structure. The length of the address returned is supplied by
ai_addrlen.

v The next Addr_Info structure (ai_next) returned by the resolver. If this is the
last Addr_Info structure returned as part of the reply, this value is
X'00000000'.

See Addr_Info – AddrInfo Data Structure in EZBREHST for more information
about the format of this structure.

Canonical_Length
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getaddrinfo service returns the length of
the canonical name that was returned in the first Addr_Info structure pointed to
by the Results_Ptr parameter.

Return_value
Returned parameter

Type: Integer

Length: Fullword

getaddrinfo (BPX1GAI)

208 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

||

||

|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

||

||

|
|
|

|
|

||

||

The name of a fullword in which the getaddrinfo service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getaddrinfo service stores the return code.
The getaddrinfo service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS Communications Server:
IP and SNA Codes. The getaddrinfo service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EAI_NONAME One of the following occurred:

1. The name does not resolve for the specified parameters.
2. A Name or Service operand was not specified. At least one of

the Name or Service operands must be specified.
EAI_AGAIN The name specified by the Node_Name or Service_Name

parameter could not be resolved within the configured time
interval, or the resolver address space has not been started. The
request can be retried later.

EAI_FAIL An unrecoverable error occurred.
EAI_SOCKTYPE The intended socket type was not recognized.
EAI_SERVICE The service that was passed was not recognized for the specified

socket type.
EAI_BADFLAGS The ai_flags parameter had an incorrect setting.
EAI_FAMILY The ai_family parameter had an incorrect setting.
EAI_MEMORY A memory allocation failure occurred during an attempt to acquire

an Addr_Info structure.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getaddrinfo service stores the reason code.
The getaddrinfo service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. Seez/OS
Communications Server: IP and SNA Codes for the reason codes.

Usage notes
1. When you specify Node_Name as an EBCDIC IP address, you must use the

conventional forms for expressing IPv4 and IPv6 addresses as text strings. For
example, the IPv4 address 1.1.1.1 would be specified as F14BF14BF14BF1, and
the IPv6 address 1:1:1:1:1:1:1:1 would be specified as
F17AF17AF17AF17AF17AF17AF17AF1.

2. When you specify the AI_NUMERICHOST flag in the input Addr_Info structure
pointed to by the Hints_Ptr parameter, Node_Name must be an IP address
specified as an EBCDIC character string.

getaddrinfo (BPX1GAI)

Chapter 2. Callable services descriptions 209

|
|

|

|

|
|

||

||

|
|
|
|
|

|||
||
|
|
|
||
|
|
|
||
||
||
|
||
||
||
|
|

|
|

||

||

|
|
|
|

|

|
|
|
|
|

|
|
|

3. When you specify Node_Name as an IP address, the address returned in the
different structures is in different formats:

v The IP address returned in the ai_canonname field of the first Addr_Info
structure pointed to by Results_Ptr is in its EBCDIC format.

v The IP address returned in the sock_inet_sockaddr or sock_inet6_sockaddr
structure of each returned Addr_Info structure pointed to by Results_Ptr is in
numeric form (hexadecimal).

4. When the AI_NUMERICSERV flag is specified in the input Addr_Info structure
pointed to by the Hints_Ptr parameter, Service_Name must be a port number
specified as an EBCDIC character string.

5. The gettaddrinfo service supports a fully thread-safe environment. The
Addr_Info structure or structures are allocated by the resolver and returned to
the invoking application. The storage is subsequently returned to the resolver
task, to be freed by the freeaddrinfo service (“freeaddrinfo (BPX1FAI) — Free
Addr_Info Structures” on page 193). The storage for the Addr_Info structures is
allocated in the caller’s TCB key, and can be accessed in any key. To free the
Addr_Info structures using the freeaddrinfo service, or change the contents of
the structures, the application must be in their TCB key.

6. To get the most useful set of IP addresses available for the requested host
name, applications that are enabled for IPv6 processing should specify
AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG in the ai_flags field; and
AF_UNSPEC for the ai_family field in the input Addr_Info structure pointed to by
the Hints_Ptr parameter. When the stack has IPv6 capability, requests that are
coded with AF_UNSPEC are treated as if the request is for AF_INET6, and all
addresses are returned using sock_inet6_sockaddr structures (with the IPv4
addresses mapped appropriately, based on the AI_V4MAPPED setting). If there
is no IPv6 capability, IPv4 addresses are returned in sock_inet_sockaddr
structures. This frees the application, to some extent, from having to decide
what format works for the stack.

7. Applications are encouraged to attempt all returned addresses, in order, when
using the getaddrinfo results to open a socket and connect, or to send a
datagram.

8. These are the flag descriptions specified with the Addr_Info_Structure
parameter:

getaddrinfo (BPX1GAI)

210 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

Flag Description

AI_PASSIVE (X'00000001') Specifies how to fill in the NAME pointed to
in Results_Ptr. If this flag is specified, the
returned address information will be suitable
for use in binding a socket for accepting
incoming connections for the specified
service (such as the bind syscall). If the
Node_Name parameter is not specified, the
IP address portion of the socket address
structure pointed to in Results_Ptr will be set
to INADDR_ANY for an IPv4 address or
IN6ADDR_ANY for an IPv6 address.

If this flag is not specified, the returned
address information will be suitable for the
connect syscall (for a connection-mode
protocol); or for a connect, sendto, or
sendmsg syscall (for a connectionless
protocol). In this case, if the Node_Name
parameter is not specified, the IP address
portion of the socket address structure
pointed to by Results_Ptr will be set to the
default loopback address for an IPv4
address (127.0.0.0) or the default loopback
address for an IPv6 address (::1).

This flag is ignored if the Node_Name
parameter is specified.

AI_CANONNAMEOK (X'00000002') If this flag is specified and the Node_Name
parameter is also specified, the getaddrinfo
call attempts to determine the canonical
name that corresponds to the Node_Name.

AI_NUMERICHOST (X'00000004') If this flag is specified, the Node_Name
parameter must be an IP address specified
in EBCDIC format, or an error
(EAI_NONAME) is returned.

AI_NUMERICSERV (X'00000008') If this flag is specified, the Service_Name
parameter must be a port number specified
in EBCDIC format, or an error
(EAI_NONAME) is returned.

AI_V4MAPPED (X'00000010') If this flag is specified when
ai_family=AF_INET6 or AF_UNSPEC in the
input Addr_Info structure pointed to by the
Hints_Ptr parameter and when IPv6 is
supported on the system, the caller will
accept IPv4-mapped IPv6 addresses. When
the AI_ALL flag is not also specified and no
IPv6 addresses are found, a query is made
for IPv4 addresses. If any IPv4 addresses
are found, they are returned as IPv4-mapped
IPv6 addresses.

This flag is ignored if ai_family is not
AF_INET6, or if ai_family is AF_UNSPEC but
IPv6 is not supported on the system.

getaddrinfo (BPX1GAI)

Chapter 2. Callable services descriptions 211

|||

||
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|
|
|
|
|
|

|
|
|

Flag Description

AI_ALL (X'00000020') When the ai_family field has a value of
AF_INET6 and AI_ALL is set, the
AI_V4MAPPED flag must also be set to
indicate that the caller will accept all
addresses (IPv6 and IPv4-mapped IPv6
addresses). When the ai_family field has a
value of AF_UNSPEC when the system
supports IPv6 and AI_ALL is set, the caller
accepts IPv6 addresses and either IPv4 (if
AI_V4MAPPED is not set) or IPv4-mapped
IPv6 (if AI_V4MAPPED is set) addresses. A
query is first made for IPv6 addresses and if
it is successful, the IPv6 addresses are
returned. Another query is then made for
IPv4 addresses, and any found are returned
as IPv4 addresses (if AI_V4MAPPED was
not set) or as IPv4-mapped IPv6 addresses
(if AI_V4MAPPED was set).

If the ai_family field does not have the value
of AF_INET6, or the value of AF_UNSPEC
when the system supports IPv6, the flag is
ignored.

AI_ADDRCONFIG (X'00000040') If this flag is specified, a query for IPv6 on
the Node_Name will occur if the resolver
determines whether either of the following is
true:

v If the system is IPv6 enabled and has at
least one IPv6 interface, the resolver will
make a query for IPv6 (AAAA or A6 DNS)
records.

v If the system is IPv4 enabled and has at
least one IPv4 interface, the resolver will
make a query for IPv4 (A DNS) records.
The loopback address is not considered in
this case as a valid interface.

Related services
v “freeaddrinfo (BPX1FAI) — Free Addr_Info Structures” on page 193

v “getnameinfo (BPX1GNI) — Get the Host Name and Service Name from a
Socket Address” on page 251

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1GAI (getaddrinfo) Example”
on page 1113.

getaddrinfo (BPX1GAI)

212 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|
|

|

|

|

|
|

getclientid (BPX1GCL) — Obtain the Calling Program’s Identifier

Function
The getclientid callable service obtains the calling program’s identifier.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GCL,(FunctionCode,
Domain,
Clientid,
Return_value,
Return_code,
Reason_code)

Parameters
FunctionCode

Supplied parameter

Type: Integer

Length: Fullword

Specify a 1 to have the caller’s name and task identifiers returned in the
Clientid parameter. Specify a 2 to have the caller’s process id returned in the
Clientid parameter.

Domain
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the communications domain in which the
sockets are to be given and taken. See “BPXYSOCK — Map SOCKADDR
Structure and Constants” on page 1027 for more information on the values
defined for this field.

Clientid
Returned parameter

Type: Structure

Length: Length of BPXYCID

getclientid (BPX1GCL)

Chapter 2. Callable services descriptions 213

The name of a structure that is to be returned with information that identifies the
calling program.

If the FunctionCode parameter is 1, the returned Clientid is filled in as follows:

CIdDomain Input Domain

CIdName Calling program’s address space name,
left-justified, and padded with blanks

CIdTask Calling program’s subtask identifier

CIdReserved Binary zeroes

If the FunctionCode parameter is not 1, the returned Clientid is filled in as
follows:

CIdDomain Input Domain

CIdName A fullword of binary zeroes followed by the
calling program’s process id.

CIdTask Blanks

CIdReserved Binary zeroes.

See “BPXYCID — Map the Returning Structure for getclientid()” on page 956 for
more information about the format of this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getclientid service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getclientid service stores the return code.
The getclientid service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getclientid service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EFAULT Using the Clientid parameter as specified would result in an

attempt to access storage outside the caller’s address space.

Reason_code
Returned parameter

Type: Integer

getclientid (BPX1GCL)

214 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword where the getclientid service stores the reason code.
The getclientid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The Clientid output of getclientid is intended to be used as the input Clientid of

the givesocket (BPX1GIV) and takesocket (BPX1TAK) services.

2. The output Clientid that is returned with an input FunctionCode of 2 provides
optimal performance and integrity when used as the input Clientid on givesocket
(BPX1GIV) and takesocket (BPX1TAK) services. The input FunctionCode of 1 is
only provided for existing applications that may have been using the output of
getclientid for purposes other than as input on givesocket or takesocket.

Related services
v “givesocket (BPX1GIV) — Give a Socket to Another Program” on page 292
v “takesocket (BPX1TAK) — Acquire a Socket from Another Program” on page 826

Characteristics and restrictions
There are no restrictions on the use of the getclientid service.

getclientid (BPX1GCL)

Chapter 2. Callable services descriptions 215

getcwd (BPX1GCW) — Get the Pathname of the Working Directory

Function
The getcwd callable service gets the pathname of the working directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GCW,(Buffer_length,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
Buffer_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the buffer to which the
getcwd service returns the pathname of the directory. Buffer_length must be
large enough to accommodate the actual length of the pathname plus one (for
the terminating null).

Buffer
Parameter supplied and returned

Type: Character string

Character set: No restrictions

Length: Specified by the Buffer_length parameter

The name of the buffer that is to hold the pathname of the working directory.

Return_value
Returned parameter

Type: Integer

Length: Fullword

getcwd (BPX1GCW)

216 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the getcwd service returns the length of the
pathname that is in the buffer, if the request is successful; or −1, if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getcwd service stores the return code. The
getcwd service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The getcwd service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process did not have permission to read or search a

component of the working directory’s pathname.
EINVAL Buffer_length was specified as zero. The following reason code

can accompany the return code: JRBufLenInvalid.
EIO An input/output error occurred.
ENOENT A component of a pathname does not exist. This will be returned

if a component of the working directory pathname was deleted.
ERANGE The specified Buffer_length is less than the length of the

pathname of the working directory.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getcwd service stores the reason code.
The getcwd service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “chdir (BPX1CHD) — Change the Working Directory” on page 79

Characteristics and restrictions
There are no restrictions on the use of the getcwd service.

Examples
For an example using this callable service, see “BPX1GCW (getcwd) Example” on
page 1115.

getcwd (BPX1GCW)

Chapter 2. Callable services descriptions 217

getegid (BPX1GEG) — Get the Effective Group ID

Function
The getegid callable service gets the effective group ID (GID) of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GEG,(Effective_group_ID)

Parameters
Effective_group_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which the getegid service returns the effective group
ID of the calling process.

Usage notes
If this service fails, the process ends abnormally.

Related services
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “getgid (BPX1GID) — Get the Real Group ID” on page 220
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “setegid (BPX1SEG) — Set the Effective Group ID” on page 673
v “seteuid (BPX1SEU) — Set the Effective User ID” on page 676
v “setgid (BPX1SGI) — Set the Group ID” on page 678
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
There are no restrictions on the use of the getegid service.

Examples
For an example using this callable service, see “BPX1GEG (getegid) Example” on
page 1116.

getegid (BPX1GEG)

218 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

geteuid (BPX1GEU) — Get the Effective User ID

Function
The geteuid callable service gets the effective user ID (UID) of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GEU,(Effective_user_ID)

Parameters
Effective_user_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the geteuid service places the effective user ID
of the calling process.

Usage notes
If this service fails, the process ends abnormally.

Related services
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “seteuid (BPX1SEU) — Set the Effective User ID” on page 676
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
There are no restrictions on the use of the geteuid service.

Examples
For an example using this callable service, see “BPX1GEU (geteuid) Example” on
page 1120.

geteuid (BPX1GEU)

Chapter 2. Callable services descriptions 219

getgid (BPX1GID) — Get the Real Group ID

Function
The getgid callable service gets the real group ID (GID) of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GID,(Real_group_ID)

Parameters
Real_group_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgid service returns the real group ID.

Usage notes
If this service fails, the process ends abnormally.

Related services
v “getegid (BPX1GEG) — Get the Effective Group ID” on page 218
v “setegid (BPX1SEG) — Set the Effective Group ID” on page 673
v “setgid (BPX1SGI) — Set the Group ID” on page 678

Characteristics and restrictions
There are no restrictions on the use of the getgid service.

Examples
For an example using this callable service, see “BPX1GID (getgid) Example” on
page 1127.

getgid (BPX1GID)

220 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getgrent (BPX1GGE) — Sequentially Access the Group Database

Function
The getgrent callable service gets information about a group and its members. Each
time you use the getgrent service, you get information about the next group entry in
the group database.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GGE,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the getgrent service returns an address, or 0. If
no more group entries exist in the group database, or if an error is encountered,
Return_value is set to 0. If an entry is found, Return_value is set to the address
of a data area mapped by the BPXYGIDS macro. The first area contains the
fullword length of the group name, followed by the group name, padded with
blanks. See “BPXYGIDS — Map Data Returned for getgrnam and getgrpid” on
page 972.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgrent service stores the return code or
0. The getgrent service returns Return_code only if Return_value is 0.
Return_code is 0 when no more group entries exist in the database. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getgrent service can return one of the following
values in the Return_code parameter:

getgrent (BPX1GGE)

Chapter 2. Callable services descriptions 221

Return_code Explanation
EMVSSAF2ERR The system authorization facility (SAF) or RACF Get GMAP

service had an error.
EMVSSAFEXTRERR The SAF or RACF RACROUTE EXTRACT service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the getgrent service stores the reason code or 0.
The getgrent service returns Reason_code only if Return_value is 0.
Reason_code is 0 when no more group entries exist in the database.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

The reason code in the case of EMVSSAF2ERR or EMVSSAFEXTRERR
contains the RACF return and reason codes, respectively, in the two low-order
bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing
8 16 Unable to establish recovery
8 20 Current group is incompletely defined.

Usage notes
1. The getgrent service is intended to be used to search the group database

sequentially. The first call to this service from a given task returns a pointer to
the first group entry in the group database. Subsequent calls from the same
task return a pointer to the next group entry found, until no more entries exist.
At this point a null pointer is returned.

2. The setgrent service can be used to reset this sequential search. The next
getgrent service used from the same task after a call to setgrent returns a
pointer to the first group entry. The next getgrent service used after an end of
file indication (a null pointer) has been returned also returns a pointer to the first
group entry. The use of setgrent after end of file is therefore optional.

3. The return value points to data that may change or go away after the next
getgrgid, getgrnam, or getgrent service request from that task. Each task
manages its own storage separately. Move data to the program’s storage if it is
needed for future reference.

4. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX.

Related services
v “getgrgid (BPX1GGI) — Access the Group Database by ID” on page 224
v “getgrnam (BPX1GGN) — Access the Group Database by Name” on page 227
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248
v “setgrent (BPX1SGE) — Reset the Group Database” on page 681

getgrent (BPX1GGE)

222 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
There are no restrictions on the use of the getgrent service.

Examples
For an example using this callable service, see “BPX1GGE (getgrent) Example” on
page 1121.

getgrent (BPX1GGE)

Chapter 2. Callable services descriptions 223

getgrgid (BPX1GGI) — Access the Group Database by ID

Function
The getgrgid callable service gets information about a group and its members. You
specify the group by the group ID (GID).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GGI,(Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Group_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the ID of the group you want information
about.

Return_value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the getgrgid service returns an address, or 0. If
no entry for the specified group ID is found, Return_value is set to 0. If an entry
is found, Return_value is set to the address of the BPXYGIDS macro. The first
area contains the fullword length of the group name, followed by the group
name padded with blanks. See “BPXYGIDS — Map Data Returned for
getgrnam and getgrpid” on page 972.

Return_code
Returned parameter

Type: Integer

Length: Fullword

getgrgid (BPX1GGI)

224 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the getgrgid service stores the return code.
The getgrgid service returns Return_code only if Return_value is 0. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The getgrgid service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EMVSSAFEXTRERR The system authorization facility (SAF) RACROUTE EXTRACT

service had an error.
EMVSSAF2ERR The (SAF) Get GMAP service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgrgid service stores the reason code.
The getgrgid service returns Reason_code only if Return_value is 0.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

The reason code in the case of EMVSSAF2ERR or EMVSSAFEXTRERR
contains the RACF return and reason codes, respectively, in the two low-order
bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 If the search is by GID, the GID is not defined. If
the search is by group name, the current group is
not defined.

8 8 The group name is not defined.
8 12 There was an internal error during RACF

processing.
8 16 Recovery could not be established.
8 20 Current group is incompletely defined.

Usage notes
1. The return value points to data that may change or go away after the next

getgrgid, getgrnam, or getgrent service request from that task. Each task
manages its own storage separately. Move data to the program’s storage if it is
needed for future reference.

2. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX.

Related services
v “getgrent (BPX1GGE) — Sequentially Access the Group Database” on page 221
v “getgrnam (BPX1GGN) — Access the Group Database by Name” on page 227
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248

Characteristics and restrictions
There are no restrictions on the use of the getgrgid service.

getgrgid (BPX1GGI)

Chapter 2. Callable services descriptions 225

Examples
For an example using this callable service, see “BPX1GGI (getgrgid) Example” on
page 1122.

getgrgid (BPX1GGI)

226 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getgrnam (BPX1GGN) — Access the Group Database by Name

Function
The getgrnam callable service gets information about a group and its members. You
specify the group by name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GGN,(Group_name_length,
Group_name,
Return_value,
Return_code,
Reason_code)

Parameters
Group_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Group_name.

Group_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Group_name_length parameter

The name of the field that contains the name of the group you want information
about.

Return_value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword where the getgrnam service returns an address, or 0. If
no entry for the specified group name is found, Return_value is set to 0. If an

getgrnam (BPX1GGN)

Chapter 2. Callable services descriptions 227

entry is found, Return_value is set to the address of the BPXYGIDS macro
structure. The first area contains the fullword length of the group name followed
by the group name padded with blanks. See “BPXYGIDS — Map Data
Returned for getgrnam and getgrpid” on page 972.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgrnam service stores the return code.
The getgrnam service returns Return_code only if Return_value is 0. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The getgrnam service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EINVAL Group name length is not valid.
EMVSSAFEXTRERR The system authorization facility (SAF) RACROUTE EXTRACT

service had an error.
EMVSSAF2ERR The SAF Get GMAP service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the getgrnam service stores the reason code.
The getgrnam service returns Reason_code only if Return_value is 0.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code in the
case of EMVSSAF2ERR or EMVSSAFEXTRERR contains the RACF return and
reason codes, respectively, in the two low-order bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 If the search is by GID: the GID is not defined. If
the search is by group name: The current group is
not defined.

8 8 The group name is not defined.
8 12 There was an internal error during RACF

processing.
8 16 Recovery could not be established.
8 20 The current group is incompletely defined.

Usage notes
1. The return values point to data that can change or go away after the next

getgrgid, getgrnam, or getgrent call from that task. Each task manages its own
storage separately. Move data to your own dynamic storage if you need it for
future reference.

getgrnam (BPX1GGN)

228 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

2. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX.

Related services
v “getgrent (BPX1GGE) — Sequentially Access the Group Database” on page 221
v “getgrgid (BPX1GGI) — Access the Group Database by ID” on page 224
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248

Characteristics and restrictions
There are no restrictions on the use of the getgrnam service.

Examples
For an example using this callable service, see “BPX1GGN (getgrnam) Example” on
page 1123.

getgrnam (BPX1GGN)

Chapter 2. Callable services descriptions 229

getgroups (BPX1GGR) — Get a List of Supplementary Group IDs

Function
The getgroups callable service gets the number of supplementary group IDs (GIDs)
for the calling process. It optionally gets a list of those supplementary group IDs.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GGR,(Group_ID_list_size,
Group_ID_list_pointer_address,
Number_of_group_IDs,
Return_code,
Reason_code)

Parameters
Group_ID_list_size

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies the number of fullword entries in the
group ID list. This number must be at least as great as the total number of
group IDs for the process, or must be 0.

If you specify 0, the program receives only a count of the actual number of
group IDs for the calling process, and not a list of those IDs.

Group_ID_list_pointer_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains a pointer to a storage area in which the
getgroups service is to place the list of supplementary group IDs. If
Group_ID_list_size is specified as 0, Group_ID_list_pointer_address is ignored,
and does not have to be set to a valid address. When the request is successful,
the storage area is an array of fullwords, each containing a supplementary
group ID for the calling process.

getgroups (BPX1GGR)

230 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Number_of_group_IDs
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgroups service returns a number that
represents a count of supplementary group IDs. A −1 is returned if an error is
detected.

v If Group_ID_list_size is specified as 0, the number is the total number of
supplementary group IDs for the process.

v If Group_ID_list_size is specified as greater than 0 and the request was
successful, the number is the actual number of group IDs that were put into
the area specified by Group_ID_list_pointer_address.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgroups service stores the return code.
The getgroups service returns Return_code only if Number_of_group_IDs is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The getgroups service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EINVAL The Group_ID_list_size parameter was greater than 0 but less

than the number of supplementary group IDs.
EMVSSAF2ERR System authorization facility (SAF) had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgroups service stores the reason code.
The getgroups service returns Reason_code only if Number_of_group_IDs is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

The reason code in the case of EMVSSAF2ERR contains the Resource Access
Control Facility (RACF) return and reason codes, respectively, in the two
low-order bytes.

For a more detailed description of the RACF GETGRPS service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 Group count is less than the number of
supplemental groups

8 8 Invalid grouplist address
8 12 Internal error during RACF processing

getgroups (BPX1GGR)

Chapter 2. Callable services descriptions 231

Related services
v “setgid (BPX1SGI) — Set the Group ID” on page 678

Characteristics and restrictions
There are no restrictions on the use of the getgroups service.

Examples
For an example using this callable service, see “BPX1GGR (getgroups) Example”
on page 1124.

getgroups (BPX1GGR)

232 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group
IDs by User Name

Function
The getgroupsbyname service gets the number of supplementary group IDs (GIDs)
and, optionally, gets a list of those supplementary group IDs for a specified user
name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GUG,(User_name_length,
User_name,
Group_ID_list_size,
Group_ID_list_pointer_address,
Number_of_group_IDs,
Return_code,
Reason_code)

Parameters
User_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of User_name.

User_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the User_name_length parameter

The name of a field of length User_name_length that contains the name of the
user that you want information about. The name is specified in the Resource
Access Control Facility (RACF) command that defined the user to the system.

Group_ID_list_size
Supplied parameter

getgroupsbyname (BPX1GUG)

Chapter 2. Callable services descriptions 233

Type: Integer

Length: Fullword

The name of a fullword that specifies the number of fullword entries in the
group ID list. This number must be at least as great as the total number of
group IDs for the process, or must be 0.

If you specify 0, the program receives only a count of the actual number of
group IDs for the calling process, and not a list of those IDs.

Group_ID_list_pointer_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains a pointer to a storage area where the
getgroupsbyname service is to place the list of supplementary group IDs. If
Group_ID_list_size is specified as 0, Group_ID_list_pointer_address is ignored,
and does not have to be set to a valid address. When the request is successful,
the storage is an array of fullwords, each containing a supplementary group ID
for the calling process.

Number_of_group_IDs
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgroupsbyname service returns the
number of supplementary group IDs. A −1 is returned if an error is detected.

v If Group_ID_list_size is specified as 0, the number is the total number of
supplementary group IDs for the process.

v If Group_ID_list_size is specified as greater than 0 and the request is
successful, the number is the actual number of group IDs that are put into
the area specified by Group_ID_list_pointer_address.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getgroupsbyname service stores the return
code. The getgroupsbyname service returns Return_code only if
Number_of_group_IDs is −1. For a complete list of possible return code values,
see z/OS UNIX System Services Messages and Codes. The getgroupsbyname
service can return one of the following values in the Return_code parameter:

Return_code Explanation
EINVAL The Group_ID_list_size parameter was greater than 0 but less

than the number of supplementary group IDs; or the User_name
or User_name_length fields were incorrect.

EMVSSAF2ERR A system authorization facility (SAF) service had an error.

Reason_code
Returned parameter

getgroupsbyname (BPX1GUG)

234 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword in which the getgroupsbyname service stores the
reason code. The getgroupsbyname service returns Reason_code only if
Number_of group_IDs is −1. Reason_code further qualifies the Return_code
value. For the reason codes, see z/OS UNIX System Services Messages and
Codes.

In the case of EMVSSAF2ERR, the reason code contains the Resource Access
Control Facility (RACF) return and reason codes, respectively, in the two
low-order bytes.

For a more detailed description of the RACF GETGNAME service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 Group count is less than the number of
supplemental groups

8 8 Incorrect group list address
8 12 Internal error during RACF processing
8 16 Unable to establish recovery
8 20 Internal error verifying user ID
8 24 User ID is not defined to RACF

Related services
v “setgid (BPX1SGI) — Set the Group ID” on page 678

Characteristics and restrictions
There are no restrictions on the use of the getgroupsbyname service.

Examples
For an example using this callable service, see “BPX1GUG (getgroupsbyname)
Example” on page 1146.

getgroupsbyname (BPX1GUG)

Chapter 2. Callable services descriptions 235

gethostbyaddr (BPX1GHA) — Get the IP Address and Alias of a Host
Name for the Specified IP Address

Function
The gethostbyaddr callable service returns the alias names and the internet
addresses of a host whose address is specified as input. The TCP/IP Services
resolver tries to resolve the host address through a name server, if one is present.
If a name server is not present, the resolver searches for the HOSTS.ADDRINFO
data set (or /etc hosts data set) until a matching host address is found, or until an
EOF marker is reached.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GHA,(Address,
Address_length,
Hostent_ptr,
Domain,
Return_value,
Return_code,
Reason_code)

Parameters
Address

Supplied parameter

Type: Hexadecimal string

Length: Length specified by Address_length

The name of a hexadecimal string that contains the IP address of the host
being queried. This is a fullword field for IPv4 addresses. (IPv6 addresses are
not supported.)

Address_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the address field that is being
passed in the Address parameter. This is 4 for IPv4 addresses. No other
addresses are currently supported.

gethostbyaddr (BPX1GHA)

236 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Hostent_ptr
Returned parameter

Type: Pointer

Length: Fullword

The name of a field that contains a pointer to the Hostent structure. The
Hostent structure contains the following fields:

h_name
The address of the host name returned by the service. The host name
is a variable-length field that is ended by X'00'.

h_aliases
The address of a list of addresses that point to the alias names
returned by the service. The list is ended by the pointer X'00000000'.
Each alias name is a variable-length field that is ended by X'00'.

h_addrtype
The value 2, which signifies AF_INET.

h_length
The length of the host internet addresses pointed to by h_addr_list.

h_addr_list
The address of a list of addresses that point to the host internet
addresses returned by this service. This list is ended by the pointer
X'00000000'.

Domain
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the numeric value of the domain for this
query. Only the value of 2 (AF_INET) is currently supported.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyaddr service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyaddr service stores the return
code. The gethostbyaddr service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The gethostbyaddr service can return one of

gethostbyaddr (BPX1GHA)

Chapter 2. Callable services descriptions 237

the following values in the Return_code parameter:

Return_code Explanation
HOST_NOT_FOUND The host name specified by the Address parameter was not

found.
TRY_AGAIN The host address specified by the Address parameter could not

be resolved within the configured time interval. The request can
be retried later.

NO_RECOVERY An unrecoverable error occurred.
NO_DATA The requested Address parameter is valid, but it does not have a

record at the name server.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyaddr service stores the reason
code. The gethostbyaddr service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value.

Reason codes lower than decimal 4096 are z/OS UNIX System Services return
codes, and are documented in z/OS UNIX System Services Messages and
Codes. Reason codes greater than decimal 4096 are returned by the resolver,
and are described in z/OS Communications Server: IP and SNA Codes.

An assembler macro (EZBREHST) that contains the hostent structure,
gethostbyxxxx return codes, and reason codes is shipped in the installation’s
MACLIB SMP/E DDEF location.

Related services
v “gethostbyname (BPX1GHN) — Get the IP Address and Alias of a Host Name for

the Specified Host Domain Name” on page 239

Characteristics and restrictions
The gethostbyaddr service does not support a fully reentrant environment. The
Hostent structure that is returned is allocated at a task level. This area will be
reused on subsequent gethostbyaddr calls. Therefore, within a task only one call
can be occurring at a time. For example, if the mainline task has issued a
gethostbyaddr call that has not completed, a signal handler that interrupts that
thread’s processing should not invoke the gethostbyaddr service.

Examples
For an example using this callable service, see “BPX1GHA (gethostbyaddr)
Example” on page 1125.

gethostbyaddr (BPX1GHA)

238 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

gethostbyname (BPX1GHN) — Get the IP Address and Alias of a Host
Name for the Specified Host Domain Name

Function
The gethostbyname callable service returns the alias names and the internet
addresses of a host whose domain name is specified as input. The TCP/IP Services
resolver tries to resolve the name through a name server, if one is present. If a
name server is not present, the resolver searches for the HOSTS.SITEINFO data
set (or /etc hosts data set) until a matching host name is found, or until an EOF
marker is reached.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GHN,(Name,
Name_length,
Hostent_ptr,
Return_value,
Return_code,
Reason_code)

Parameters
Name

Supplied parameter

Type: Character

Length: Length specified by Name_length

A string, up to 255 characters long, set to the host name that is being queried.

Name_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Name parameter.

Hostent_ptr
Returned parameter

Type: Pointer

gethostbyname (BPX1GHN)

Chapter 2. Callable services descriptions 239

Length: Fullword

The name of a field that contains a pointer to the Hostent structure. The
Hostent structure contains the following fields:

h_name
The address of the host name returned by the service. The host name
is a variable-length field that is ended by X'00'.

h_aliases
The address of a list of addresses that point to the alias names
returned by the service. The list is ended by the pointer X'00000000'.
Each alias name is a variable-length field that is ended by X'00'.

h_addrtype
The value 2, which signifies AF_INET.

h_length
The length of the host internet addresses pointed to by h_addr_list.

h_addr_list
The address of a list of addresses that point to the host internet
addresses returned by this service. This list is ended by the pointer
X'00000000'.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyname service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyname service stores the return
code. The gethostbyname service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The gethostbyname service can return one of
the following values in the Return_code parameter:

Return_code Explanation
HOST_NOT_FOUND The host name specified by the Name parameter was not found.
TRY_AGAIN The host name specified by the Name parameter could not be

resolved within the configured time interval. The request can be
retried later.

NO_RECOVERY An unrecoverable error occurred.
NO_DATA The requested Name parameter is valid, but it does not have a

record at the name server.

Reason_code
Returned parameter

gethostbyname (BPX1GHN)

240 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword in which the gethostbyname service stores the reason
code. The gethostbyname service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value.

Reason codes lower than decimal 4096 are z/OS UNIX System Services return
codes, and are documented in z/OS UNIX System Services Messages and
Codes. Reason codes greater than decimal 4096 are returned by the resolver,
and are described in z/OS Communications Server: IP and SNA Codes.

An assembler macro (EZBREHST) that contains the hostent structure,
gethostbyxxxx return codes, and reason codes is shipped in the installation’s
MACLIB SMP/E DDEF location.

Related services
v “gethostbyaddr (BPX1GHA) — Get the IP Address and Alias of a Host Name for

the Specified IP Address” on page 236

Characteristics and restrictions
The gethostbyname service does not support a fully reentrant environment. The
Hostent structure that is returned is allocated at a task level, and is reused on
subsequent gethostbyname calls. Therefore, at any time only one call can be
occurring within a task. For example, if the mainline task has issued a
gethostbyname call that has not completed, a signal handler that interrupts that
thread’s processing should not invoke the gethostbyname service.

The Hostent structure is freed when the task is terminated.

Examples
For an example using this callable service, see “BPX1GHN (gethostbyname)
Example” on page 1126.

gethostbyname (BPX1GHN)

Chapter 2. Callable services descriptions 241

gethostid or gethostname (BPX1HST) — Get ID or Name Information
about a Socket Host

Function
The gethostid or gethostname callable service obtains the ID or the name of the
socket host.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1HST,(Domain,
Name_length,
Name,
Return_value,
Return_code,
Reason_code)

Parameters
Domain

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number that represents a domain. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
valid Domain values.

Name_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Name. If this field is zero, the
information that is returned is the host ID. If this field is nonzero, the value that
is supplied is the maximum length of the host name that is to be returned.

On return, this field contains the length of the name that is returned, including
the trailing null. The size of this field should be less than 4096 bytes (4KB) in
length.

gethostid or gethostname (BPX1HST)

242 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Name
Returned parameter

Type: Character

Length: Length specified by Name_length.

The name of a field that contains the host name on successful return, if the
request was gethostname. This name is null-terminated if there is sufficient
room in the buffer.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostid or gethostname service returns
one of the following:

v The host id, if a zero—length Name_length is supplied.

v 0, if a nonzero Name_length is supplied and the name is successfully
returned.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostid or gethostname service stores
the return code. The gethostid or gethostname service returns Return_code
only if Return_value is −1. For a complete list of possible return code values,
see z/OS UNIX System Services Messages and Codes. The gethostid or
gethostname service can return one of the following values in the Return_code
parameter:

Return_code Explanation
ENOENT The domain that was specified was found to be not active.

Consult Reason_code to determine the exact reason the error
occurred. The following reason code can accompany the return
code: JRDomainNotSupported.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the gethostid or gethostname service stores
the reason code. The gethostid or gethostname service returns Reason_code
only if Return_value is −1. Reason_code further qualifies the Return_code
value. For the reason codes, see z/OS UNIX System Services Messages and
Codes.

Characteristics and restrictions
These functions work only for AF_INET sockets, and not for AF_UNIX.

gethostid or gethostname (BPX1HST)

Chapter 2. Callable services descriptions 243

Examples
For an example using this callable service, see “BPX1HST (gethostid or
gethostname) Example” on page 1149.

gethostid or gethostname (BPX1HST)

244 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getitimer (BPX1GTR) — Get the Value of the Interval Timer

Function
The getitimer callable service stores the current value of the timer specified into a
structure.

Requirements

Authorization: Problem Program or Supervisor State, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GTR,(Interval_Type,
Interval_Value_Adr
Return_value,
Return_code,
Reason_code)

Parameters
Interval_Type

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a numeric value that identifies the interval
timer and format of the structure that is pointed to by Interval_Value_Adr. This
parameter can have the following values:

v ITIMER_REAL = Real time (the default if VIRTUAL and PROF are not
specified)

v ITIMER_VIRTUAL = Virtual time (CPU time minus system time)

v ITIMER_PROF = CPU time

v ITIMER_MICRO = Initial and reload times are in microseconds (the default if
NANO is not specified)

v ITIMER_NANO = Initial and reload times are in nanoseconds

The ITIMER_ constants are defined in the BPXYITIM macro.

Interval_Value_Adr
Supplied parameter

Type: address

Length: fullword

getitimer (BPX1GTR)

Chapter 2. Callable services descriptions 245

An address that points to a structure that is defined by the BPXYITIM macro.
This structure contains the time remaining and reload values, in seconds and
either microseconds or nanoseconds.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getitimer service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getitimer service stores the return code.
The getitimer service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getitimer service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL The value specified for Interval_Type is not valid.

(JRIntervalTypeInvalid).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getitimer service stores the reason code.
The getitimer service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value.

Usage notes
1. The number of seconds that is returned is unsigned and may exceed the

setitimer allowable limit. This can happen if alarm is set for up to X’FFFFFFFF’
seconds.

2. The first two words in the structure indicate the seconds and micro seconds or
nano seconds remaining.

3. The three interval timers are:

v ITIMER_REAL, which decrements in real time. A SIGALRM signal is
delivered when this timer expires.

v ITIMER_VIRTUAL, which decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when it
expires.

v ITIMER_PROF, which decrements both in process virtual time, and when the
system is running on behalf of the process. A SIGPROF signal is delivered
when it expires.

v Nanosecond values are subject to rounding.

getitimer (BPX1GTR)

246 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v Reload values may be changed to a system-imposed minimum.

MVS-related information
v “setitimer (BPX1STR) — Set the Value of the Interval Timer” on page 685
v “alarm (BPX1ALR) — Set an Alarm” on page 25

Characteristics and restrictions
There are no restrictions on the use of the getitimer service.

Examples
For an example using this callable service, see “BPX1GTR (getitimer) Example” on
page 1145.

getitimer (BPX1GTR)

Chapter 2. Callable services descriptions 247

getlogin (BPX1GLG) — Get the User Login Name

Function
The getlogin callable services gets the user login name that is associated with the
current process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GLG,(Return_value)

Parameters
Return_value

Returned parameter

Type: Address

Length: Fullword

The name of a fullword to which the getlogin service returns a pointer to a login
name field, or 0. If a login name is not found, Return_value is set to 0. If a login
name is found, Return_value is set to the address of a field that contains the
length of the login name and the login name. The login name length is a
fullword. Batch processing has a user name that is associated with a process;
this user name is used as the login name. For example:

MCBRIDE0007Return_value

Usage notes
If this service fails, the process ends abnormally.

Related services
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “getpwnam (BPX1GPN) — Access the User Database by User Name” on

page 266
v “getpwuid (BPX1GPU) — Access the User Database by User ID” on page 269
v “getuid (BPX1GUI) — Get the Real User ID” on page 288

Characteristics and restrictions
There are no restrictions on the use of the getlogin service.

getlogin (BPX1GLG)

248 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1GLG (getlogin) Example” on
page 1129.

getlogin (BPX1GLG)

Chapter 2. Callable services descriptions 249

getpeername or getsockname (BPX1GNM) — Get the Name of a Socket
or of the Peer Connected to a Socket

See “getsockname or getpeername (BPX1GNM) — Get the Name of a Socket or of
the Peer Connected to a Socket” on page 278.

getpeername or getsockname (BPX1GNM)

250 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getnameinfo (BPX1GNI) — Get the Host Name and Service Name from
a Socket Address

Function
The getnameinfo callable service resolves a socket address into a host name and a
service name. The TCP/IP Services resolver attempts to resolve the socket address
through a name server, if one is present, or through the local data sets.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GNI,(SockAddr,
SockAddr_Length,
Service_Buffer,
Service_Buffer_Length,
Host_Buffer,
Host_Buffer_Length,
Flags,
Return_value,
Return_code,
Reason_code)

Parameters
SockAddr

Supplied parameter

Type: Structure

Length: Specified by SockAddr_Length

The name of a field that contains the socket address to be resolved. The socket
address consists of an address family, a port number, and an IP address.

The IP address is resolved to a host name and returned in the Host_Buffer
parameter. The port number is resolved to a service name and returned in the
Service_Buffer parameter.

The format of SockAddr is determined by the domain in which the socket
descriptor was created. See “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 for additional information on the format of SockAddr.

SockAddr_Length
Supplied parameter

getnameinfo (BPX1GNI)

Chapter 2. Callable services descriptions 251

|
|

|

|

|
|
|

|

|||
||
||
||
||
||
||
||
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

||

||

|
|

|
|
|

|
|
|

|
|

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the SockAddr parameter.

Service_Buffer
Supplied and returned parameter

Type: Character

Character set: EBCDIC

Length: Specified by Service_Buffer_Length

The name of a field into which the service name, resolved from the port number
that was specified as part of the SockAddr parameter, is returned as an
EBCDIC string. The maximum length of the returned service name is 32 bytes.
If the storage specified is inadequate to contain the resolved service name, the
service name is returned only up to the specified storage, and trunction may
occur.

Service_Buffer_Length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Service_Buffer
parameter. Upon return from the getnameinfo service, Service_Buffer_Length
contains the length of the name returned in the Service_Buffer parameter.

If Service_Buffer_Length is zero, nothing is returned in Service_Buffer.

Host_Buffer
Supplied and returned parameter

Type: Character

Character set: EBCDIC

Length: Specified by Node_Buffer_Length

The name of a field into which the host name, resolved from the IP address that
was specified as part of the SockAddr parameter, is returned as an EBCDIC
string. The maximum length of the returned host name is 255 bytes. If the
storage specified is inadequate to contain the resolved host name, the host
name is returned only up to the specified storage, and trunction may occur.

If the NI_NUMERICHOST flag is specified with the Flags parameter, or the host
name cannot be located, the IP address, specified as part of the SockAddr
parameter, is returned in Host_Buffer in numeric form (EBCDIC decimal).

Host_Buffer_Length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Host_Buffer parameter.

getnameinfo (BPX1GNI)

252 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||

||

|

|
|

||

||

||

|
|
|
|
|
|

|
|

||

||

|
|
|

|

|
|

||

||

||

|
|
|
|
|

|
|
|

|
|

||

||

|

Upon return from the getnameinfo service, Host_Buffer_Length contains the
length of the name returned in the Host_Buffer parameter.

If Host_Buffer_Length is zero, nothing is returned in Host_Buffer.

Flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains flags for controlling the resolution of the
socket address.

Flag Value Description

NI_NOFQDN X'00000001' Only the host name portion
of the FQDN is to be
returned for local hosts.

NI_NUMERICHOST X'00000002' The numeric form of the
host’s address is to be
returned, instead of its
name.

NI_NAMEREQD X'00000004' If the host name cannot be
located, an error or NULL
character is to be returned.

NI_NUMERICSERV X'00000008' The numeric form of the
service name is to be
returned (its port number),
instead of its name.

NI_DGRAM X'00000010' The service is a datagram
service (SOCK_DGRAM).
The default behavior is to
assume that the service is a
stream service.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getnameinfo service returns one of the
following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getnameinfo service stores the return code.
The getnameinfo service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS Communications Server:
IP and SNA Codes. The getnameinfo service can return one of the following

getnameinfo (BPX1GNI)

Chapter 2. Callable services descriptions 253

|
|

|

|
|

||

||

|
|

||||

|||
|
|

|||
|
|
|

|||
|
|

|||
|
|
|

|||
|
|
|
|
|

|
|

||

||

|
|

|

|

|
|

||

||

|
|
|
|

values in the Return_code parameter:

Return_code Explanation
EAI_NONAME The host name does not resolve for the supplied parameters.

One of the following conditions occurred:
1. NI_NAMEREQD is set, and the host name cannot be located.
2. Both host name and service name were null.

EAI_BADFLAGS The flags parameter had an incorrect value.
EAI_FAMILY The address family was not recognized, or the address length

was not valid for the specified family.
EAI_MEMORY A memory allocation failure occurred.
EAI_AGAIN The specified host address could not be resolved within the

configured time interval, or the resolver address space has not
been started. The request can be retried later.

EAI_FAIL An unrecoverable error occurred.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getnameinfo service stores the reason
code. The getnameinfo service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS Communications Server: IP and SNA Codes.

Usage notes
1. The getnameinfo service supports a fully thread-safe environment.

2. You must specify either Service_Buffer and Service_Buffer_Length, or
Host_Buffer and Host_Buffer_Length.

Related services
v “freeaddrinfo (BPX1FAI) — Free Addr_Info Structures” on page 193

v “getaddrinfo (BPX1GAI) — Get the IP Address and Information for a Service
Name or Location” on page 206

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1GNI (getnameinfo) Example”
on page 1131.

getnameinfo (BPX1GNI)

254 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|

|||
||
|
|
|
||
||
|
||
||
|
|
||
|

|
|

||

||

|
|
|
|

|

|

|
|

|

|

|
|

|

|

|

|
|

getpgid (BPX1GEP) — Get the Process Group ID

Function
The getpgid callable service gets the process group ID of the process whose
process ID is equal to the input process ID. If the input process ID is 0, getpgid
returns the process group ID of the calling process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GEP,(PID,
Return_value,
Return_code,
Reason_code)

Parameters
PID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the process ID for which to get the
process group ID. If PID is 0, the process group ID of the calling process is
returned.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpgid service returns a process group ID
or, if it is not successful, a −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

getpgid (BPX1GEP)

Chapter 2. Callable services descriptions 255

The name of a fullword in which the getpgid service stores the return code. The
getpgid service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The getpgid service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EPERM The process whose process ID is equal to PID is not in the same

session as the calling process.
ESRCH There is no process with a process ID equal to PID.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpgid service stores the reason code.
The getpgid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “getsid (BPX1GES) — Get the Process Group ID of the Session Leader” on

page 276
v “getpgrp (BPX1GPG) — Get the Process Group ID” on page 257
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692

Characteristics and restrictions
There are no restrictions on the use of the getpgid service.

Examples
For an example using this callable service, see “BPX1GEP (getpgid) Example” on
page 1117.

getpgid (BPX1GEP)

256 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getpgrp (BPX1GPG) — Get the Process Group ID

Function
The getpgrp callable service gets the process group ID (PGID) of the calling
process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPG,(Group_ID)

Parameters
Group_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpgrp service places the caller’s process
group ID.

Usage notes
If getpgrp fails, the process ends abnormally.

Related services
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709

Characteristics and restrictions
There are no restrictions on the use of the getpgrp service.

Examples
For an example using this callable service, see “BPX1GPG (getpgrp) Example” on
page 1132.

getpgrp (BPX1GPG)

Chapter 2. Callable services descriptions 257

getpid (BPX1GPI) — Get the Process ID

Function
The getpid callable service gets the process ID (PID) of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPI,(Process_ID)

Parameters
Process_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the getpid service places the caller’s process ID.

Usage notes
1. If the getpid service fails, the process abends.

2. To optimize performance, see Appendix G, “Optimizing performance using
process- and thread-level information” on page 1335.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “fork (BPX1FRK) — Create a New Process” on page 184
v “getppid (BPX1GPP) — Get the Parent Process ID” on page 259
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311

Characteristics and restrictions
There are no restrictions on the use of the getpid service.

Examples
For an example using this callable service, see “BPX1GPI (getpid) Example” on
page 1135.

getpid (BPX1GPI)

258 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getppid (BPX1GPP) — Get the Parent Process ID

Function
The getppid callable service gets the parent process ID (PPID) of the calling
process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPP,(Return_value)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getppid service returns the parent process
ID of the calling process.

Usage notes
If the getppid service fails, the process ends abnormally.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “fork (BPX1FRK) — Create a New Process” on page 184
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311

Characteristics and restrictions
There are no restrictions on the use of the getppid service.

Examples
For an example using this callable service, see “BPX1GPP (getppid) Example” on
page 1137.

getppid (BPX1GPP)

Chapter 2. Callable services descriptions 259

getpriority (BPX1GPY) — Get the Scheduling Priority of a Process

Function
The getpriority callable service gets the scheduling priority of a specific process or
group of processes.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPY,(Which,
Who,
Return_value,
Return_code,
Reason_code)

Parameters
Which

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates how the Who
parameter is to be interpreted. This parameter can have one of the following
values:

v PRIO_PROCESS = Indicates that the Who parameter is to be interpreted as
a process ID

v PRIO_PGRP = Indicates that the Who parameter is to be interpreted as a
process group ID

v PRIO_USER = Indicates that the Who parameter is to be interpreted as a
user ID

The PRIO_ constants are defined in the BPXYCONS macro (see “BPXYCONS
— Constants Used by Services” on page 956).

Who
Supplied parameter

Type: Integer

Length: Fullword

getpriority (BPX1GPY)

260 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword that contains a value that indicates the exact process
ID, process group ID or User ID whose priority is to be obtained. The Which
parameter indicates how this parameter is to be interpreted. A value of zero for
this parameter specifies the current process, process group or User ID.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpriority service returns the priority value
of the specified process, or −1 if it is not successful.

Because the getpriority service can return the value -1 on successful
completion, it is necessary to set the Return_code parameter to 0 before a call
to the getpriority service. If getpriority returns the value -1, the Return_code
parameter can be checked to see if the service was successful, or if an error
occurred.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpriority service stores the return code.
The getpriority service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getpriority service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL The value of the Which parameter was not recognized; or the

value of the Who parameter is not a valid process ID, process
group ID or user ID.

ESRCH No process could be located using the Which and Who
parameter values that were specified.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpriority service stores the reason code.
The getpriority service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the supplied Who and Which values specify more than one process, the

lowest priority value found among the specified processes is returned.

2. The setting of a process’s priority value has an equivalent effect on a process’s
nice value, as they both represent the process’s relative CPU priority. For
example, setting the priority value of a process via the setpriority service to its

getpriority (BPX1GPY)

Chapter 2. Callable services descriptions 261

maximum value (19) has the effect of increasing its nice value to its maximum
value (2*NICE_ZERO)-1, and is reflected on the nice, getpriority and setpriority
services. The NICE_ZERO constant is defined in BPXYCONS. (See
“BPXYCONS — Constants Used by Services” on page 956.)

Related services
v “setpriority (BPX1SPY) — Set the Scheduling Priority of a Process” on page 695
v “nice (BPX1NIC) — Change the nice Value of a Process” on page 422

Characteristics and restrictions
There are no restrictions on the use of the getpriority service.

Examples
See “BPX1GPY (getpriority) Example” on page 1141 for an example using this
callable service.

getpriority (BPX1GPY)

262 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getpwent (BPX1GPE) — Sequentially Access the User Database

Function
The getpwent callable service gets information about a user. Each time you use the
getpwent service, you get information about the next user entry in the user
database.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPE,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the getpwent service returns an address, or 0.

If no more user entries exist in the user database, or if an error is encountered,
Return_value is set to 0.

If an entry is found, Return_value is set to the address of a data area that is
mapped by the BPXYGIDN macro. The first area contains the fullword length of
the user name, followed by the user name padded with blanks. See
“BPXYGIDN — Map Data Returned for getpwnam and getpwuid” on page 971.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpwent service stores the return code, or
0. The getpwent service returns Return_code only if Return_value is 0.
Return_code is 0 when no more user entries exist in the database. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getpwent service can return one of the following

getpwent (BPX1GPE)

Chapter 2. Callable services descriptions 263

values in the Return_code parameter:

Return_code Explanation
EMVSSAF2ERR The system authorization facility (SAF) or RACF Get GMAP

service had an error.
EMVSSAFEXTRERR The SAF or RACF RACROUTE EXTRACT service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpwent service stores the reason code,
or 0. The getpwent service returns Reason_code only if Return_value is 0.
Reason_code is 0 when no more user entries exist in the database.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR or EMVSSAFEXTRERR contains the RACF return and reason
codes, respectively, in the two low-order bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing
8 16 Unable to establish recovery
8 20 Current user is incompletely defined.

Usage notes
1. The getpwent service is intended to be used to search the user database

sequentially. The first call to this service from a given task returns a pointer to
the first user entry in the user database. Subsequent calls from the same task
return a pointer to the next user entry found, until no more entries exist. At this
time a null pointer is returned.

2. The setpwent service can be used to reset this sequential search. The next
getpwent service used from the same task after a call to the setpwent service
returns a pointer to the first user entry. The next getpwent service used after an
end-of-file indication (a null pointer) is returned also returns a pointer to the first
user entry. The use of setpwent after end-of-file is therefore optional.

3. The return value points to data that may change or go away after the next
getpwuid, getpwnam, or getpwent service request from that task. Each task
manages its own storage separately. Move data to the program’s storage if it is
needed for future reference.

4. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX.

Related services
v “getpwnam (BPX1GPN) — Access the User Database by User Name” on

page 266
v “getpwuid (BPX1GPU) — Access the User Database by User ID” on page 269
v “setpwent (BPX1SPE) — Reset the User Database” on page 698

getpwent (BPX1GPE)

264 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
There are no restrictions on the use of the getpwent service.

Examples
For an example using this callable service, see “BPX1GPE (getpwent) Example” on
page 1134.

getpwent (BPX1GPE)

Chapter 2. Callable services descriptions 265

getpwnam (BPX1GPN) — Access the User Database by User Name

Function
The getpwnam callable service gets information about a user. You specify the user
by user name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPN,(User_name_length,
User_name,
Return_value,
Return_code,
Reason_code)

Parameters
User_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of User_name.

User_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the User_name_length parameter

The name of a field of length User_name_length that contains the name of the
user that the program wants information about. The name is specified in the
Resource Access Control Facility (RACF) command that defines the user to the
system.

Return_value
Returned parameter

Type: Address

Length: Fullword

getpwnam (BPX1GPN)

266 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the getpwnam service returns an address, or 0.

If no entry for the specified group name is found, Return_value is set to 0.

If an entry is found, Return_value is set to the address of the BPXYGIDN
macro. See “BPXYGIDN — Map Data Returned for getpwnam and getpwuid” on
page 971.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpwnam service stores the return code.
The getpwnam service returns Return_code only if Return_value is 0. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The getpwnam service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL User_name_length is incorrect; or the user name has an illegal

first character (JRUserNameBad).
EMVSSAF2ERR The system authorization facility (SAF) Get GMAP service had an

error.
EMVSSAFEXTRERR The SAF RACROUTE EXTRACT service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpwnam service stores the reason code.
The getpwnam service returns Reason_code only if Return_value is 0.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

In the case of EMVSSAF2ERR or EMVSSAFEXTRERR, the reason code
contains the RACF return and reason codes, respectively, in the two low-order
bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 If the search is by GID: The GID is not defined. If
the search is by group name: The current group is
not defined.

8 8 The group name is not defined.
8 12 There was an internal error during RACF

processing.
8 16 Recovery could not be established.
8 20 The current group is incompletely defined.

getpwnam (BPX1GPN)

Chapter 2. Callable services descriptions 267

|
|

Usage notes
1. If an entry for the specified User_name is not found in the user database, an

address of 0 is returned as the Return_value parameter.

2. Return_value points to data that may change or go away after the next
getpwuid, getpwnam, or getpwent service request from that task. Each task
manages its own storage separately. Move data to your own dynamic storage if
you need it for future reference.

3. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX
services.

4. If the BPX.DEFAULT.USER profile is set up on the system, a call to BPX1GPN
against a user ID that does not have an OMVS segment set up as part of its
security profile causes BPX1GPN to return information for the default user.
Additionally, as a result of a BPX1GPN call against such a user ID, the following
fields in the BPXZOAPB control block are filled in for subsequent reference by
an application:

OapbDefaultUseridLen
OapbDefaultUserid
OapbDefaultGroupidLen
OapbDefaultGroupid

The BPXZOAPB control block can be addressed via the OtcbOapb field in the
BPXZOTCB control block. For further information about these fields, see
“BPXZOTCB — USS extension to the TCB” on page 1057.

Related services
v “getpwent (BPX1GPE) — Sequentially Access the User Database” on page 263
v “getpwuid (BPX1GPU) — Access the User Database by User ID” on page 269
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248

Characteristics and restrictions
There are no restrictions on the use of the getpwnam service.

Examples
For an example using this callable service, see “BPX1GPN (getpwnam) Example”
on page 1136.

getpwnam (BPX1GPN)

268 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|
|
|
|
|

|
|
|

getpwuid (BPX1GPU) — Access the User Database by User ID

Function
The getpwuid callable service gets information about a user. You specify the user
by user ID (UID).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPU,(User_ID,
Return_value,
Return_code,
Reason_code)

Parameters
User_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the user ID of the user you want
information about.

Return_value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword to which the getpwuid returns an address, or 0. If no
entry for the specified user ID is found, Return_value is set to 0. If an entry is
found, Return_value is set to the address of the BPXYGIDN mapping macro.
See “BPXYGIDN — Map Data Returned for getpwnam and getpwuid” on
page 971.

Return_code
Returned parameter

Type: Integer

Length: Fullword

getpwuid (BPX1GPU)

Chapter 2. Callable services descriptions 269

The name of a fullword in which the getpwuid service stores the return code.
The getpwuid service returns Return_code only if Return_value is 0. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The getpwuid service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EMVSSAF2ERR The system authorization facility (SAF) or RACF Get GMAP or

Get UMAP service had an error.
EMVSSAFEXTRERR The SAF or RACF RACROUTE EXTRACT call had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getpwuid service stores the reason code.
The getpwuid service returns Reason_code only if Return_value is 0.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR or EMVSSAFEXTRERR contains the RACF return and reason
codes, respectively, in the two low-order bytes.

For a more detailed description of the RACF Get GMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 For a search by GID: the GID is not defined. For a
search by group name: the current group is not
defined.

8 8 The group name is not defined.
8 12 There was an internal error during RACF

processing.
8 16 Recovery could not be established.
8 20 The current group is incompletely defined.

For a more detailed description of the RACF Get UMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 For a search by UID: the UID is not defined. For a
search by user ID: The user is not defined.

8 8 The user ID is not defined.
8 12 An internal error occurred during RACF processing.
8 16 Unable to establish recovery
8 20 The user is incompletely defined.

Usage notes
1. Return_value points to data that can change or go away after the next

getpwuid, getpwnam, or getpwent service request from the task. Each task
manages its own storage separately. Move data to the program’s dynamic
storage if the program needs it for future reference.

2. The storage is key 0 nonfetch-protected storage that is managed by z/OS UNIX.

getpwuid (BPX1GPU)

270 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

3. Most systems have multiple userids defined to have UID=0. It is impossible to
predict which userid will be returned on a call to getpwuid with a UID=0.

Related services
v “getpwent (BPX1GPE) — Sequentially Access the User Database” on page 263
v “getpwnam (BPX1GPN) — Access the User Database by User Name” on

page 266
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248

Characteristics and restrictions
There are no restrictions on the use of the getpwuid service.

Examples
For an example using this callable service, see “BPX1GPU (getpwuid) Example” on
page 1140.

getpwuid (BPX1GPU)

Chapter 2. Callable services descriptions 271

getrlimit (BPX1GRL) — Get Resource Limits

Function
The getrlimit callable service gets hard and soft resource limits for the calling
process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GRL,(Resource,
Rlimit,
Return_value,
Return_code,
Reason_code)

Parameters
Resource

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the resource for
which to get the hard and soft limits. This parameter can have one of the
following values:

Constant Name Description
RLIMIT_CORE Limit size of core dump
RLIMIT_CPU Limit CPU time per process
RLIMIT_FSIZE Limit file size
RLIMIT_NOFILE Limit number of open files
RLIMIT_AS Limit address space size

The RLIMIT_ constants are defined in the BPXYCONS macro. (See
“BPXYCONS — Constants Used by Services” on page 956.)

Rlimit
Supplied parameter

Type: Structure

Length: The length of the rlimit structure

getrlimit (BPX1GRL)

272 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of an rlimit structure in which the hard (maximum) and soft (current)
limit values for the resource that is identified by the resource parameter are to
be placed. Macro BPXYRLIM defines the rlimit structure. (See “BPXYRLIM —
Map the Rlimit, Rusage, and Timeval Structures” on page 1019.) Each limit
value contains two fullwords. For all resources except RLIMIT_FSIZE, the upper
fullword for each limit value is ignored.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrlimit service returns a value of zero if it
is successful, and −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrlimit service stores the return code. The
getrlimit service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The getrlimit service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINVAL An incorrect resource was specified. The following reason code

can accompany the return code: JrInvalidResource.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrlimit service stores the reason code.
The getrlimit service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “setrlimit (BPX1SRL) — Set Resource Limits” on page 705
v “getrusage (BPX1GRU) — Get Resource Usage” on page 274

Characteristics and restrictions
There are no restrictions on the use of the getrlimit service.

Examples
For an example using this callable service, see “BPX1GRL (getrlimit) Example” on
page 1142.

getrlimit (BPX1GRL)

Chapter 2. Callable services descriptions 273

getrusage (BPX1GRU) — Get Resource Usage

Function
The getrusage callable service gets information about resources that are used by
the calling process or its terminated and waited-for child processes.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GRU,(Who,
Rusage,
Return_value,
Return_code,
Reason_code)

Parameters
Who

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates for whom to get the
resource usage. This parameter can have one of the following values:

Constant Name Description
RUSAGE_SELF Rusage for current process
RUSAGE_CHILDREN Rusage for terminated children

The RUSAGE_ constants are defined in the BPXYCONS macro (see
“BPXYCONS — Constants Used by Services” on page 956).

Rusage
Supplied parameter

Type: Integer

Length: Fullword

The name of an rusage structure that is to contain the values for resource
usage. Macro BPXYRLIM defines the rusage structure (see “BPXYRLIM — Map
the Rlimit, Rusage, and Timeval Structures” on page 1019).

getrusage (BPX1GRU)

274 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrusage service returns a value of zero if
it is successful, and −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrusage service stores the return code.
The getrusage service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The getrusage service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL An incorrect Who value was specified. The following reason code

can accompany the return code: JrInvalidWho.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getrusage service stores the reason code.
The getrusage service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
Resource information returned for multithreaded processes may be inaccurate.

Related services
v “setrlimit (BPX1SRL) — Set Resource Limits” on page 705
v “getrlimit (BPX1GRL) — Get Resource Limits” on page 272

Characteristics and restrictions
There are no restrictions on the use of the getrusage service.

Examples
For an example using this callable service, see “BPX1GRU (getrusage) Example”
on page 1143.

getrusage (BPX1GRU)

Chapter 2. Callable services descriptions 275

getsid (BPX1GES) — Get the Process Group ID of the Session Leader

Function
The getsid callable service gets the process group ID of the session leader of the
process whose process ID is equal to the input process ID. If the input process ID
is 0, the service returns the process group ID of the session leader of the calling
process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GES,(PID,
Return_value,
Return_code,
Reason_code)

Parameters
PID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the process ID that identifies the process
whose session leader’s process group ID should be obtained. If PID is 0, the
process group ID of the calling process’s session leader is returned.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsid service returns a process group ID,
or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

getsid (BPX1GES)

276 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the getsid service stores the return code. The
getsid service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The getsid service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EPERM The process whose process ID is equal to PID is not in the same

session as the calling process.
ESRCH There is no process with a process ID equal to PID.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsid service stores the reason code. The
getsid service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Related services
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709
v “getpgid (BPX1GEP) — Get the Process Group ID” on page 255
v “getpgrp (BPX1GPG) — Get the Process Group ID” on page 257
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692

Characteristics and restrictions
There are no restrictions on the use of the getsid service.

Examples
For an example using this callable service, see “BPX1GES (getsid) Example” on
page 1118.

getsid (BPX1GES)

Chapter 2. Callable services descriptions 277

getsockname or getpeername (BPX1GNM) — Get the Name of a Socket
or of the Peer Connected to a Socket

Function
The getsockname or getpeername callable service obtains the name of a socket or
the name of a peer connected to a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GNM,(Socket_descriptor,
Operation,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
service is to be performed.

Operation
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the operation option. The value of this field
determines whether the service to be performed is getsockname or
getpeername. See “BPXYSOCK — Map SOCKADDR Structure and Constants”
on page 1027 for valid Operation values.

Sockaddr_length
Supplied and returned parameter

Type: Integer

getsockname or getpeername (BPX1GNM)

278 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a field that contains the length of Sockaddr. On return, this field
specifies the size required to represent the address of the connecting socket. If
this value is larger than the size supplied on input, the information contained in
Sockaddr is truncated to the length supplied on input. The size of this field must
be less than 4096 bytes (4KB) in length. The size of the buffer that is specified
must be the maximum length that the sockaddr could be on output.

Sockaddr
Supplied and returned parameter

Type: Character

Length: Length specified by Sockaddr_length.

The name of a field in which the socket name or peer name is to be returned.
See “BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027
for valid Operation values.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsockname or getpeername service
returns one of the following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsockname or getpeername service
stores the return code. The getsockname or getpeername service returns
Return_code only if Return_value is −1. For a complete list of possible return
code values, see z/OS UNIX System Services Messages and Codes. The
getsockname or getpeername service can return one of the following values in
the Return_code parameter:

Return_code Explanation
EBADF The socket descriptor is incorrect. The following reason codes

can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINVAL The length that is specified by the sockaddr_length operand is
too small to allow the name to be returned. The following reason
code can accompany the return code: JRSocketCallParmError.

ENOBUFS Unable to obtain a buffer. Consult Reason_code to determine the
exact reason the error occurred. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN getpeername() was specified and the socket is not connected.
ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The

following reason code can accompany the return code:
JRMustBeSocket.

getsockname or getpeername (BPX1GNM)

Chapter 2. Callable services descriptions 279

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsockname or getpeername service
stores the reason code. The getsockname or getpeername service returns
Reason_code only if Return_value is −1. Reason_code further qualifies the
Return_code value. For the reason codes, see z/OS UNIX System Services
Messages and Codes.

Characteristics and restrictions
There are no restrictions on the use of the getsockname or getpeername service.

Examples
For an example using this callable service, see “BPX1GNM (getpeername or
getsockname) Example” on page 1133.

getsockname or getpeername (BPX1GNM)

280 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getsockopt or setsockopt (BPX1OPT) — Get or Set Options Associated
with a Socket

Function
The getsockopt or setsockopt callable service gets or sets options that are
associated with a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1OPT,(Socket_descriptor,
Operation,
Level,
Option_name,
Option_data_length,
Option_data,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
service is to be performed.

Operation
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the operation option. The value of this field
determines whether the service to be performed is getsockopt, setsockopt, or
setibmsockopt. See “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 for valid Operation values.

Level
Supplied parameter

getsockopt or setsockopt (BPX1OPT)

Chapter 2. Callable services descriptions 281

Type: Integer

Length: Fullword

The name of a field that contains the level for which the option is set or being
set.

Option_name
Supplied parameter

Type: Integer

Length: Fullword

The name of a field in which the value of the option name is provided. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
valid Option_name values.

Option_data_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Option_data. On return from
getsockopt, this field contains the size of the data that was returned in
Option_data. The size of this field should be less than 4096 bytes (4KB) in
length. The size of the buffer specified should be the maximum length that the
option_data could be on output.

Option_data
Supplied and returned parameter

Type: Character

Length: Length specified by Option_data_length.

The name of a field that contains the data that is associated with or is to be
associated with the socket. On return from getsockopt, this field contains the
data that is associated with the socket. For setsockopt, this field provides the
data that is to be associated with the socket.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsockopt or setsockopt service returns
one of the following:

v 0 if the request is successful.

v −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

getsockopt or setsockopt (BPX1OPT)

282 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the getsockopt or setsockopt service stores the
return code. The getsockopt or setsockopt service returns Return_code. only if
Return_value is −1. For a complete list of possible return code values, see z/OS
UNIX System Services Messages and Codes. The getsockopt or setsockopt
service can return one of the following values in the Return_code parameter:

Return_code Explanation
EINVAL An incorrect argument was supplied on the call. Consult

Reason_code to determine the exact reason the error occurred.
The following reason code can accompany the return code:
JRLevelNotSupp.

ENOBUFS A buffer could not be obtained. Consult Reason_code to
determine the exact reason the error occurred. The following
reason code can accompany the return code:
JROutofSocketCells.

ENOPROTOOPT An option_name that was specified for getsockopt is not
supported. An incorrect value was specified on the Level
parameter. SOL_SOCKET must be specified. Consult
Reason_code to determine the exact reason the error occurred.
The following reason codes can accompany the return code:
JRLevelNotSupp, JRInvalOpOpt, JROptNotSupp.

ENOSYS For AF_UNIX, setsockopt was specified; it is not supported.
Consult Reason_code to determine the exact reason the error
occurred. The following reason code can accompany the return
code: JRSetNotSupp.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor.
Consult Reason_code to determine the exact reason the error
occurred. The following reason code can accompany the return
code: JRMustBeSocket.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getsockopt or setsockopt service stores the
reason code. The getsockopt or setsockopt service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. For
the reason codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The socket descriptor must refer to an open socket.

2. For AF_UNIX sockets, the getsockopt() service supports the following
option_names only: so_acceptconn, so_type, and so_secinfo.

3. The level of support for this service depends on the particular socket stack you
have installed. Some options might not be defined by the BPXYSOCK macro.
Refer to the documentation for the product you are using to determine the
socket options it supports. For example, see z/OS Communications Server: IP
Application Programming Interface Guide for the z/OS Communications Server
socket stack, and z/OS Communications Server: IPv6 Network and Application
Design Guide for information on IPv6 socket options.

Characteristics and restrictions
There are no restrictions on the use of the getsockopt or setsockopt service.

getsockopt or setsockopt (BPX1OPT)

Chapter 2. Callable services descriptions 283

|
|
|
|
|
|
|

Examples
For an example using this callable service, see “BPX1OPT (getsockopt or
setsockopt) Example” on page 1184.

getsockopt or setsockopt (BPX1OPT)

284 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

__getthent (BPX1GTH) — Get Thread Data

Function
The __getthent callable service obtains data that describes the status of a process
and its threads. This data includes, but is not limited to, running time, reasons for
waiting, syscalls made, files open, and signal information. The caller can access
one process on each request, with from none to all of its threads.

You can invoke this service in several ways:

v For the first accessible (by SAF standards) process (the lowest relative process
in the system)

v For a specific process, if the process ID is known and the process is accessible

v For a specific thread within a specific accessible process, if both IDs are known

v For the next accessible process or thread after one just returned

v For a specific address space ID or user ID.

Requirements

Authorization: Problem program or supervisor state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: No latches should be held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GTH,(Input_length,
Input_address,
Output_length,
Output_address,
Return_value,
Return_code,
Reason_code)

Parameters
Input_length

Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the value PGTHA#LEN.

Input_address
Supplied parameter

Type: Address

Length: Fullword

__getthent (BPX1GTH)

Chapter 2. Callable services descriptions 285

The name of the fullword that contains the address of an area mapped by
PGTHA; see “BPXYPGTH — Map the Response Structure for __getthent” on
page 997. Most fields in the input area should be initialized to hex zeros.

Output_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the length of the output buffer. Some
requests could be satisfied by the minimum buffer size of 128 bytes; whereas a
request for all options of a process with maximum resources could exceed half
a million bytes.

Output_address
Supplied parameter

Type: Address

Length: Fullword

The name of the fullword that contains the address of an area mapped by
PGTHB and other PGTHx; see “BPXYPGTH — Map the Response Structure
for __getthent” on page 997.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __getthent service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __getthent service stores the return code.
The __getthent service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The __getthent service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EFAULT The input_addr (to input_length) or the output_addr (to

output_length) contains the address of storage that the caller is
not authorized to access.

EINVAL One of the following occurred:

v The input area (PGTHA) contains a value that is not valid
(JrPidBad, JrBadOptions)

v The input_address is incorrect (JrBadInputBuffAddr)

v The output_address is incorrect (JrBadOutputBuffAddr)

v The input_length is incorrect (JrInvParmLength)

v The output_length is too small (JrBuffTooSmall)

__getthent (BPX1GTH)

286 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EAGAIN PGTHAPID is undergoing changes, and the z/OS UNIX control

blocks are not properly connected (JrBlocksInFlux).
EACCESS PGTHAPID is not accessible to the caller (JrInaccessible).
ESRCH PGTHAPID was not found (JrPIDNotFound); or PGTHATHID was

not found (JrThreadNotFound).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __getthent service stores the reason code.
The __getthent service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The system extracts fields PgthJTTime and PgthJLoginName from the TCB and

OTCB of the target process by scheduling an SRB to run in that process’s
address space. If the address space is in trouble, the SRB may not run, and
these fields are returned as zero.

2. Returned data may be inconsistent if data is extracted while the task is running
and changing. The only way to make the data consistent would be to obtain the
process’s latch, which could have many undesirable side effects.

3. The normal user starts with PGTHAPID=PGTH#FIRST, processes the data, and
sets PgthAContinue=PgthBContinue to continue with the next thread or the next
process, until a Return_value of −1 is reached.

4. The setting of PgthBContinue steps the caller to the next process or thread. If
this is not desirable, do not use PgthBContinue.

5. The Output_length required varies with the PGTHAFLAGs selected and the
characteristics of the process and its threads. Most processes should fit in 4000
bytes. If a process has 65 000 files opened, 3⁄4 of a million bytes would be
needed. An arbitrary minimum size of 128 bytes is necessary to avoid an error
of EINVAL (JrBuffTooSmall).

6. EINVAL (JrBuffTooSmall) can also indicate that there is insufficient room for at
least one PgthJ area. This could happen even with a buffer in excess of 4000
bytes.

7. Field PgthJWTime indicates how long the thread has been in most waits that
are internal to z/OS UNIX. It should be considered meaningful only if it is
nonzero.

Related services
v “w_getpsent (BPX1GPS) — Get Process Data” on page 908

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1GTH (__getthent) Example”
on page 1144.

__getthent (BPX1GTH)

Chapter 2. Callable services descriptions 287

getuid (BPX1GUI) — Get the Real User ID

Function
The getuid callable service gets the real user ID (UID) of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GUI,(User_ID)

Parameters
User_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which the getuid service returns the real user ID of
the calling process.

Usage notes
If the getuid service fails, the process ends abnormally.

Related services
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “seteuid (BPX1SEU) — Set the Effective User ID” on page 676
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
There are no restrictions on the use of the getuid service.

Examples
For an example using this callable service, see “BPX1GUI (getuid) Example” on
page 1147.

getuid (BPX1GUI)

288 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

getwd (BPX1GWD) — Get the Pathname of the Working Directory

Function
The getwd callable service gets the pathname of the working directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GWD,(Buffer_length,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
Buffer_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the buffer to which the getwd
service returns the pathname of the directory. Buffer_length must be large
enough to accommodate the actual length of the pathname plus one (for the
terminating null). Length of zero has special meaning; see Usage Notes.

Buffer
Parameter supplied and returned

Type: Character string

Character set: No restrictions

Length: Specified by the Buffer_length parameter

The name of the buffer that will hold the pathname of the working directory.

Return_value
Returned parameter

Type: Integer

Length: Fullword

getwd (BPX1GWD)

Chapter 2. Callable services descriptions 289

The name of a fullword in which the getwd service returns the length of the
pathname that is in the buffer, if the request is successful, or −1, if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getwd service stores the return code. The
getwd service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The getwd service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process did not have permission to read or search a

component of the working directory’s pathname.
EINVAL The Buffer_length specified was not valid. The following reason

code can accompany the return code: JRBufLenInvalid.
EIO An input/output error occurred.
ENOENT A component of a pathname does not exist. This is returned if a

component of the working directory pathname was deleted.
ERANGE The specified Buffer_length is less than the length of the

pathname of the working directory. The specified Buffer_length is
zero, and the length of the pathname of the working directory is
larger than PATH_MAX bytes.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the getwd service stores the reason code. The
getwd service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. PATH_MAX plus 1 for the terminating null is a reasonable size for the Buffer.

2. If a Buffer_length of zero is passed to this service, the generated null terminated
pathname is stored in the named buffer up to a maximum of PATH_MAX + 1
bytes. Buffer is assumed to be of sufficient size to contain the pathname derived
by the getwd service. If the generated pathname is larger than PATH_MAX
bytes, the return value is -1 and Return_code is ERANGE.

Related services
v “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on

page 216

Characteristics and restrictions
There are no restrictions on the use of the getwd service.

getwd (BPX1GWD)

290 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1GWD (getwd) Example” on
page 1148.

getwd (BPX1GWD)

Chapter 2. Callable services descriptions 291

givesocket (BPX1GIV) — Give a Socket to Another Program

Function
The givesocket callable service makes a specified socket available to a takesocket
call to be issued by another program.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GIV,(Socket_descriptor,
Clientid,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
givesocket is to be done.

Clientid
Supplied and returned parameter

Type: Structure

Length: Length of BPXYCID

The name of a structure that contains Clientid information identifying the (slave)
program to which the socket is to be given. This information is typically obtained
with the getclientid (BPX1GCL) service issued by the slave and passed to the
server. Clientid input may be as follows:

v CIdDomain - domain of the socket being given. See “BPXYSOCK — Map
SOCKADDR Structure and Constants” on page 1027 for more information on
the values defined for this field.

v CIdName - one of the following:

– Blanks - allows any program to take the socket using the takesocket
(BPX1TAK) service.

givesocket (BPX1GIV)

292 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

– The slave program’s address space name, left-justified, and padded with
blanks.

– A fullword of binary zeroes followed by the slave program’s process id.

v CIdTask - used only if an address space name was supplied in the CIdName
field. One of the following:

– Blanks - allows any subtask in the address space to take the socket.

– The slave program’s subtask identifier.

v CIdReserved - one of the following:

– All binary zeroes.

– The CIdType field of the CIdReserved area set to CId#Close. This results
in the givesocket service doing a close of the input socket, and returning a
unique socket token in the CIdSockToken field of the CIdReserved area.

The Clientid is a returned parameter only if the CIdType field in the
CIdReserved area is set to CId#Close. A unique token for the given socket is
then returned in the CIdToken field of the CIdReserved area. This token,
instead of the socket descriptor, is to be passed to the slave program to be
used on the takesocket (BPX1TAK) service. The token must be used, rather
than the socket descriptor, because the socket being given will be closed, and
the socket descriptor may be reused. See “BPXYCID — Map the Returning
Structure for getclientid()” on page 956 for more information about the format of
this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the givesocket service returns one of the
following:

v 0 if successful.

v −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the givesocket service stores the return code.
The givesocket service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The givesocket service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF The Socket_descriptor is not valid, or the socket has already

been given.
EFAULT Using the Clientid parameter as specified would result in an

attempt to access storage that is outside the caller’s address
space.

EINVAL The Clientid parameter does not specify a valid client identifier; or
the CIdDomain in the Clientid parameter does not match the
actual domain of the input Socket_descriptor.

givesocket (BPX1GIV)

Chapter 2. Callable services descriptions 293

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the givesocket service stores the reason code.
The givesocket service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Only the program identified by the Clientid input of the givesocket service is

allowed to take the socket using the takesocket (BPX1TAK) service.

2. The Clientid output of getclientid (BPX1GCL) (issued by the slave program and
passed to the server) is intended to be used as the input Clientid of the
givesocket service. If you use a FunctionCode of 2 on the getclientid service
(BPX1GCL) to obtain Clientid information that will then be used as the Clientid
input of the givesocket service, you will ensure the best performance of the
givesocket service, and the most secure identification of the validity of the taker.

3. Setting the CIdType field of the CIdReserved area in the Clientid structure to
CId#Close improves performance, by allowing the givesocket service to
automatically close the socket, rather than requiring the application to do a
select and a close.

4. If the given socket is not closed, it can still be used, even after the takesocket()
has been done. The socket can be shared between the giver and taker in the
same way that an inherited socket can be shared between parent and child
after a fork() has been issued.

5. If CId#Close is not used to close the socket within the givesocket call, but
instead the caller of givesocket() issues the close() some time later, it may be
necessary to coordinate with the caller of takesocket(). The close itself does not
interfere with takesocket(), but if additional sockets are accepted, given away,
and closed before takesocket() is called, there can be several given sockets
with the same descriptor that are waiting to be taken. This can cause
unpredictable results.

To avoid this problem, a given socket can be selected on, and the program can
find out from select when the takesocket() call has been issued and it is safe to
call close(). For a general server, though, this is a very poorly performing
design. Selecting on the main socket and having all given sockets wait for
another connection or for one of the given sockets to be taken is very
expensive, and should be avoided.

Related services
v “getclientid (BPX1GCL) — Obtain the Calling Program’s Identifier” on page 213
v “takesocket (BPX1TAK) — Acquire a Socket from Another Program” on page 826

Characteristics and restrictions
There are no restrictions on the use of the givesocket service.

givesocket (BPX1GIV)

294 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

grantpt (BPX1GPT) — Grant Access to the Slave Pseudoterminal

Function
The grantpt callable service changes the mode and ownership of the slave
pseudoterminal device that is identified by the file descriptor. The file descriptor
must be the file descriptor of the corresponding master pseudoterminal. The user ID
of the slave is set to the real UID of the calling process. The group ID is set to the
group ID that is associated with the group name that was specified by the
installation in the TTYGROUP initialization parameter. The permission mode of the
slave pseudoterminal is set to be readable and writable by the owner, and writable
by the group.

You can provide secure connections either by using grantpt and unlockpt, or by
issuing the first open against the slave pseudoterminal from the userid or process
that opened the master terminal.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPT,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the grantpt service returns 0 if the request is
successful, or −1 if it is not successful.

grantpt (BPX1GPT)

Chapter 2. Callable services descriptions 295

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the grantpt service stores the return code. The
grantpt service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The grantpt service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCESS The slave pseudoterminal was opened before grantpt, or a

grantpt has already been issued. In either case, slave
pseudoterminal permissions and ownership have already been
updated. If you use grantpt to change slave pseudoterminal
permissions, you must issue grantpt between the master open
and the first pseudoterminal open. The grantpt service can only
be requested once.

EBADF The File_descriptor parameter does not specify a valid open file
descriptor.

EINVAL The file descriptor is not associated with a master pseudoterminal
device.

ENOENT During lookup, the slave pseudoterminal device was not found.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the grantpt service stores the reason code.
The grantpt service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “unlockpt (BPX1UPT) — Unlock a Pseudoterminal Master/Slave Pair” on

page 885

Characteristics and restrictions
There are no restrictions on the use of the grantpt service.

grantpt (BPX1GPT)

296 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

IPCSDumpOpenClose (BPXGMCDE) — MVS IPCS Dump Open/Close
Service

Function
The IPCSDumpOpenClose service opens (and closes) a dump that has been
captured with an SVC dump, a SYSMDUMP, or the DUMP command. Once the
dump has been opened, it can be processed with the BPXGMPTR callable service,
which reads storage, registers, program attributes, and other dump-related
information.

Requirements

Authorization: Problem state, user PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPXGMCDE,(Dcor_Open,
LevelIndicator,
DumpDataSetName,
LogDataSetName,
ExecDataSetName,
ClistDataSetName,
DDIRStr,
ErrorMsgPtr,
Return_code,
Return_Value1,
Return_Value2,
Return_Value3)

CALL BPXGMCDE,(DCOR_Close,
OpenToken)

Parameters
Dcor_Open

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the constant for an open request,
DCOR_OPEN. The value of this constant is defined in the BPXYDCOR macro
(see “BPXYDCOR — dbx cordump cache information” on page 962). If the open
request is completed successfully, the BPXGMCDE service returns a nonzero
open token in register 15. This token is used by the BPXGMCDE close function
and the BPXGMPTR callable service.

IPCSDumpOpenClose (BPXGMCDE)

Chapter 2. Callable services descriptions 297

If the open request is not successful, the BPXGMCDE service returns a token
value of zero, with explicit failure information in the Return_code,
Return_value1, Return_value2, and Return_value3 fields.

LevelIndicator
Parameter supplied and returned

Type: Address

Length: Fullword

The name of a fullword that contains the release level of the DCOR services.
The level number is defined in BPXYDCOR.

DumpDataSetName
Supplied parameter

Type: Character string

Length: Variable

The name of a required null-terminated (X'00'-terminated) character string that
provides the name of the dump that is to be opened. The name may be an
MVS data set name or an HFS file name. An MVS data set name must begin
with a double slash (//); otherwise the name is considered to be the name of an
HFS file. To indicate that an MVS data set name is fully qualified, quotes should
be used on each side of the data set name (//’MVS.DATA.SET’). When quotes
are not used to fully qualify the data set name, the login userid is prefixed to the
data set name (userid.MVS.DATA.SET).

LogDataSetName
Supplied parameter

Type: Character string

Length: Variable

The name of an optional null-terminated (X'00'-terminated) character string that
provides the name of a log data set. The name must be an MVS data set
name; an HFS file may not be used as a log data set. The data set name is
considered to be fully qualified: quotes may be used, but they are not
necessary.

TSO messages that are generated from running IPCS are written to the log
data set. This log is useful in problem determination, especially when the IPCS
environment does not get established.

ExecDataSetName
Supplied parameter

Type: Character string

Length: Variable

The name of an optional null-terminated (X'00'-terminated) character string that
provides the name of the MVS PDS data set that is to be used in place of
SYS1.SBPXEXEC, which is the default. SYS1.SBPXEXEC contains the REXX
exec BPXTIPCS, which is used to create a dump directory and establish the
IPCS environment.

IPCSDumpOpenClose (BPXGMCDE)

298 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name must be an MVS data set name; HFS files are not supported for this
parameter. The data set name is considered to be fully qualified: quotes may be
used, but they are not necessary.

ClistDataSetName
Supplied parameter

Type: Character string

Length: Variable

The name of an optional null-terminated (X'00'-terminated) character string that
provides the name of the MVS PDS data set that is to be used in place of
SYS1.SBLSCLI0, which is the default. SYS1.SBLSCLI0 contains IPCS CLISTs,
including BLSCDDIR, which is used to allocate a temporary or permanent dump
directory.

The name must be an MVS data set name; HFS files are not supported for this
parameter. The data set name is considered to be fully qualified: quotes may be
used, but they are not necessary.

DDIRStr
Supplied parameter

Type: Character string

Length: Variable

The name of an optional null-terminated (X'00'-terminated) character string that
is used to tailor the use of the IPCS dump directory on the invocation of the
BLSCDDIR command. It may contain any of the parameters that are accepted
by BLSCDDIR. (See z/OS MVS IPCS Commands.)

The name must be an MVS data set name; HFS files are not supported for this
parameter. The data set name is considered to be fully qualified: quotes may be
used, but they are not necessary.

The BLSCDDIR command uses a VOLSER of VSAM01 to allocate a new dump
directory if the VOL parameter is not provided here.

ErrorMsgPtr
Returned parameter

Type: Character string

Length: Variable (Fullword)

The name of a required fullword area that will be set to point to a
null-terminated (X'00'-terminated) character string containing one or more
messages that describe certain types of errors that can occur. This string can
be sent to a standard error device or file by the caller, and used to inform the
end user of the specific reasons for certain failures. If no messages are
returned, the string is null. Not all error cases return a message string.

Return_code
Returned parameter

Type: Integer

Length: Fullword

IPCSDumpOpenClose (BPXGMCDE)

Chapter 2. Callable services descriptions 299

The name of a fullword in which the IPCSDumpOpenClose service returns the
reason for the failure of the open request. This field is meaningful only when the
open token returned in register 15 is 0. The value and meaning of
Return_value1, Return_value2, and Return_value3 are dependent upon the
nonzero value returned in the Return_code field. See “BPXYDCOR — dbx
cordump cache information” on page 962 for detailed information about these
fields.

Return_code Explanation
Dcor_CDErc_OK The specified function completed successfully.
Dcor_CDErc_ParmErr A parameter error was detected. Return_value1 determines

the specific reason for the failure:

v Dcor_R1_ParmErr_FuncCodeErr — The function code is
not supported.

v Dcor_R1_ParmErr_DumpDsnReq — The dump data set
name is required.

Dcor_CDErc_ProcErr A DCORE processing error occurred. Return_value1
determines the specific reason for the failure:

v Dcor_R1_ProcErr_SystemErrATC — An unexpected
system error occurred while the IPCS environment was
being established. Return_value2 contains the ABEND
reason code.

Dcor_CDErc_IKJTSOEVErr The system encountered an error while trying to establish a
TSO environment with the IKJTSOEV service. See the
return values for more information.

Dcor_CDErc_IKJEFTSRErr The system encountered an error while trying to run the
REXX exec with the IKJEFTSR service. See the return
values for more information.

Dcor_CDErc_AllocateErr The system encountered an error while trying to allocate
one of the specified data sets. Return_value1 identifies the
data set that caused the failure; Return_value2 contains the
return code from dynamic allocation (DYNALLOC); and
Return_value3 contains the reason code.

v Dcor_R1_AllocateErr_LogDsn — There was an error
allocating the log data set.

v Dcor_R1_AllocateErr_ExecDsn — There was an error
allocating the EXEC data set.

Return_value1, Return_value2, and Return_value3
Returned parameters

Type: Integer

Length: Fullword

The names of fullwords in which the IPCSDumpOpenClose service returns
details of the error indicated by Return_code. See the mapping of BPXYDCOR
for detailed information about these fields.

Dcor_Close
Supplied parameter

Type: Integer

Length: Fullword

The names of a fullword that contains the constant for a close request,
DCOR_CLOSE. The value of this constant is defined in the BPXYDCOR macro
see “BPXYDCOR — dbx cordump cache information” on page 962).

IPCSDumpOpenClose (BPXGMCDE)

300 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

OpenToken
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the open token returned by the
BPXGMCDE open request.

Usage notes
1. The routine to be executed receives control with the following attributes:

v Problem program state

v Key of the target pthread task

v AMODE 31

v Primary ASC mode

2. The register usage on entry to the specified routine is:

v R0: Undefined

v R1: Address of the parameter list, as specified by the caller of the
IPCSDumpOpenClose service.

v R2–R12: Undefined.

v R13: Address of a 72–byte work area in the key that the routine gains control
under.

v R14: The return address from the specified routine to the
IPCSDumpOpenClose service. This address must be preserved by the
invoked routine.

v R15: Address of the invoked routine.

3. Only tasks created with pthread_create or the IPT can invoke this service. If a
task that is not an IPT or a pthread-created task requests this service, it
receives an EACCESS return code.

4. At any given time only one pthread can have this service request pending for a
given target pthread. If a pthread requests this service for a given target pthread
when another pthread already has this service pending for that target pthread,
the last pthread receives an EAGAIN return code. It is the caller’s responsibility
to serialize the invocation of IPCSDumpOpenClose, or contain retry logic for
cases in which the EAGAIN return code is received.

5. The EXITRTN assembler routine cannot issue callable services after it gains
control under the target pthread.

6. The specified routine can establish its own recovery environment. However,
even if recovery is not established, the IPCSDumpOpenClose service
establishes its own recovery environment while running under the target
pthread. For all recoverable errors, this recovery routine retries, returning the
EFAULT return code to the requester. It also ensures that any recovery routine
established by the target pthread itself is not entered unexpectedly.

Related services
v “IPCSDumpAccess (BPXGMPTR) — PTRACE IPCS Dump Access Service” on

page 302

Characteristics and restrictions
There are no restrictions on the use of the IPCSDumpOpenClose service.

IPCSDumpOpenClose (BPXGMCDE)

Chapter 2. Callable services descriptions 301

IPCSDumpAccess (BPXGMPTR) — PTRACE IPCS Dump Access
Service

Function
The IPCSDumpAccess service reads storage, registers, program attributes, and
other information related to a process or thread in a dump that has been opened
with the IPCSDump Open/Close service (BPXGMCDE).

Requirements

Authorization: Problem state, user PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPXGMPTR,(Dcor_Request,
OpenToken,
Parm1Address,
Parm2Address,
Parm3Address,
Return_value,
Return_code,
Reason_code)

Parameters
Dcor_Request

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the integer value for the function
requested. The functions are explained in “Usage notes”. The request integer
values are defined in the BPXYDCOR macro. See “BPXYDCOR — dbx
cordump cache information” on page 962.

OpenToken
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the open token returned by the
BPXGMCDE Dcor_Open request.

Parm1Address
Supplied parameter

IPCSDumpAccess (BPXGMPTR)

302 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Address or Integer

Length: Variable

The name of a required value that contains the first parameter described by the
function requested. See “BPXYDCOR — dbx cordump cache information” on
page 962.

Parm2Address
Supplied parameter

Type: Address or Integer

Length: Variable

The name of a required value that contains the second parameter described by
the function requested. If a second parameter is not required, this value may be
zero. See “BPXYDCOR — dbx cordump cache information” on page 962.

Parm3Address
Supplied parameter

Type: Address or Integer

Length: Variable

The name of a required value that contains the third parameter described by
the function requested. If a third parameter is not required, this value may be
zero. See “BPXYDCOR — dbx cordump cache information” on page 962.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the IPCSDumpAccess service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The address of a fullword in which the IPCSDumpAccess service stores the
return code. The IPCSDumpAccess service returns Return_code only when the
Return_value is −1 and the Reason_code is DcorPTR_RsnDcorError. The
IPCSDumpAccess service can return one of the following values in the
Return_code parameter:

Return_code Explanation
Dcor_PTRrc_OK The specified function completed successfully.
Dcor_PTRrc_AsidNotFound An address space could not be found in the dump to

satisfy this request.
Dcor_PTRrc_AsidNotSet An ASID or PID has not been established for this session.

Reason_code
Returned parameter

Type: Integer

IPCSDumpAccess (BPXGMPTR)

Chapter 2. Callable services descriptions 303

Length: Fullword

The name of a fullword in which the IPCSDumpAccess service stores the
reason code. The IPCSDumpAccess service returns Reason_code only if
Return_value is 0. Reason_code further qualifies the Return_code value. The
following reason codes can accompany the return code:

Reason_code Explanation
RsnOkValue The specified function completed successfully.
RsnDcorError See Dcor return codes.
RsnMVSError A getmain error probably occurred.
RsnIPCSError Use the log data set to determine the cause of the error.

Usage notes
This table shows the constant options you can select for the Dcor_Request
parameter. See “BPXYDCOR — dbx cordump cache information” on page 962.

Table 3. Dcor_Request options

Function Request Explanation

Dcor_ASID_LIST# Return a list of ASIDs, and the number of
ASIDs contained in the list. This list is
described in BPXYDCOR as the
AsidList_Map.

Dcor_SET_ASID# Set the current address space ID to view in
the dump. If a null parameter is provided, the
home address space at the time the dump
was taken will be returned. Changing the
ASID may alter other values, such as the
PID or the current thread.

Dcor_PID_LIST# Return a list of PIDs, and the number of
PIDs contained the list. This list is described
in BPXYDCOR as the PidList_Map.

Dcor_SET_PID# Set the current process ID to view in the
dump. If a null parameter is provided, the
active process at the time the dump was
taken will be returned. The process
requested must exist in the current address
space. Changing the PID may also cause
the current thread to change.

Dcor_LDINFO# Return the loader data from the current
thread.

Dcor_THREAD_LIST# Return the list of threads contained in the
current PID, and the number of threads in
the list. The Thread_list mapping is
described in BPXYPTRC as PtPxInfo.

Dcor_THREAD_CURRENT# Return the value of the current thread.

Dcor_SET_THREAD# Set the current thread ID to view in the
dump.

Dcor_PSW# Return the 16-byte PSW for the current
thread.

Dcor_ERROR_PSW# Return the 16-byte PSW that caused the
dump to be taken.

IPCSDumpAccess (BPXGMPTR)

304 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 3. Dcor_Request options (continued)

Function Request Explanation

Dcor_GPR_LIST# Return the 64-bit GPRs for the current
thread.

Dcor_ERROR_GPR_LIST# Return the 64-bit GPRs active at the time of
error.

Dcor_FLT_LIST# Return the 64-bit FLTs for the current thread.

Dcor_ERROR_FLT_LIST# Return the 64-bit FLTs active at the time of
error.

Dcor_THREAD_STATUS# Return the Thread_list entry of the current
thread. The Thread_list mapping is described
in BPXYPTRC as PtPxInfo.

Dcor_READ_D# Retrieve dump data and place it in a buffer
provided by the caller.

Dcor_CAPTURE# Return the address of a buffer containing the
requested dump data.

Dcor_CONDINFO# Return the current abend information at the
time of error. CondInfo is described in
BPXYDCOR by the CondInfo_Map.

This table shows the PTRACE service options for the Dcor_Request parameter. For
each option, the meanings of the Parm1, Parm2, and Parm3 parameters are
shown. The terms in the table are described in “BPXYDCOR — dbx cordump cache
information” on page 962.

Table 4. PTRACE service options for the Dcor_Request parameter

Function Request Parm1 Parm2 Parm3

Dcor_ASID_LIST# The address of a fullword location
to receive the list address

The address of a
fullword location to
receive the count of
ASIDs

0

Dcor_SET_ASID# The address of a 16-bit location
that contains 0 or an ASID value

0 0

Dcor_PID_LIST# The address of a fullword location
to receive the list address.

The address of a
fullword location to
receive the count of
PIDS.

0

Dcor_SET_PID# The address of a fullword location
that contains 0 or a PID value.

0 0

Dcor_LDINFO# The address of a fullword location
to receive the address of the
loader information

0 0

Dcor_THREAD_LIST# The address of a fullword location
to receive the address of the GPR
list

0 0

Dcor_THREAD_CURRENT# The address of an 8-byte location
that contains a null value or a
thread ID

0 0

Dcor_SET_THREAD# The address of an 8-byte location
that contains a null value or a
thread ID

0 0

IPCSDumpAccess (BPXGMPTR)

Chapter 2. Callable services descriptions 305

Table 4. PTRACE service options for the Dcor_Request parameter (continued)

Function Request Parm1 Parm2 Parm3

Dcor_PSW# The address of a 16-byte location
to receive the PSW

0 0

Dcor_ERROR_PSW# The address of a 16-byte location
to receive the PSW

0 0

Dcor_GPR_LIST# The address of a fullword location
to receive the address of the GPR
list

The address of a
fullword location to
receive the length of
the GPR list

0

Dcor_ERROR_GPR_LIST# The address of a fullword location
to receive the address of the GPR
list

The address of a
fullword location to
receive the length of
the GPR list

0

Dcor_FLT_LIST# The address of a fullword location
to receive the address of the FLT
list

The address of a
fullword location to
receive the length of
the FLT list

0

Dcor_ERROR_FLT_LIST# The address of a fullword location
to receive the address of the FLT
list

The address of a
fullword location to
receive the length of
the FLT list

0

Dcor_THREAD_STATUS# The address of a fullword location
to receive the address of the
thread list

The address of a
fullword location to
receive the length of
the thread list

Dcor_READ_D# The fullword input value of virtual
storage in the dump

The fullword input
value of the number
of bytes to return

The fullword address
that contains the
address of the caller’s
input buffer

Dcor_CAPTURE# The fullword value of virtual
storage in the dump

The fullword value of
the number of bytes
to return

The fullword address
to return the output
buffer address

Dcor_CONDINFO# The fullword address to return the
address of the CondInfo data

The fullword address
to return the length
of the CondInfo data

0

Related services
v “IPCSDumpOpenClose (BPXGMCDE) — MVS IPCS Dump Open/Close Service”

on page 297

Characteristics and restrictions
There are no restrictions on the use of the IPCSDumpAccess service.

IPCSDumpAccess (BPXGMPTR)

306 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

isatty (BPX1ITY) (POSIX Version) — Determine Whether a File
Descriptor Represents a Terminal

Function
The isatty callable service determines whether a file is a terminal.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ITY,(File_descriptor,
Return_value)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the file descriptor.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the isatty service returns 1 if File_descriptor is
a terminal, or 0 if it is not a terminal.

Usage notes
This function does not return −1. If the file descriptor is not valid, a zero is returned.
If this service fails for other reasons, the process abends.

Related services
v “ttyname (BPX1TYN) (POSIX Version) — Get the Name of a Terminal” on

page 870
v “isatty (BPX2ITY) (X/Open Version) — Determine Whether a File Descriptor

Represents a Terminal” on page 309

isatty (BPX1ITY)

Chapter 2. Callable services descriptions 307

Characteristics and restrictions
There are no restrictions on the use of the isatty service.

Examples
For an example using this callable service, see “BPX1ITY (isatty) Example” on
page 1152.

isatty (BPX1ITY)

308 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

isatty (BPX2ITY) (X/Open Version) — Determine Whether a File
Descriptor Represents a Terminal

Function
The isatty callable service determines whether a file is a terminal.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX2ITY,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the isatty service returns 1 if File_descriptor is
a terminal, or 0 if it is not a terminal.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the isatty service stores the return code. The
isatty service may return Return_code only if Return_value is 0. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The isatty service can return one of the following values in the

isatty (BPX2ITY)

Chapter 2. Callable services descriptions 309

Return_code parameter:

Return_code Explanation
EBADF The filedes argument is not a valid open file descriptor.
ENOTTY The filedes argument is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the isatty service stores the reason code. The
isatty service may return Reason_code only if Return_value is 0. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. This version of isatty is XPG4 compliant.

2. This function does not return −1. If the file descriptor is not valid, a zero is
returned.

Related services
v “ttyname (BPX2TYN) (X/Open Version) — Get the Name of a Terminal” on

page 872
v “isatty (BPX1ITY) (POSIX Version) — Determine Whether a File Descriptor

Represents a Terminal” on page 307

Characteristics and restrictions
There are no restrictions on the use of the isatty service.

Examples
For an example using this callable service, see “BPX2ITY (isatty) Example” on
page 1153.

isatty (BPX2ITY)

310 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

kill (BPX1KIL) — Send a Signal to a Process

Function
The kill callable service sends a signal to a process, a process group, or all
processes in the system to which the caller has permission to send a signal.

CAUTION:

Note that when a caller with appropriate privileges specifies a pid equal to -1,
the signal will normally be sent to all processes in the system, excluding the
init process (process ID 1). If the signal action is to terminate the process, all
processes will terminate. This may not be the desired action, considering that
some processes may be necessary for the continued operation of the system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1KIL,(Process_ID,
Signal,
Signal_Options,
Return_value,
Return_code,
Reason_code)

Parameters
Process_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword whose value specifies the process or processes to
which the signal is to be sent:

v If Process_ID is greater than 0, it is assumed to be a process ID. The signal
is sent to the process with that specific process ID.

v If Process_ID is equal to 0, the signal is sent to all processes with a process
group ID equal to that of the caller, and for which the caller has permission to
send a signal.

v If Process_ID is −1, the signal is sent to all processes for which the caller
has permission to send the signal.

kill (BPX1KIL)

Chapter 2. Callable services descriptions 311

v If Process_ID is less than −1, its absolute value is assumed to be a process
group ID. The signal is sent to all processes with a process group ID equal to
that absolute value, and for which the sender has permission to send a
signal.

For more information, see “Characteristics and restrictions” on page 314.

Signal
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the signal number to be sent to the
processes that are indicated by the Process_ID parameter. The signal number
must be defined in the BPXYSIGH macro, or 0. The possible signals are shown
in Signal defaults.

If the signal is 0, error checking takes place, but no signal is sent. Use a signal
value of 0 to verify that the Process_ID parameter is correct before actually
sending a signal. This method does not verify permission to send the signal to
the specified Process_ID.

Signal_Options
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the binary flags that describe how the
signal is to be handled by z/OS UNIX and the user-supplied signal interface
routine (SIR). This byte of user information is passed to the SIR in a data
structure that is mapped by the BPXYPPSD macro. See “BPXYPPSD — Map
Signal Delivery Data” on page 1001. Signal_Options are mapped as follows:

First 2 bytes User-defined bytes that are delivered with the
signal to the SIR in the signal information
control block. These bytes are mapped by
PPSDKILDATA.

Last 2 bytes Flag bits, mapped by PPSDKILOPTS, that are
defined as follows:
v First bit - signal to bypass Ptrace processing
v Second bit - reserved
v Third bit - signal code specified in first 2

bytes, set by the application
v Remaining bits - reserved

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the kill service returns 0 if it has permission to
send the specified signal to any of the processes specified by the Process_ID
parameter. A return value of 0 means that a signal was sent (or could have
been sent, if the signal value was 0) to at least one of the specified processes.

kill (BPX1KIL)

312 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If no signal is sent, −1 is returned.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the kill service stores the return code. The kill
service returns Return_code only if Return_value is −1. See z/OS UNIX System
Services Messages and Codes for a complete list of possible return code
values. The kill service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINVAL The value of Signal is incorrect, or is not the number of a

supported signal.
EMVSSAFEXTRERR The SAF RACROUTE EXTRACT call incurred an error.
EPERM The caller does not have permission to send the signal to any

process that was specified by the Process_ID parameter.
ESRCH No processes or process groups that correspond to Process_ID

were found.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the kill service stores the reason code. The kill
service returns Reason_code only if Return_value is −1. Reason_code further
qualifies the Return_code value. For the reason codes, see z/OS UNIX System
Services Messages and Codes.

In the case of EMVSSAF2ERR, the reason code contains the security product
return and reason codes, respectively, in the two low-order bytes. For a more
detailed description of the security product Check Privilege service return and
reason code values, see the following table:

Security
Product Return
Code

Security
Product Reason
Code

Explanation

8 4 The caller is not the owner of the target process.
8 12 There was an internal error during security product

processing.

Related services
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746

kill (BPX1KIL)

Chapter 2. Callable services descriptions 313

Characteristics and restrictions
1. A caller can send a signal if the real or effective user ID of the caller is the

same as the real or saved set user ID of the intended recipient. A caller can
also send signals if it has appropriate privileges.

Permissions are discussed in “Authorization” on page 8.

2. Regardless of user ID, a caller can always send a SIGCONT signal to a
process that is a member of the same session as the sender.

3. A caller can also send a signal to itself. If the signal is not blocked, at least one
pending unblocked signal is delivered to the sender before the service returns
control. Provided that no other unblocked signals are pending, the signal
delivered is the signal sent. See Appendix E for more information.

4. Note the caution at the beginning of this description.

5. The thread-scoped signals (SIGTHSTOP and SIGTHCONT) cannot be issued
by the kill callable service. They can be issued only by the pthread_kill service.

Examples
For an example using this callable service, see “BPX1KIL (kill) Example” on
page 1154.

MVS-related information
For signal information, see Appendix E.

kill (BPX1KIL)

314 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

lchown (BPX1LCO) — Change the Owner or Group of a File, Directory,
or Symbolic Link

Function
The lchown service changes the owner or group (or both) of a file or a directory.
The owner is identified by a user ID (UID) and a group ID (GID).

The lchown service is identical to the chown service, except when the Pathname
specified is a symbolic link (a pointer to another file or directory). If the Pathname is
a symbolic link, the UID and/or the GID of the symbolic link are updated, rather
than the UID or GID of the file to which the symbolic link refers. See “chown
(BPX1CHO) — Change the Owner or Group of a File or Directory” on page 86.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LCO,(Pathname_length,
Pathname,
Owner_UID,
Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file for
which the owner or group is to be changed.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

lchown (BPX1LCO)

Chapter 2. Callable services descriptions 315

The name of a field that contains the pathname of the file. The length of this
field is specified in Pathname_length.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

If the pathname specifies a symbolic link file, the lchown service changes the
ownership of the symbolic link file itself.

Owner_UID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the new owner UID that is assigned
to the file; or the present value or -1, if there is no change. This parameter must
be specified.

Group_ID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the new owner GID that is assigned
to the file; or the present value or -1, if there is no change. This parameter must
be specified.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lchown service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lchown service stores the return code. The
lchown service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The lchown service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search some

component of the Pathname prefix.

lchown (BPX1LCO)

316 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL The Owner_UID or Group_ID parameter is incorrect.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or a component of the
pathname is longer than 255 characters.

ENOENT No file named Pathname was found; or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of the Pathname prefix is not a directory.
EPERM The calling process does not have appropriate privileges.
EROFS Pathname is on a read-only file system. The following reason

code can accompany the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lchown service stores the reason code.
The lchown service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The lchown service changes the owner UID and owner GID of a file. Only a

caller with appropriate privileges can change the owner UID of a file. Refer to
“Authorization” on page 8 for information on appropriate privileges.

2. The owner GID of a file can be changed by a caller if the caller has appropriate
privileges, or if the caller meets all of these conditions:

v The effective UID of the caller matches the file’s owner UID.

v The Owner_UID value that is specified in the change request matches the
file’s owner UID.

v The Group_ID value that is specified in the change request is the effective
GID, or one of the supplementary GIDs, of the caller.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

4. If the change request is successful, the change time for the file is updated.

5. Values for both Owner_UID and Group_ID must be specified. To change only
one of these values, set the other to its present value or to -1.

Related services
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname” on page 335
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

lchown (BPX1LCO)

Chapter 2. Callable services descriptions 317

Characteristics and restrictions
There are no restrictions on the use of the lchown service.

Examples
For an example using this callable service, see “BPX1LCO (lchown) Example” on
page 1155.

lchown (BPX1LCO)

318 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

link (BPX1LNK) — Create a Link to a File

Function
The link callable service creates a link to a file. The link is a new name that
identifies an existing file. The new name does not replace the old one; it provides
an additional way to refer to the file. To rename an existing file, see “rename
(BPX1REN) — Rename a File or Directory” on page 602.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LNK,(Filename_length,
Filename,
Link_name_length,
Link_name,
Return_value,
Return_code,
Reason_code)

Parameters
Filename_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Filename of the existing
file.

Filename
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Filename_length parameter

The name of a field of length Filename_length that contains the name of the
existing file to which a link is to be established.

Link_name_length
Supplied parameter

Type: Integer

link (BPX1LNK)

Chapter 2. Callable services descriptions 319

Length: Fullword

The name of a fullword that contains the length of the Link_name.

Link_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Link_name_length parameter

The name of a field that contains the link name by which the file is to be known.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the link service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the link service stores the return code. The link
service returns Return_code only if Return_value is −1. See z/OS UNIX System
Services Messages and Codes for a complete list of possible return code
values. The link service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process did not have appropriate permissions to create the

link. Possible reasons include:

v No search permission for a pathname component of Filename
or Link_name

v No write permission for the directory intended to contain the
link

v No permission to access Filename
EEXIST A file, directory, or symbolic link named Link_name already

exists. The following reason code can accompany the return
code: JRLnkNewPathExists.

EINVAL The Filename or Link_name is incorrect because it contains a
null.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Filename or Link_name argument. This error is
issued if more than 24 symbolic links are detected in the
resolution of Filename or Link_name.

EMLINK Filename already has its maximum number of links. The
maximum number is LINK_MAX. The value of LINK_MAX can be
determined through “pathconf (BPX1PCF) — Determine
Configurable Pathname Variables Using a Pathname” on
page 459, or “fpathconf (BPX1FPC) — Determine Configurable
Pathname Variables Using a Descriptor” on page 189.

link (BPX1LNK)

320 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENAMETOOLONG Filename or Link_name is longer than 1023 characters; or some

component of the pathname is longer than 255 characters. Name
truncation is not supported.

ENOENT A component of the pathname that was specified by Filename or
Link_name was not found; the file specified by Filename was not
found; or one of the two arguments is missing. The following
reason code can accompany the return code: JRLnkNoEnt.

ENOSPC The directory intended to contain the link cannot be extended to
contain another entry.

ENOTDIR A pathname component of one of the arguments is not a
directory.

EPERM Filename is the name of a directory; links to directories are not
allowed. The following reason code can accompany the return
code: JRLnkDir.

EROFS Creating the link would require writing on a read_only file system.
The following reason code can accompany the return code:
JRLnkROFileset.

EXDEV Filename and Link_name are on different file systems. z/OS
UNIX does not support links between file systems. The following
reason code can accompany the return code:
JRLnkAcrossFilesets.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the link service stores the reason code. The
link service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The link service creates a link named Link_name to an existing file named

Filename. This provides an alternate pathname for the existing file; the file can
be accessed by the old name or the new name. The link can be stored in the
same directory as the original file, or in a different directory.

2. If the link is created successfully, the service increments the link count of the
file. The link count shows how many links exist for a file. (If the link is not
created successfully, the link count is not incremented.)

3. Links are allowed only to files, not to directories.

4. If the link is created successfully, the change time of the linked-to file is
updated. The change and modification times of the directory that holds the link
are also updated.

Related services
v “rename (BPX1REN) — Rename a File or Directory” on page 602
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the link service.

link (BPX1LNK)

Chapter 2. Callable services descriptions 321

Examples
For an example using this callable service, see “BPX1LNK (link) Example” on
page 1156.

link (BPX1LNK)

322 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming
Connection Requests from Clients

Function
The listen callable service creates a connection request queue for a server socket
to queue incoming connection requests from a client.

Listen is used for connection-oriented sockets only. If a connection request arrives
with the backlog queue full, the client may receive an ECONNREFUSED.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: AR mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LSN,(Socket_descriptor,
Backlog,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
listen is to be done.

Backlog
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the maximum length of the connection queue.
For network sockets, if Backlog is greater than SOMAXCONN, this field is set to
SOMAXCONN. For AF_UNIX sockets, there is no maximum value for this field.

Return_value
Returned parameter

Type: Integer

listen (BPX1LSN)

Chapter 2. Callable services descriptions 323

|
|
|

Length: Fullword

The name of a fullword to which the listen service returns one of the following:

v 0, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the listen service stores the return code. The
listen service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The listen service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The socket descriptor is incorrect. The following reason codes

can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINVAL An incorrect argument was supplied. The socket is not named (a
bind has not been done); or the socket is ready to accept
connections (a listen has already been done). The following
reason code can accompany the return code:
JRListenNotAccepted.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EOPNOTSUPP The socket descriptor specified a datagram socket. The listen
service is valid only for stream sockets. The following reason
code can accompany the return code: JRListenNotStream.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the listen service stores the reason code. The
listen service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
If a bind is not called before the listen request, the listen callable service returns an
EINVAL.

Characteristics and restrictions
There are no restrictions on the use of the listen service.

listen (BPX1LSN)

324 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1LSN (listen) Example” on
page 1159.

listen (BPX1LSN)

Chapter 2. Callable services descriptions 325

loadhfs (BPX1LOD) — Load a Program into Storage by HFS Pathname

Function
The loadhfs service loads an executable program by HFS pathname into the caller’s
process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LOD,(Filename_length,
Filename,
Flags,
Libpath_length,
Libpath,
Return_value,
Return_code,
Reason_code)

Parameters
Filename_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the filename parameter. The
length can be a value in the range 1 to 1023.

Filename
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Filename_length parameter

The name of a field that contains the HFS file name of the program that is to be
loaded. If the filename parameter does not contain a / (slash), it is treated as a
basename; it should be in one of the directories listed in the supplied libpath
parameter. If the libpath parameter is null, the file must be in the current
directory. If the filename is not a basename (if it contains at least one / (slash)),
the name is used as is; the libpath parameter is not used to locate the file.

loadhfs (BPX1LOD)

326 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If the filename is a basename, it can be up to 255 characters long.

If the filename parameter represents a pathname, each component of the
pathname (directory name, subdirectory name, or filename) can be up to 255
characters long. The complete pathname can be up to 1023 characters long,
and does not require an ending NUL character.

Flags
Supplied parameter

Type: Integer

Length: Fullword

The flags parameter is a fullword field that contains option flags that the loadhfs
service uses in determining the optional processing to be performed on behalf
of the caller. These constants are defined in the BPXYCONS macro.

Constant Description
Lod_Error_St_ExLink Indicates that LOAD processing is to be bypassed if

the file is an external link or has the sticky bit set
on.

If the file is sticky or is an external link, the request
fails with return code EPERM (the operation is not
permitted) and a reason code of JrExternalLink or
JrStickyBit.

Lod_Ignore_Sticky Indicates that the sticky bit for a file is to be ignored.
If the file is sticky, HFSLOAD loads it from the HFS.

Note: If both Lod_Ignore_Sticky and Lod_Error_St_ExLink are specified, the
Lod_Ignore_Sticky option is honored, and Lod_Error_St_ExLink is
ignored.

Libpath_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the library path parameter. If
a value of zero is specified, the library path parameter is ignored.

Libpath
Supplied parameter

Type: Structure

Length: Specified by the Libpath_length parameter

The name of a field that contains the library path to be searched to determine
the fully qualified path name of the file that is specified. The library path can
contain a series of pathnames separated by colons. The pathnames in the list
are searched one at a time until the specified file name is located. If the list of
pathnames begins or ends with a colon, the working directory of the calling
process is used to locate the file. Each pathname in the list can have a
maximum length of 1021 bytes.

The following is an example of a valid library path:

loadhfs (BPX1LOD)

Chapter 2. Callable services descriptions 327

v /usr1/bin:/grp1/bin:/bin

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the loadhfs service returns −1 if it is not
successful. If it is successful, the loadhfs service returns the entry point address
of the program that was loaded into storage. If the loaded program is an
AMODE(31) program, the high-order bit of the return value is turned on. For this
reason, applications that test for a failure condition must explicitly check for a -1
return value. Checking for a value of less than zero will not produce the desired
results.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the loadhfs service stores the return code. The
loadhfs service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The loadhfs service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The caller does not have appropriate permissions to run the

specified file. It may lack permission to search a directory named
in the Pathname parameter; it may lack execute permission for
the file to be run; or the file to be run is not a regular file, and the
system cannot run files of its type.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Filename argument. This error is issued if more
than 24 symbolic links are detected in the resolution of Filename.

ENAMETOOLONG File_name is longer than 1023 characters; or some component of
the filename is longer than 255 characters. Name truncation is
not supported.

ENOENT No filename was specified; or one or more of the components of
the specified Filename were not found.

ENOEXEC The specified file has execute permission, but it is not in the
proper format to be a process image file.

ENOMEM The file that is to be loaded requires more memory than is
permitted by the hardware or the operating system.

ENOTDIR A directory component of Filename is not a directory.
EINVAL The flags parameter that was specified contains an unsupported

value.
EMFILE There are too many open files. An attempt was made to open

more than the maximum number {OPEN_MAX} of file descriptors
allowed in this process.

ENFILE There are too many open files in the system. The system
reached its predefined limit for simultaneously open files, and
temporarily could not accept requests to open another one.

EPERM The operation is not permitted. The Flags parameter was set to
Lod_Error_St_ExLink, and either the file is an external link
(JrExternalLink), or it has the sticky bit set on (JrStickyBit).

loadhfs (BPX1LOD)

328 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Note: In addition to the return codes listed here, the loadhfs service can return
additional errors for other failures that can occur on a stat or an open
syscall.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the loadhfs service stores the reason code.
The loadhfs service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A prior loaded copy of an HFS program is reused under the same

circumstances that apply to the reuse of a prior loaded MVS unauthorized
program from an unauthorized library by the MVS LOAD service, with the
following exceptions:

v If the calling process is in Ptrace debug mode, a prior loaded copy is not
reused.

v If the calling process is not in Ptrace debug mode, but the only prior loaded
usable copy of the HFS program found is in storage that is modifiable by the
caller, the prior copy is not reused.

2. If the specified file name represents an external link or a sticky bit file, the
program is loaded from the caller’s MVS load library search order. For an
external link, the external name is only used if the name is eight characters or
less, otherwise the caller receives an error from the loadhfs service. For a
sticky bit program, the file name is used if it is eight characters or less. If the
file name is greater than eight characters, or the MVS program is not found,
the program is loaded from the HFS.

3. When it is running from a pthread_created thread (pthread), the specified file is
loaded into storage and associated with the Initial Pthread Creating Task (IPT).
This allows the program to be shared across multiple threads, without the
problem of its disappearing unexpectedly when a thread terminates.

4. When the calling process is being debugged via the ptrace service, the
following applies:

v Programs that are loaded using this service are loaded into storage that is
modifiable by the caller of the loadhfs service.

v A call to this service generates a WastStopFlagLoad Ptrace event to the
debugger process.

5. Because this service does not cause the specified program to be executed, the
set-user-ID and set-group-ID flags have no impact on the process.

6. Because the HFS is not an authorized library, the following restrictions apply:

v Loading a program from the HFS causes the program environment to
become uncontrolled. This prevents future invocations of authorized
programs like PADS programs. In addition, PADS programs should not
attempt to load programs from the HFS, because it is considered an
unauthorized library, and potentially can be modified by users that do not
have the same level of authorization as the PADS program.

loadhfs (BPX1LOD)

Chapter 2. Callable services descriptions 329

|
|
|

v System key, supervisor state and APF-authorized callers should not attempt
to load a program from the HFS library, unless the HFS executable file has
the APF attribute turned on.

7. If a program that is loaded into storage with this service is not deleted from
storage, the program remains in storage until the calling task terminates, if it is
not a pthread. If the caller is a pthread, the program remains in storage until
the Initial Pthread Creating Task (IPT) terminates.

The following usage notes apply for shared library programs:

8. Executables that have the ST_SHARELIB extended attribute turned on are
considered system shared library programs. System shared library programs
are the most optimal way to share large HFS executables across many
address spaces in the system. These executables are shared on a megabyte
boundary to allow for the sharing of a single page table (similar to LPA). The
storage used in the user address space to establish the mapping to the shared
library region is from the high end of private storage; it does not interfere with
the virtual storage used by the application program.

Executables that have the .so suffix in their filenames are considered user
shared library programs. User shared library programs are optimal for sharing
HFS executables across a smaller set of user address spaces in the system.
These executables are shared on a page boundary. The storage used in the
user address space to establish the mapping to the shared library region is
from the low end of private storage; it comes out of the same user region
storage used for private area loaded modules.

9. If the HFS program to be loaded is determined to be a shared library program
(that is, if the ST_SHARELIB extended attribute is set or the filename suffix is
.so), the loadhfs service queries the shared library region to determine if the
target program is there.

When a shared library program is loaded anew into the shared region or
reloaded from the shared region, the program is mapped from the shared
region into the private area of the calling address space. It is important to note
that, because the program is not actually reloaded from DASD into the private
area of each using address space, but only remapped from the shared region,
shared library programs are more efficient in their utilization of system
resources than normal private area HFS programs. For this reason, HFS
programs that are to be shared across several address spaces in the system
are good candidates for identification as shared library programs.

If a target HFS program is not in the shared library region, and cannot be
loaded into the region because of its attributes, the program is treated like a
private area HFS program and is loaded into the caller’s private area storage.

Additionally, if the calling address space cannot accommodate the target
address for the shared library program, the program is treated like a private
area HFS program.

10. In order for a program to be honored as a shared library program, certain
conditions must be met:

v Only HFS modules are supported as shared library programs; MVS library
modules cannot be loaded into the shared region.

v A sticky bit program that is found in the MVS search order is not honored as
a shared library program.

v Multiple-segment load modules (split RMODE) are not supported in the
shared library region.

v To be supported, a target HFS program must have read “other” permission
and be link-edited REENTRANT.

11. A shared library program can reside in a NOSUID file system.

loadhfs (BPX1LOD)

330 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “deletehfs (BPX1DEL) — Delete a Program from Storage” on page 131

Characteristics and restrictions
There are no restrictions on the use of the loadhfs service.

Examples
For an example using this callable service, see “BPX1LOD (loadHFS) Example” on
page 1157.

loadhfs (BPX1LOD)

Chapter 2. Callable services descriptions 331

lseek (BPX1LSK) — Change a File’s Offset

Function
The lseek callable services changes the file offset of a file to a new position. The
file offset is the position in a file from which data is next read, or to which data is
next written.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LSK,(File_descriptor,
Offset,
Reference_point,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the file whose file
offset is to be changed. The file descriptor is returned from “open (BPX1OPN)
— Open a File” on page 434.

Offset
Parameter supplied and returned

Type: Integer

Length: Doubleword

The name of a doubleword that contains a signed number. The numeric part of
the value is the amount (number of bytes) by which you want to change the
offset. The sign indicates whether you want the offset to be moved forward or
backward in the file.

This field is a doubleword, to accommodate large files. For normal processing
with a singleword value, propagate the sign bit through the second word, so
that the final doubleword value has a valid sign.

lseek (BPX1LSK)

332 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

On successful completion, this field returns the new file offset.

Reference_point
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that represents an option.
Reference_point indicates the point from which the offset is calculated. These
values are mapped by the BPXYSEEK macro. For information on the contents
of the macro, see “BPXYSEEK — Constants for lseek” on page 1021.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lseek service returns 0 if the request is
successful, or −1 if it is not successful. Offset returns the new file offset if the
request is successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lseek service stores the return code. The
lseek service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The lseek service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter does not specify a valid, open file.
EINVAL The Reference_point parameter contained something other than

one of the three options; or the combination of the Offset and
Reference_point parameters would have placed the file offset
before the beginning of the file. The following reason codes can
accompany the return code: JRLskOffsetIsInvalid,
JRLskWhenceIsInvalid.

ESPIPE The File_descriptor refers to a pipe, a FIFO special file, or a
socket. The following reason code can accompany the return
code: JRLskOnPipe.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lseek service stores the reason code. The
lseek service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

lseek (BPX1LSK)

Chapter 2. Callable services descriptions 333

Usage notes
1. The Offset parameter gives the length and direction of the offset change.

Reference_point parameter states where the change is to start. For example,
assume that a file is 2000 bytes long, and that the current file offset is 1000:

Offset Specified Reference Point New File Offset
80 SEEK_CUR 1080

1200 SEEK_SET 1200
−80 SEEK_END 1920
132 SEEK_END 2132

2. The file offset can be moved beyond the end of the file. If data is written at the
new file offset, there is a gap between the old end of the file and the start of the
new data. A request to read data from anywhere within that gap completes
successfully, and returns bytes with the value of zero in the buffer and the
actual number of bytes read.

Seeking itself, however, does not extend the file. Only if data is written at the
new offset does the length of the file change.

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “open (BPX1OPN) — Open a File” on page 434
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

Characteristics and restrictions
There are no restrictions on the use of the lseek service.

Examples
For an example using this callable service, see “BPX1LSK (lseek) Example” on
page 1158.

lseek (BPX1LSK)

334 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

lstat (BPX1LST) — Get Status Information about a File or Symbolic
Link by Pathname

Function
The lstat callable service obtains status information about a file. The lstat service is
identical to the stat service, except when the Pathname specified is a symbolic link
(a pointer to another file or directory). In this case, the status information that is
returned relates to the symbolic link, rather than to the file to which the symbolic
link refers. The stat service is explained in “stat (BPX1STA) — Get Status
Information about a File by Pathname” on page 808.

For the corresponding service using a file descriptor, see “fstat (BPX1FST) — Get
Status Information about a File by Descriptor” on page 195.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1LST,(Pathname_length,
Pathname,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Pathname.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

lstat (BPX1LST)

Chapter 2. Callable services descriptions 335

The name of an area of length Pathname_length that contains the pathname of
the file for which you want to obtain status. The Pathname can be a pathname
to a file, a linkname to a file (as returned by “link (BPX1LNK) — Create a Link
to a File” on page 319), or a symbolic link name (as returned by “symlink
(BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817).

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area to which the service
returns Status_area. To determine the value of Status_area_length, use macro
BPXYSTAT; see “BPXYSTAT — Map the Response Structure for stat” on
page 1034.

Status_area
Parameter supplied and returned

Type: Structure

Length: Length of BPXYSTAT macro

The name of an area of length Status_area_length to which the service returns
the status information for the file. Status_area is mapped by the BPXYSTAT
macro; see “BPXYSTAT — Map the Response Structure for stat” on page 1034.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lstat service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lstat service stores the return code. The
lstat service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The lstat service can return one of the following values in the
Return_code parameter:

lstat (BPX1LST)

336 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EACCES The process does not have permission to search some

component of the Pathname prefix.
EINVAL Parameter error—for example, a zero-length buffer. The following

reason code can accompany the return code: JRBuffTooSmall.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or some component of
the pathname is longer than 255 characters. This could happen if
a symbolic link was encountered during the resolution of
Pathname, and the substituted string was longer than 1023
characters.

ENOENT No file named Pathname was found, or Pathname was not
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR A component of the Pathname prefix is not a directory.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the lstat service stores the reason code. The
lstat service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. All time fields in Status_area are in POSIX format.

2. The File Mode field in Status_area is mapped by BPXYMODE; see
“BPXYMODE — Map the Mode Constants of the File Services” on page 986.
For information on the values for file type, see “BPXYFTYP — File Type
Definitions” on page 969.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “exec (BPX1EXC) — Run a Program” on page 133
v “fpathconf (BPX1FPC) — Determine Configurable Pathname Variables Using a

Descriptor” on page 189
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “link (BPX1LNK) — Create a Link to a File” on page 319
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “open (BPX1OPN) — Open a File” on page 434
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882
v “utime (BPX1UTI) — Set File Access and Modification Times” on page 890
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

lstat (BPX1LST)

Chapter 2. Callable services descriptions 337

Characteristics and restrictions
To obtain information about a file, you need not have permissions for the file itself;
however, you must have search permission for all of the directory components of
Pathname.

Examples
For an example on the use of this system call, see “BPX1LST (lstat) Example” on
page 1160.

lstat (BPX1LST)

338 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

__map_init (BPX1MMI) — Create a Mapped Megabyte Area

Function
The __map_init callable service creates a mapped megabyte area in the private
area of the calling address space to hold a fixed number of the application’s data
blocks. This map area is divided into map blocks, each of which is a view onto a
data block that is maintained in the kernel data space. The application can set the
number of map blocks contained in the map area and the size, in megabytes, of
each map block.

Once it has created the map area with the __map_init service, an application can
use the __map_service (BPX1MMS) callable service to connect and disconnect
blocks of storage in the map area.

Requirements

Authorization: Problem program or supervisor state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MMI (FunctionCode,
ParmListPtr,
Return_value,
Return_code,
Reason_code)

Parameters
FunctionCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value indicating the type of map function
the caller is requesting. The following is the only supported value:

Constant Description
MMG_INIT Create mapped megabyte area

This constant is defined in the BPXYMMG macro. See “BPXYMMG — Map
Interface for _map_init and _map_service” on page 981.

ParmListPtr
Supplied parameter

__map_init (BPX1MMI)

Chapter 2. Callable services descriptions 339

Type: Address

Length: 4 bytes

The name of a 4-byte field that contains the address of the parameter list. See
“BPXYMMG — Map Interface for _map_init and _map_service” on page 981 for
the mapping of the parameter list.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __map_init service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __map_init service stores the return code.
The __map_init service stores a return code only if the return value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The __map_init service may return one of the
following values in the Return_code parameter:

Return code Explanation
EEXIST An attempt was made to create more than one map area for the

process (JRMapAlreadyActive).
ENOMEM A request to initialize a map area failed for one of the following

reasons:

v There was insufficient storage in the caller’s address space to
obtain the map area needed to contain the map blocks
(JRNoUserStorage).

v All or part of the area defined by the address that was
provided by the caller in MMG_AREAADDR was already
allocated (JRStorNotAvail).

EPERM One of the following errors occurred:

v The caller is not permitted to the BPX.MAP FACILITY class
profile. Superuser status (UID=0) is not sufficient
(JRNotAuthMAP).

v The BPX.MAP FACILITY class profile is not defined, and the
user is not a superuser (JROK).

EMVSSAF2ERR An error occurred in the security product.

__map_init (BPX1MMI)

340 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return code Explanation
EINVAL One of the following errors occurred:

v The FunctionCode parameter contains a value that does not
represent a supported function (JRMapBadFunction).

v The number of blocks specified (_MMG_NUMBLKS) was
either negative or zero (JRNegativeValueInvalid).

v The number of megabytes per block specified
(_MMG_MEGSPERBLK) was either negative or zero
(JRNegativeValueInvalid).

v A reserved field contains nonzero data
(JRReservedValueInvalid).

v The request specified a map address (_MMG_AREAADDR)
that was not above the line, or that was not on a megabyte
boundary (JRBadAddress).

EFAULT An argument of this service contained an address that was not
accessible to the caller (JRMapBadStorage).

EMVSERR One of the following occurred:

v There was an unexpected error (JRMapUnexpectedErr).

v An attempt to process the new map area failed in RSM
(JRIarvServ).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __map_init service stores the reason code.
The __map_init service stores a reason code only when the return value is −1.
The reason code further qualifies the return code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

Usage notes
1. The __map_init and __map_service callable services allow applications to

manage an unlimited number of data blocks, each of which can hold some
number of megabytes of data. They provide a fast way to connect up to
persistent memory for applications that need more shared memory than will fit
in the address space.

2. It is intended that an application will call the __map_init service once to create
the map area. The map area should be large enough for the biggest expected
usage.

3. A process may have one, and only one, map active at a given time. There is
currently no way to terminate a map area once it has been established without
terminating the establishing process.

4. At any point in time, an application can view as many data blocks as were
specified at initialization of the map area, and it can have many times this
number of data blocks defined and residing in kernel data spaces.

5. The map area may be shared among one or more processes. Sharing may
only be between a parent and any children that were created after the parent
created the map area with a call to the __map_init service. Children that were
created before the call do not have access to the map area, nor can they gain
access to it through any service.

__map_init (BPX1MMI)

Chapter 2. Callable services descriptions 341

6. A map area is not propagated across a spawn or preserved across an exec.
Unlike most attributes on fork, the map area that is inherited by a child is
empty; none of the map blocks are connected to data blocks, regardless of
how many data blocks are currently connected to the parent’s map area.

7. A map area persists until the process that created it terminates. Once that
process terminates, all map activity against the data blocks is shut down.
Currently connected blocks may continue to be used until they are
disconnected. New blocks cannot be created, nor can a process connect to an
existing data block. Once all data blocks have been disconnected by all
processes, the map area is ended. A process that has been detached from a
map area by disconnecting from all data blocks may create a new map area.

8. Each process that is sharing a map (parent, child, or grandchild) gets a map
area that is located at the same virtual storage address as the map originator
and that consists of map blocks that are the same size and number as those
of the originator. Each process that is sharing a map manages its own map
area in terms of the data blocks that are connected, and each process
determines which data block is viewed through which map area block.

9. The initial process forks worker processes, which inherit the map area at the
same virtual address. Because the map area is at the same virtual address,
storage blocks can be connected to the same block in map areas of different
worker processes, and pointers can be used to point to data in this and other
blocks. (This assumes that they are always connected at the same location in
the map area.)

10. As worker processes perform their tasks, they can request that new blocks of
storage be created in the map area. Each block has a token associated with it,
which allows other worker processes to connect to the same block. In this
respect, the map area acts like shared memory.

11. The worker processes can connect as many blocks to their map area as will fit.

12. When the worker process has no further need for a data block, it can
disconnect it from the map area. Following a delete request for a block, the
block is actually freed when the last worker process disconnects from it.

13. When a worker process has finished using a data block, the storage can be
freed. The data is actually freed when the last worker process disconnects
from that block.

14. Using the __map_init and __map_services, an application could create multiple
gigabytes of storage, of which only certain blocks are mapped into the worker
processes at a given time.

15. There is no explicit call to delete the map area.

Related services
v “__map_service (BPX1MMS) — Mapped Megabyte Area Services” on page 344

Characteristics and restrictions
Users of __map_service can create and manage a tremendous amount of data,
causing the kernel to consume a large amount of system resources. To prevent
abuse of such power, the __map_init service requires that the user be permitted to
the BPX.MAP FACILITY class profile. (The __map_service callable service does not
check for authority to BPX.MAP, because it does not perform any functions without
first completing a __map_init request.)

__map_init (BPX1MMI)

342 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1MMI (__map_init) Example”
on page 1167.

__map_init (BPX1MMI)

Chapter 2. Callable services descriptions 343

__map_service (BPX1MMS) — Mapped Megabyte Area Services

Function
The __map_service callable service performs the following operations on one or
more data blocks in a memory map area created by the __map_init service:

v Creates a new data block

v Connects to an existing data block

v Disconnects from a data block

v Frees the backing storage for a data block

v Changes the read or write permission for a data block

Before an application can use this service, it must invoke the __map_init callable
service to create a mapped megabyte area to hold its data blocks. See “__map_init
(BPX1MMI) — Create a Mapped Megabyte Area” on page 339.

Requirements

Authorization: Problem program or supervisor state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MMS (FunctionCode,
ParmListPtr,
ArrayCount,
Return_value,
Return_code,
Reason_code)

Parameters
FunctionCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value indicating the type of map function
the caller is requesting. The following is the only supported value:

__map_service (BPX1MMS)

344 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Constant Description
MMG_SERVICE Perform one or more operations on map blocks:

v Activate a new data block (MAP_NEWBLOCK)
v Connect to a data block (MAP_CONN)
v Disconnect from a data block (MAP_DISCONN)
v Free the backing storage for a data block

(MAP_FREE)
v Change the read or write permissions for a data

block (MAP_CNTL)

These constants are defined in the BPXYMMG macro. See “BPXYMMG — Map
Interface for _map_init and _map_service” on page 981.

ParmListPtr
Supplied parameter

Type: Address

Length: 4 bytes

The name of a 4-byte field that contains the address of the parameter list for
the specified function. See “BPXYMMG — Map Interface for _map_init and
_map_service” on page 981 for the mapping of the parameter lists.

ArrayCount
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of entries in the array that is
contained in the parameter list provided by ParmListPtr. The value specified in
the ArrayCount parameter must be greater than or equal to 1 and less than or
equal to 1000.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which __map_service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __map_service callable service stores the
return code. The __map_service callable service stores a return code only if the
return value is −1. See z/OS UNIX System Services Messages and Codes for a
complete list of possible return code values. The __map_service callable
service may return one of the following values in the Return_code parameter:

Return code Explanation
EEXIST A request was made to perform a service on a block, but either a

map area is not currently active for the process, or the map area
is in the process of being shut down (JRMapNotActive).

__map_service (BPX1MMS)

Chapter 2. Callable services descriptions 345

Return code Explanation
ENOMEM A request to create a new block or connect to an existing block

was made with a zero block address, specifying that the __map
service is to locate the address of a free map block, but there are
no unused blocks in the map area to satisfy the request
(JRMapOutOfBlocks).

EINVAL One of the following errors occurred:

v The FunctionCode parameter contains a value that is not a
supported function, or the service call parameter list field
MMG_SERVICETYPE contains an unsupported value
(JRMapBadFunction).

v A request was made to connect to a block, free the backing
storage for a block, or change the access state (control
operation) for a block, but the token provided does not match
that of any allocated block in the backing storage
(JRMapTokenNotFound).

v A MAP_NEWBLOCK or MAP_CONN request specified a map
area block that is already in use (JRMapBlockInUse).

v A request was made to connect to a block in the backing
storage that is currently marked to be freed. The connection is
not permitted (JRMapBlockFreePending).

v A request was made to disconnect from a map block, but the
block is not currently in use in the map area for this process
(JRMapBlockNotInUse).

v A reserved field contains nonzero data
(JRReservedValueInvalid).

v A block address was provided, but either it is not in the map
area or it is not on a map block boundary (JRBadBlkAddr).

v The array count was negative, zero, or greater than the
maximum number of array elements permitted (1000)
(JRMapArrayCountErr).

EFAULT An argument of this service contained an address that was not
accessible to the caller (JRMapBadStorage).

EMVSERR One of the following occurred:

v There was an unexpected error (JRMapUnexpectedErr).

v A request to create a new block, connect to an existing block,
disconnect from an existing block, or change the read or write
permissions for a block failed in RSM (JRIarvServ).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __map_service callable service stores the
reason code. The __map_service callable service stores a reason code only
when the return value is −1. The reason code further qualifies the return code
value. See z/OS UNIX System Services Messages and Codes for the reason
codes.

Usage notes
1. The __map_service callable service is designed to perform storage connects

and disconnects very quickly. No data movement occurs.

__map_service (BPX1MMS)

346 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

2. Input to the __map_service callable service is an array of requests. Each
request is processed in order until all requests have been successfully
processed, or until an error occurs. When an error occurs, some requests may
have been processed and some may not. An output flag on the array elements,
_mmg_ReqFail, indicates the requests that have and have not been processed.
The flag is off for array elements that have been processed successfully. The
flag is on for the request that failed and all requests that had not yet been
processed at the time of the failure.

3. The __map_service callable service allows an application to create a new data
block and specify which map area block is to be used to view this data block.
The map area block that is to contain the new data block must be free, that is,
not currently connected to another data block. The kernel assigns a unique
token to the new data block and returns this token to the application. The token
is later used to identify the data block to subsequent calls to __map_service.
The application may modify the new data block contained within its map block in
any way it chooses.

4. Storage blocks are initially connected in write mode. When a block is in write
mode, all worker processes that have the block connected have the block in
write mode. If the block access is changed to read-only, all worker processes
that have the block connected have the block in read-only mode.

5. Any areas within the map area that do not have a block connected are in the
hidden state. Any reference to storage in the hidden state triggers a SIGSEVG
signal.

6. If the initial process or a worker process forks, the child process inherits a map
area that is initialized to the hidden state.

7. When an application has finished using a data block, it may do one of several
things:

v If it no longer needs the data block, it can disconnect it from the map block
and request that the kernel free the data block. Once the data block has
been freed and its use count has gone to zero, the data no longer exists in
the kernel data space and is no longer available for processing.

v If the data is still valuable, but is not currently needed, the application can
request that the map area block be disconnected from the data block (without
freeing it). This leaves the data block in a kernel data space for later use,
while freeing the map area block for use in processing other data blocks. The
map area block is hidden as part of the disconnect, and an 0C4 abend
occurs if the application attempts to reference any storage in the map area
block.

Later, when a disconnected data block needs to be processed, the
application can call __map_service with a connect request, specifying the
token for the data block and the address of the map block it is to be attached
to for processing. The __map_service callable service attaches the specified
data block to the appropriate map block for use by the application. The block
is read-only or read/write based on its state as of the last control operation.

v A data block may be freed without having first been connected by a call to
__map_service with a free request, specifying the token of the data block.

v An application can control the access state (read or read/write) of a
connected data block by calling __map_service with a control request and
specifying the desired target state. Because special mechanisms are used for
the sharing of a data block between several processes, a state change is
against the data block and affects all users of the data block (not just the
current user’s data block). State changes persist across disconnects. If a data

__map_service (BPX1MMS)

Chapter 2. Callable services descriptions 347

block is made read-only and all users disconnect from the data block, the
next user to connect to the data block obtains the block read-only.

See the description of the __map_init callable service, “Usage notes” on page 341,
for more information about using these two related services.

Related services
v “__map_init (BPX1MMI) — Create a Mapped Megabyte Area” on page 339

Characteristics and restrictions
The caller of the __map_service service must be permitted to the BPX.MAP
FACILITY class profile.

Examples
For an example using this callable service, see “BPX1MMS (__map_service)
Example” on page 1169.

__map_service (BPX1MMS)

348 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mkdir (BPX1MKD) — Make a Directory

Function
The mkdir callable service creates a new, empty directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MKD,(Pathname_length,
Pathname,
Mode,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Character string

Character set: No restriction

Length: Fullword

The name of a fullword that contains the length of the full Pathname of the
directory. The name can be up to 1023 bytes long. Each component of the
name (between delimiters) can be up to 255 bytes long.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field, of length Pathname_length, that contains the full name of
the directory.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

mkdir (BPX1MKD)

Chapter 2. Callable services descriptions 349

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword in which the mode field is specified. The mode field
specifies the file type and the permissions you grant to yourself, to your group,
and to any user.

The file type is identified using the BPXYFTYP mapping macro and permissions
that are specified with the BPXYMODE mapping macro. See “BPXYFTYP —
File Type Definitions” on page 969 and “BPXYMODE — Map the Mode
Constants of the File Services” on page 986.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mkdir service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mkdir service stores the return code. The
mkdir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The mkdir service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process did not have search permission on some component

of Pathname, or did not have write permission on the parent
directory of the directory to be created.

EEXIST There is already a file or directory with the given Pathname. The
following reason code can accompany the return code:
JRMkDirExist.

EFBIG A request to create a directory is prohibited because the file size
limit for the process is set to 0.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

EMLINK The link count of the parent directory has already reached the
maximum defined for the system. Refer to the LINK_MAX in
“pathconf (BPX1PCF) — Determine Configurable Pathname
Variables Using a Pathname” on page 459, or to “fpathconf
(BPX1FPC) — Determine Configurable Pathname Variables
Using a Descriptor” on page 189.

mkdir (BPX1MKD)

350 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENAMETOOLONG Pathname contains more than 1023 characters; or a component

of the name is longer than 255 characters.
ENOENT Some component of Pathname does not exist; or the Pathname

parameter is blank.
ENOSPC The file system does not have enough space to contain a new

directory; or the parent directory cannot be extended.
ENOTDIR A component of Pathname is not a directory.
EROFS The parent directory of the directory to be created is on a

read-only file system. The following reason code can accompany
the return code: JRMkDirROnly.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mkdir service stores the reason code. The
mkdir service returns a Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. The file permission bits that are specified through the Mode parameter are

modified by the file creation mask of the calling process (see “umask
(BPX1UMK) — Set the File Mode Creation Mask” on page 875). They are then
used to set the file permission bits of the new directory.

2. The new directory’s owner ID is set to the effective user ID (UID) of the calling
process.

3. The file’s owner ID is set to the process’s effective user ID (UID). By default, the
owning GID is set to that of the parent directory. However, if the
FILE.GROUPOWNER.SETGID profile exists in the UNIXPRIV class, the owning
GID is determined by the set-gid bit of the parent directory, as follows:

v If the parent’s set-gid bit is on, the owning GID is set to that of the parent
directory.

v If the parent’s set-gid bit is off, the owning GID is set to the effective GID of
the process.

4. The mkdir service sets the access, change, and modification times for the new
directory. It also sets the change and modification times for the directory that
contains the new directory.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “umask (BPX1UMK) — Set the File Mode Creation Mask” on page 875

Characteristics and restrictions
There are no restrictions on the use of the mkdir service.

mkdir (BPX1MKD)

Chapter 2. Callable services descriptions 351

|
|
|
|

|
|

|
|

Examples
For an example using this callable service, see “BPX1MKD (mkdir) Example” on
page 1165.

mkdir (BPX1MKD)

352 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mknod (BPX1MKN) — Make a Directory, a FIFO, a Character Special,
or a Regular File

Function
The mknod callable service creates a new directory, a regular file, a character
special file, or a FIFO special file (named pipe).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MKN,(Pathname_length,
Pathname,
Mode,
Device_identifier,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pathname of the special
file to be created.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file. The length of this
field is specified in Pathname_length.

Pathnames can begin with or without a slash.

mknod (BPX1MKN)

Chapter 2. Callable services descriptions 353

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword in which the mode field is specified. The mode field
specifies the file type and the permissions you grant to yourself, to your group,
and to any user. Specify the file type with the BPXYFTYP mapping macro, and
specify permissions with the BPXYMODE mapping macro. See “BPXYFTYP —
File Type Definitions” on page 969 and “BPXYMODE — Map the Mode
Constants of the File Services” on page 986.

Device_identifier
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains a device identifier, or 0. The high-order 16
bits of Device_identifier is the device major number. The device major number
corresponds to a device driver that supports a class of devices—for example,
interactive terminals. The low-order 16 bits of Device_identifier is the device
minor number. The device minor number corresponds to a specific device within
the class of devices that are referred to by the device major number. Specify
Device_identifier if you are creating a character special file.

If a FIFO, directory, or regular file is being created, Device_identifier is ignored.

The device major numbers that are currently defined are:
1. Pseudoterminal master
2. Pseudoterminal slave
3. /dev/tty
4. /dev/null
5. /dev/fdn
6. Sockets
7. OCSRTY
8. OCSADMIN
9. /dev/console

For device major numbers 1, 2, and 7, the device minor number values range
between 0 and one less than the maximum number of pseudoterminal pairs
defined by the installation.

For device major numbers 3, 4, 6, 8, and 9, the device minor number is
ignored.

For device major number 5, the device minor number value represents the file
descriptor to be referred to. For example, device minor 0 refers to file descriptor
0.

mknod (BPX1MKN)

354 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mknod service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mknod service stores the return code. The
mknod service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The mknod service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process does not have permission to search some

component of Pathname; or does not have write permission for
the directory of the file to be created.

EEXIST A file or directory named Pathname already exists. The following
reason code can accompany the return code: JRSpFileExists.

EFBIG A request to create a new file is prohibited because the file size
limit for the process is set to 0.

EINVAL The file type specified in the Mode parameter is not 1, 2, 3 or 4.
The following reason code can accompany the return code:
JRMknodInvalidType.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or a component
Pathname has a name longer than 255 characters.

ENOENT A component of Pathname was not found; or no pathname was
specified. The following reason code can accompany the return
code: JREndingSlashMknod.

ENOTDIR A component of Pathname is not a directory.
EPERM The operation is not permitted. The operation requested requires

a superuser authority. The following reason code can accompany
the return code: JrUserNotPrivileged.

EROFS The directory of the file is on a read-only file system. The
following reason code can accompany the return code:
JRReadOnlyFilesetMknodReq.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

mknod (BPX1MKN)

Chapter 2. Callable services descriptions 355

The name of a fullword in which the mknod service stores the reason code. The
mknod service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The file permission bits of Mode are modified by the process’s file creation

mask (see “umask (BPX1UMK) — Set the File Mode Creation Mask” on
page 875). They are then used to set the file permission bits of the file being
created.

2. The file’s owner ID is set to the process’s effective user ID (UID). By default, the
owning GID is set to that of the parent directory. However, if the
FILE.GROUPOWNER.SETGID profile exists in the UNIXPRIV class, the owning
GID is determined by the set-gid bit of the parent directory, as follows:

v If the parent’s set-gid bit is on, the owning GID is set to that of the parent
directory.

v If the parent’s set-gid bit is off, the owning GID is set to the effective GID of
the process.

3. The mknod service sets the access, change, and modification times for the new
file. It also sets the change and modification times for the directory that contains
the new file.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “exec (BPX1EXC) — Run a Program” on page 133
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “umask (BPX1UMK) — Set the File Mode Creation Mask” on page 875

Characteristics and restrictions
When the mknod service is requested to create a character special file, a directory
or a regular file, it is a privileged operation and requires superuser authority.

Examples
For an example using this callable service, see “BPX1MKN (mknod) Example” on
page 1166.

mknod (BPX1MKN)

356 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|

|
|

|
|

mmap (BPX1MMP) — Map Pages of Memory

Function
The mmap callable service establishes a mapping between a process’s address
space and an HFS file.

Requirements

Authorization: Supervisor state or problem state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MMP,(Map_address,
Map_length,
Protect_options,
Map_type,
File_descriptor,
File_offset,
Return_value,
Return_code,
Reason_code)

Parameters
Map_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains zero, or the address of an area within the
address space at which the system is to attempt to map the requested file.

If the value of map_address is zero, the system has complete freedom in
selecting the location within the address space at which the requested file is
mapped.

If the value of map_address is not zero, the value that is specified is taken to
be a suggestion of an address near which the mapping is to be placed. For
non-MAP_FIXED requests, the system attempts to create the mapping at the
address specified by map_address. The address is truncated to the nearest
page boundary when a map type of MAP_SHARED or MAP_PRIVATE is
specified, and to the nearest segment or megabyte boundary when a map type
of MAP_MEGA is specified. If it is unsuccessful, it proceeds as if a
map_address value of zero were specified. For MAP_FIXED requests, the value
of map_address must be a multiple of the page size when MAP_PRIVATE or

mmap (BPX1MMP)

Chapter 2. Callable services descriptions 357

MAP_SHARED is specified, and a multiple of the segment size when
MAP_MEGA is specified. (If MAP_MEGA is specified, the value that is specified
in map_address must be equal to zero or equal to or greater than 16
megabytes, or the request is failed with EINVAL.) The MAP_FIXED request fails
with an EINVAL if any portion of the requested range is already in use for any
reason (including a previous mapping).

Map_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the size (in bytes) of the memory
mapping that is to be created. The length that is specified must be less than or
equal to the size of the file, and must not cause the address space REGION to
be exceeded. Mapping operations are performed over whole pages, or whole
segments when MAP_MEGA is specified. If the length is not a multiple of the
page size or segment size, the entire trailing portion of the page or segment (up
to the end of the file) is also mapped into the user storage. The trailing portion
of the page or segment in which an end of file occurs contains binary zeros.

Protect_options
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the value of the memory access
protection flags. The protect_options parameter indicates whether read, write,
execute, or some combination of accesses are permitted to the mapped data. It
can be set to either PROT_NONE, or a combination (using, for example, an
inclusive OR) of one or more of the other access protection flags. The constant
values for these flags are defined in the BPXYCONS macro. (See “BPXYCONS
— Constants Used by Services” on page 956.) For MAP_MEGA mappings, the
value that is specified for protect_options has a global effect on all current maps
to the same file-offset range. For example, if PROT_READ is specified, all
active maps have their protection for the same file-offset range changed to a
protection of read.

Constant Description
PROT_READ Mapped data can be read. The file descriptor must

have been previously opened with at least read
access.

PROT_WRITE Mapped data can be written and read. To select the
PROT_WRITE option, if a map_type of
MAP_SHARED is specified, the file descriptor must
have been previously opened with Read/Write
access. If MAP_PRIVATE is specified, the file
descriptor only needs to have been opened with
read access.

PROT_EXEC Mapped data can be executed. This option is
treated as if PROT_READ has been specified.

PROT_NONE Mapped data cannot be accessed.

Map_type
Supplied parameter

mmap (BPX1MMP)

358 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of the fullword that contains the mapping type. The constant values
for map_type are defined in the BPXYCONS macro.

Constant Description
MAP_SHARED All changes to the mapped data are shared.

Modifications to the mapped data are visible to all
other processes that map the same file-offset range.

MAP_PRIVATE All changes to the mapped data are private.
Modifications to the mapped data are visible only to
the calling process, and do not change the
underlying file. To use this option, the hardware
must provide the suppression-on-protection support.

MAP_MEGA All changes to the mapped data are shared.
Modifications to the mapped data are visible to all
other processes that map the same file-offset range.
The protection attributes of file-offset ranges are
common among all active maps. Changes to the
protection option of a file-offset range are global,
and immediately affect all active maps.

MAP_FIXED The mapping must be placed at exactly the location
specified by the map_address parameter.

You must specify MAP_SHARED, MAP_PRIVATE, or MAP_MEGA, but you
cannot specify more than one. MAP_FIXED is optional when any of the other
map options is specified. To specify both MAP_FIXED and MAP_SHARED, for
example, use a map_type value equal to the inclusive OR of these two
constants.

File_descriptor
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of an open file that is to
be mapped to process storage. The file descriptor is returned by “open
(BPX1OPN) — Open a File” on page 434. You can only specify the file
descriptor of a regular file.

For a MAP_MEGA mapping, if this is the first map to the file that is represented
by the specified file descriptor, the protect_options that can be specified for this
file by this map request (and by all future map or mprotect requests, by this or
any other process mapping to the same file) are determined by whether the file
was opened for read or for read and write. If the file was opened for read but
not write, only PROT_READ, PROT_EXEC, or PROT_NONE are allowed. If the
file was opened for write, any of the protection options are accepted. Once
PROT_WRITE is allowed for a file, all map requests must provide a file
descriptor that was opened for write, or the map request is failed.

File_offset
Supplied parameter

Type: Integer

Length: Doubleword

mmap (BPX1MMP)

Chapter 2. Callable services descriptions 359

The name of a doubleword that defines which part of the file is to be mapped. It
contains the offset into the file at which the map_length is to begin. The value
of file_offset must be a multiple of the page size when MAP_PRIVATE or
MAP_SHARED is specified, and a multiple of the segment size when
MAP_MEGA is specified. The offset plus the map_length must fall within the
current size of the file.

Return_value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the mmap service returns the address at which
the mapping was placed, if the request is successful; or −1, if it is not
successful.

Upon successful completion, the mmap service has established a mapping
between the process’s address space, at an address returned in the
return_value parameter, for map_length bytes, to the file that is represented by
the file_descriptor, at the specified file_offset, for a length of map_length bytes.
The specified access protections and mapping type are set for the mapped
range.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mmap service stores the return code. The
mmap service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values.

The mmap service can return one of the following values in the Return_code
parameter:

Return_code Explanation
EACCES One of the following conditions occurred:

v The file descriptor is not open for read, regardless of the
protection specified. (JRRFileNoRead)

v The file descriptor is not open for write, and PROT_WRITE
was specified for a MAP_SHARED type mapping.
(JRWFileRDOnly)

v A MAP_MEGA request specified PROT_WRITE, but the first
active map to a file was done with a file descriptor that was
not open for write. (JRWFileMapRDonly)

EAGAIN The caller is not in PSW key 8. (JRNotKey8)
EBADF One of the following conditions occurred:

v The file specified by the file_descriptor parameter does not
represent a standard file. (JRNotStdFile)

v The file specified by the file_descriptor parameter is not a valid
open file descriptor. (JRs belong to fstat() or w_ioctl())

mmap (BPX1MMP)

360 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL One of the following conditions occurred:

v MAP_FIXED was specified, and the requested range was not
available. The range could be previously allocated, or it could
be outside the address space region. (JRAddressNotAvailable)

v MAP_FIXED was specified, and the value of the map_address
parameter is not a multiple of the page size. (JRNotPage)

v The value of the file_offset parameter is not a multiple of the
page size. (JRNotPage)

v The value specified in the map_type parameter is incorrect.
(JRMmapBadType)

v The value specified in the protect_options parameter is
incorrect. PROT_NONE cannot be specified in combination
with any other options. (JROptNotSupp)

v The file was extended and subsequently mapped beyond the
original EOF point while an existing memory map containing
the original EOF point was outstanding. (JRMmapOverEof)

v The file_offset value must be zero or larger.
(JRNegativeValueInvalid)

v An attempt was made to map a file that is already mapped,
but with a different specification of MAP_MEGA. At any point
in time, a file may be mapped with or without the MAP_MEGA
option, but not both with and without the MAP_MEGA option.

EMFILE The number of mapped regions would exceed a system limit:

v The system-wide limit on the amount of memory consumed by
memory-mapped areas was exceeded.
(JRMmapStgExceeded)

v The per-process limit on the number of outstanding
memory-mapped areas was exceeded. This limit is the same
as the limit on the number of files a process can have open at
any given time. (JRProcMaxMmap)

ENODEV The file descriptor refers to a file for which mmap is not
supported (for example, a terminal).
(JRNotSupportedForFileType)

ENOMEM One of the following conditions occurred:

v MAP_FIXED was specified, and the requested range
(map_address, map_address + map_length) exceeds that
allowed for the address space of a process.
(JRAddressNotAvailable)

v There is insufficient room in the address space to effect the
mapping. (JRNoUserStorage)

v There is insufficient shared storage available in the system to
satisfy this request. (JRShrStgStorage)

ENOSYS MAP_PRIVATE was specified, but the required
suppression-on-protection hardware support was not available.
(JRHardware)

ENXIO The addresses in the range (file_offset, file_offset + map_length)
are not valid for the specified file descriptor.
(JRMmapFileAddress)

Reason_code
Returned parameter

Type: Integer

Length: Fullword

mmap (BPX1MMP)

Chapter 2. Callable services descriptions 361

The name of a fullword in which the mmap service stores the reason code. The
mmap service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The mmap service supports only regular files. Any other type of file is not

processed.

2. The mmap resources are maintained at a process level. This means that the
termination of the thread that invoked the mmap service does not cause the
associated mapping to be removed. The mmap resources are freed when the
process ends.

3. The mmap service adds an extra reference to the file that is associated with
the specified file descriptor that is not removed by a subsequent close on that
file descriptor. This reference is removed when there are no more mappings to
the file. The access level (read/write) that was established when the file was
opened is enforced for the life of the memory-mapped area, independent of
subsequent activity that occurs upon that file descriptor.

4. The storage that is allocated by the mmap service is allocated in
fetch-protected key 8 storage. It is allocated with memory that can have both
virtual addresses and real addresses above the 16-MB line. The storage
cannot be freed by an unauthorized user. The allocated storage comes out of
the user region.

5. Specifying a target Map_address can have a negative impact on the address
space. For example, specifying a Map_address at the top of the private area,
below the 16-MB line, could prevent system code from successfully obtaining
below-the-line storage.

6. All tasks and SRBs within the address space that issued the mmap request
can access the memory allocated by the mmap service, but only threads within
the process that created the mmap area are permitted to invoke any
subsequent memory map services against that mmap instance. The protection
level that is established by this process is enforced for all accesses that are
made to that range within the address space.

7. All memory-mapped areas, along with their mapping types and mprotect
established access levels, are propagated to the child process during fork
processing. The user is responsible for serialization across multiple threads.

8. If MAP_PRIVATE is specified, the initial write reference to the memory-mapped
region creates a private copy of the memory-mapped page, and redirects the
mapping to the copy. Note that the copy is not created until the first write. Until
the first write, updates that are made to that region by other processes that are
mapped by MAP_SHARED with the same file-offset range are visible.

9. Applications that use the MAP_PRIVATE support may need to be aware of
page boundaries when updates are performed, because an update to a single
byte causes an entire page to no longer receive updates that are made by
other processes mapped with the same file-offset range.

10. To serialize access to a file-offset range that is being accessed by multiple
processes, you can use lockf, fcntl, or semaphores. Serialization should be
obtained when the incore copy of the data is being updated, or when the file is
being updated using msync.

11. If a sparse file is memory-mapped, accessing a page that has never been
written to in the file causes a page of binary zeros to be generated.

mmap (BPX1MMP)

362 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

12. The mmap service allows access to HFS files through address space
manipulation, instead of through the read/write services. After the file is
mapped, the process can access it by using the data at the address to which
the file was mapped.

The following code sample illustrates how an existing program might be
changed to use the mmap service:
fd = open(...)
lseek(fd, file_offset)
read(fd, buffer, length)

/* ...(use data in buffer) ... */

becomes

fd = open(...)
address = mmap (0, length, PROT_READ, MAP_PRIVATE, fd, file_offset)

/* ...(use data at address) ... */

13. Constants used for this callable service are defined in the BPXYCONS macro.
See “BPXYCONS — Constants Used by Services” on page 956.

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “ftruncate (BPX1FTR) — Change the Size of a File” on page 203
v “mprotect (BPX1MPR) — Set Protection of Memory Mapping” on page 373
v “msync (BPX1MSY) — Synchronize Memory with Physical Storage” on page 392
v “munmap (BPX1MUN)— Unmap Previously Mapped Addresses” on page 396
v “open (BPX1OPN) — Open a File” on page 434
v “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 633
v “setrlimit (BPX1SRL) — Set Resource Limits” on page 705
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824

Characteristics and restrictions
1. The MAP_PRIVATE support requires the suppression-on-protection hardware

feature.

2. The same file-offset range can be mapped multiple times within a given address
space (to different virtual addresses), each with unique protection levels. A
memory-mapped file-offset range can partially or fully overlap other existing
mapped file-offset ranges. The above support also holds true across multiple
processes.

3. The mmap service can never be used to extend or truncate the size of a file. If
a page is updated beyond the EOF mark of the original memory-mapped file,
the portion beyond the EOF mark is not written to the file.

4. A file that is memory-mapped can be appended by another process while the
memory map is active; no overlays will occur. However, the newly created area
cannot be mapped across the original EOF point, unless either the EOF point
falls on a 4K boundary, or the original memory mapping is unmapped.

5. When a given file-offset is memory-mapped, unpredictable results will occur if
the file is truncated to a point which resides within the memory mapped range.
These results may include the abnormal termination of the task that is
accessing the memory-mapped area.

6. If other processes modify the contents of the file that is using the write service
while mapped ranges are active for that file-offset, results will be unpredictable,

mmap (BPX1MMP)

Chapter 2. Callable services descriptions 363

unless specific serialization actions are taken by the user. See “msync
(BPX1MSY) — Synchronize Memory with Physical Storage” on page 392 for
details.

7. There is a limit on the number of active memory maps that a process can have
outstanding at any given time. The system administrator defines this limit by
specifying the maximum number of files a process can have open. Even though
a single value is set that limits both files and mmaps, the two limits are enforced
independently of one another.

8. Memory maps with the MAP_MEGA option use storage in units of megabytes.
Extensive use of MAP_MEGA on very small files, or on small ranges of larger
files, can be wasteful. MAP_MEGA is best used on large files.

9. Memory maps of very large files by several processes can realize substantial
savings of system common area usage when you use the MAP_MEGA option.

Examples
For an example using this callable service, see “BPX1MMP (mmap) Example” on
page 1168.

mmap (BPX1MMP)

364 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mount (BPX1MNT) — Make a File System Available

Function
The mount callable service mounts a file system, making the files in it available for
use.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MNT,(MountPoint_length,
MountPoint_name,
File_system_name,
File_system_type,
Mount_mode,
Parm_length,
Parm,
Return_value,
Return_code,
Reason_code)

Parameters
MountPoint_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of MountPoint_name.

MountPoint_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the MountPoint_length parameter

The name of a field that contains the name of the mount point. The length of
this field is specified in MountPoint_length.

File_system_name
Supplied parameter

Type: Character string

mount (BPX1MNT)

Chapter 2. Callable services descriptions 365

Character set: Printable characters

Length: 44 bytes

The name of a 44-character field that identifies the file system to be mounted.
The name must be left-justified and padded with blanks.

File_System_type
Supplied parameter

Type: Character string

Character set: Printable characters

Length: 8 bytes

The name of a field that contains the 8-character file system type. This
corresponds to the type of file system that was defined by a FILESYSTYPE
parameter of the BPXPRMxx parmlib member.

Mount_mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains binary flags. The flags can show the
mount mode (read or read/write), and request that the mount complete
synchronously.

This parameter is mapped by the macro BPXYMTM; see “BPXYMTM — Map
the Modes for mount and unmount” on page 989 for details.

Parm_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the file-system-specific
parameters (Parm). The maximum length is 1024 bytes.

Parm
Supplied parameter

Type: Character string

Character set: No restriction

Length: Parm_length bytes

The name of a field, of length Parm_length, that contains the
file-system-specific parameters. These have a maximum of 1024 bytes.

Return_value
Returned parameter

Type: Integer

Length: Fullword

mount (BPX1MNT)

366 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the mount service returns 0 or 1 if the request
is successful, or −1 if it is not successful. A Return_value of 1 indicates that the
mount will complete asynchronously.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mount service stores the return code. The
mount service always returns Return_code if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The mount service can return one of the following values in
the Return_code parameter:

Return_code Explanation
EBUSY The file system to mount is quiesced; or no more locks are

available. The following reason codes can accompany the return
code: JROutOfLocks, JRQuiesced.

EINVAL There was a parameter error. Verify the Mount_mode and
File_system_type. Other reasons for this error include:

v The mount point is a root of a file system.

v The file system is already mounted.

v parm_length is too long.

v A mounted file system has a real or alias name that conflicts
with this mount request. One of these situations occurred:

– An HFS file system was previously mounted using an alias
data set name, and the corresponding real data set name
conflicts with the file system name specified by this mount
request.

– The file system name specified on this HFS mount request
is an alias data set name that has a real data set name
which conflicts with the name of a previously mounted file
system. Resolve the duplicate file system names.

Resolve the duplicate file system names and reissue the
mount request.

The following reason codes can accompany the return code:
JROutOfLocks, JRQuiesced, JRIsMountedRealName.

EIO An I/O error occurred.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENOENT The mount point does not exist. The following reason code can
accompany the return code: JRMountPt.

ENOMEM There is not enough storage space available to mount this file
system.

ENOTDIR The mount point is not a directory. The following reason code can
accompany the return code: JRMountPt.

EPERM Insufficient authority to do the mount.

Reason_code
Returned parameter

Type: Integer

mount (BPX1MNT)

Chapter 2. Callable services descriptions 367

|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

Length: Fullword

The name of a fullword in which the mount service stores the reason code. The
mount service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The mount service effectively creates a virtual file system. After a file system is

mounted, references to the pathname that is mounted refer to the root directory
on the mounted file system.

2. A filesystem can be mounted at only one point.

3. Parameter specifics for the HFS physical file system:

v The File_system_name value must be uppercase, and must be the name of
the data set.

v The Parm operand is not used.

4. The physical file system may complete the mount operation asynchronously,
which is indicated by a Return_value of 1. The w_getmntent callable service can
then be used to determine if the file system has been mounted.

Related services
v “umount (BPX1UMT) — Remove a Virtual File System” on page 877
v “w_getmntent (BPX1GMN) — Get Information on Mounted File Systems” on

page 905

Characteristics and restrictions
1. In order to mount a file system, the caller must be an authorized program, or

must be running for a user with appropriate privileges.

2. Normally, an EBUSY is returned when a file system is quiesced. In a sysplex,
however, the mount() syscall suspends until the file system becomes
unquiesced.

Examples
For an example using this callable service, see “BPX1MNT (mount) Example” on
page 1170.

mount (BPX1MNT)

368 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

__mount (BPX2MNT) — Make a File System Available

Function
The __mount callable service mounts a file system, making the files in it available
for use.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX2MNT,(Mnte_length,
Mnte,
Return_value,
Return_code,
Reason_code)

Parameters
Mnte_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Mnte and its associated data
structures, such as parameter string length.

Mnte
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Mnte_length parameter

The MNTE data structure. This is composed of a header field, the body field
and an additional area for the parameter string if one is being used. This
structure is mapped by BPXYMNTE (see “BPXYMNTE — Map Response and
Element Structure of w_getmntent” on page 983). See the “Usage notes” below
for the fields in this data structure that must be set for the different __mount
requests.

Return_value
Returned parameter

Type: Integer

__mount (BPX2MNT)

Chapter 2. Callable services descriptions 369

Length: Fullword

The name of a fullword in which the __mount service returns 0 or 1 if the
request is successful, or −1 if it is not successful. A Return_value of 1 indicates
that the mount will complete asynchronously.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __mount service stores the return code.
The __mount service always returns Return_code if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The __mount service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBUSY The file system to be mounted is quiesced; or no more locks are

available. The following reason codes can accompany the return
code: JROutOfLocks, JRQuiesced.

EINVAL There was a parameter error. Verify the Mount_mode and
File_system_type (specified in the MNTE data structure). Other
reasons for this error include:

v The mount point is a root of a file system.

v The file system is already mounted.

v parm_length is too long.

v A mounted file system has a real or alias name that conflicts
with this mount request. One of these situations occurred:

– An HFS file system was previously mounted using an alias
data set name, and the corresponding real data set name
conflicts with the file system name specified by this mount
request.

– The file system name specified on this HFS mount request
is an alias data set name that has a real data set name
which conflicts with the name of a previously mounted file
system. Resolve the duplicate file system names.

Resolve the duplicate file system names and reissue the
mount request.

The following reason codes can accompany the return code:
JROutOfLocks, JRQuiesced, JRIsMountedRealName.

EIO An I/O error occurred.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENOENT The mount point does not exist. The following reason code can
accompany the return code: JRMountPt.

ENOMEM There is not enough storage space available to mount this file
system.

ENOTDIR The mount point is not a directory. The following reason code can
accompany this return code: JRMountPt.

EPERM Insufficient authority to do the mount.

__mount (BPX2MNT)

370 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __mount service stores the reason code.
The __mount service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The __mount service effectively creates a virtual file system. After a file system

is mounted, references to the pathname that is mounted refer to the root
directory on the mounted file system.

2. A file system can be mounted at only one point.

3. Parameter specifics for the HFS physical file system:

v The File_system_name value must be uppercase, and must be the name of
the data set.

4. The physical file system may complete the __mount operation asynchronously,
which is indicated by a Return_value of 1. The w_getmntent callable service can
then be used to determine if the file system has been mounted.

5. The MNTE eye-catcher must be set to MNT2. Additionally, the length of the
body following the header must be set into MNTEHBLEN, the body length field
in the header.

v When setting character string values like SYSNAME or FROMSYSNAME, in
general, these fields are set with the strings left justified and blank padded.
Should data in these fields be unrequired or absent, the values should be set
to nulls. Consult the data structure definition for specifics.

v When requesting a change to an already mounted file system(s), the
MNTENTCHANGE bit must be set on. Additionally, when requesting that the
AUTOMOVE setting be changed, the MNTENTNEWAUTO bit must be set on.

v When requesting a mount of a file system, as opposed to a change, none of
the MNTENTRFLAGS are expected to be set on.

v When requesting that a collection of file systems be moved from one system
to another, the following fields must be set: FROMSYS (to indicate where the
file system(s) are to be moved from); SYSNAME (to indicate where the file
system(s) are to be relocated); and Rflags (to indicate that this is a change
mount request). The other fields will be ignored.

v When requesting a single file system move, the mount point or the file
system name must be specified. Do not specify both. Additionally, the name
of the system that the file system should be moved to should be specified in
SYSNAME. If you plan to change an AUTOMOVE setting, set the new value
in the bit of the FSmode word. The Rflags setting will specify that
MNTENTCHANGE=ON, which indicates that the change is a chmount
request. You should set MNTENTNEWAUTO ONLY if the request intends to
change the AUTOMOVE setting to what is reflected in the
MNTENTFSNOAUTOMOVE value.

For more information on SYSNAME and AUTOMOVE, see z/OS UNIX
System Services Planning. The chmount command is explained in z/OS
UNIX System Services Command Reference.

__mount (BPX2MNT)

Chapter 2. Callable services descriptions 371

v When requesting a mount on a system other than the one the mount
command is executed on, the MNTENTSYSNAME field will denote the
system that will ″own″ the file system. Fields that must be set to request a
mount are: Filemode settings (read, write, etc.), FILESYSNAME,
FILESYSTYPE, and pathname. Other fields that may be optionally set are:
parameter string and systemname.

Related services
v “umount (BPX1UMT) — Remove a Virtual File System” on page 877
v “w_getmntent (BPX1GMN) — Get Information on Mounted File Systems” on

page 905

Characteristics and restrictions
1. In order to mount a file system, the caller must be an authorized program, or

must be running for a user with appropriate privileges.

2. A file system may not be moved while it is being exported by the DFS™ server.
It must first be unexported from DFS. For information about how to unexport a
file system, see z/OS Distributed File Service DFS Administration, SC24-5915.

3. Normally, an EBUSY is returned when a file system is quiesced. In a sysplex,
however, the __mount() syscall suspends until the file system becomes
unquiesced.

Examples
For an example using this callable service, see “BPX2MNT (__mount) Example” on
page 1171.

__mount (BPX2MNT)

372 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mprotect (BPX1MPR) — Set Protection of Memory Mapping

Function
The mprotect callable service changes the access protection of a memory mapping
for the caller’s address space.

Requirements

Authorization: Supervisor state or problem state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MPR,(Map_address,
Map_length,
Protect_options,
Return_value,
Return_code,
Reason_code)

Parameters
Map_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the starting address in the address space
at which the access protection of the mapping is to be changed. The value of
map_address must be a multiple of the page size.

Map_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the size (in bytes) of the mapping that is
to have its access protection modified. The length can be the size of the whole
mapping, or a part of it. If the specified length is not in multiples of the page
size, it is rounded up to a page boundary.

Protect_options
Supplied parameter

Type: Integer

Length: Fullword

mprotect (BPX1MPR)

Chapter 2. Callable services descriptions 373

The name of the fullword that contains the new value of the access protection
flags for the specified mapping. The access protection flags can be changed to
either PROT_NONE or a combination (for example, by using an inclusive OR)
of one or more of the other flags (such as PROT_READ, PROT_WRITE, or
PROT_EXEC). These flags are defined in the BPXYCONS macro. (See
“BPXYCONS — Constants Used by Services” on page 956.)

Constant Description
PROT_READ Mapped data can be read.
PROT_WRITE Mapped data can be written and read.
PROT_EXEC Mapped data can be executed. PROT_EXEC is

treated in the same way as PROT_READ.
PROT_NONE Mapped data cannot be accessed.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mprotect service returns the value of 0 if
the request is successful, or −1 if it is not successful.

Upon successful completion, the mprotect service has changed the access
protections on the mapping specified by the range (map_address, map_address
+ map_length) to those specified by the protect_options parameter.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mprotect service stores the return code.
The mprotect service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values.

The mprotect service can return one of the following values in the Return_code
parameter:

Return_code Explanation
EACCES The access protection value is incorrect; it violates the access

permission of the process to the underlying file. The following
condition occurred:

v The original file is not open for write, and PROT_WRITE is
specified for a MAP_SHARED type mapping.

EAGAIN The caller is in the incorrect key. (JRNotKey8)
EINVAL One of the following conditions occurred:

v The value of map_address is not a multiple of the page size.
(JRNotPage)

v The input address or length is negative.
(JRNegativeValueInvalid)

v The protection options specified are not valid. (JROptNotSupp)

mprotect (BPX1MPR)

374 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOMEM One of the following conditions occurred:

v Addresses in the range (map_address, map_address +
map_length) are not valid for the address space.
(JRAddressNotAvailable)

v One or more specified pages are not mapped. (JRNotMapped)

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mprotect service stores the reason code.
The mprotect service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Access protection only acts on full pages. If the map_length parameter contains

a value that is not a multiple of the page size, the length is rounded up to a full
page.

2. The protection level that is established by the mprotect service is address-space
wide in scope, not just process specific. The scope is system-wide when the
protection is changed for a MAP_MEGA map. All active maps to the same
file-offset range are affected by the request.

3. Constants used for this callable service are defined in the BPXYCONS macro.
See “BPXYCONS — Constants Used by Services” on page 956.

Related services
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824
v “mmap (BPX1MMP) — Map Pages of Memory” on page 357
v “msync (BPX1MSY) — Synchronize Memory with Physical Storage” on page 392
v “munmap (BPX1MUN)— Unmap Previously Mapped Addresses” on page 396

Characteristics and restrictions
The range specified (map_address, map_address + map_length) must not contain
any areas that are not currently memory mapped. It may, however, contain areas
that have been unmapped, in which case no action will be taken against the
unmapped areas.

Examples
For an example using this callable service, see “BPX1MPR (mprotect) Example” on
page 1175.

mprotect (BPX1MPR)

Chapter 2. Callable services descriptions 375

msgctl (BPX1QCT) — Perform Message Queue Control Operations

Function
The msgctl service provides a variety of message control operations as specified by
the Command parameter. These functions include reading and changing message
variables within the msgid_ds data structure, and removing a message queue from
the system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QCT,(Message_Queue_ID,
Command,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
Message_Queue_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the message queue identifier.

Command
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that indicates the message command to be
executed. For the structure that contains these constants, see “BPXYIPCP —
Map InterProcess Communication Permissions” on page 978. The values for
Command are:

Ipc_STAT Obtain status information about the message queue that is
identified by the Message_Queue_ID parameter, if the current
process has read permission. This information is stored in the
area that is pointed to by argument Buffer and mapped by area
MSGID_DS data structure. For the data structure, see

msgctl (BPX1QCT)

376 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

“BPXYMSG — Map InterProcess Communication Message
Queues” on page 986, MSQID_DS DSECT.

Ipc_SET Set the value of the IPC_UID, IPC_GID, IPC_MODE and
MSG_QBYTES for associated Message_queue_ID. The values
that are to be set are taken from the MSQID_DS data structure
that is pointed to by argument Buffer. Any value for IPC_UID
and IPC_GID may be specified. Only mode bits that are defined
by BPX1QGT under Message_Flag argument may be specified
in the IPC_MODE field. This Command can only be executed
by a task that has an effective user ID equal either to that of a
task with appropriate privileges, or to the value of IPC_CUID or
IPC_UID in the MSQID_DS data structure that is associated
with Message_Queue_ID. This information is taken from the
buffer that is pointed to by the Buffer parameter. For the data
structure, see “BPXYMSG — Map InterProcess Communication
Message Queues” on page 986, MSQID_DS DSECT.

Ipc_RMID Remove the message identifier that is specified by
Message_Queue_ID from the system, and destroy the message
queue and MSQID_DS data structure that are associated with
it. This Command can only be executed by a process that has
an effective user ID equal either to that of a process with
appropriate privileges, or to the value of IPC_CUID or IPC_UID
in the MSQID_DS data structure that is associated with
Message_Queue_ID.

Buffer
Parameter supplied and returned

Type: Address

Length: Fullword

The name of the fullword that contains the address of the buffer into which or
from which the message queue information will be copied. This buffer is
mapped by MSQID_DS. (See “BPXYMSG — Map InterProcess Communication
Message Queues” on page 986.)

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgctl service returns −1 or 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgctl service stores the return code. The
msgctl service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The msgctl service can return one of the following values in the
Return_code parameter:

msgctl (BPX1QCT)

Chapter 2. Callable services descriptions 377

Return_code Explanation
EACCES The command specified was Ipc_STAT, and the calling process

does not have read permission. The following reason code can
accompany the return code: JRIpcDenied.

EINVAL One of the following occurred:

v Message_Queue_ID is not a valid Message queue identifier.

v The Command parameter is not a valid command.

v The mode bits were not valid (SET). The following reason
codes can accompany the return code: JRIpcBadFlags,
JRMsqQBytes, or JRIpcBadID.

EPERM One of the following occurred:

v The command specified was Ipc_RMID or Ipc_SET. The
effective user ID of the caller is not that of a process with
appropriate privileges, and is not the value of IPC_CUID or
IPC_UID in the MSQID_DS data structure that is associated
with Message_Queue_ID.

v The command specified was Ipc_SET, and an attempt is being
made to increase MSG_QBYTES. The effective user ID of the
caller does not have superuser privileges. The following
reason codes can accompany the return code: JRIpcDenied or
JRMsqQBytes.

EFAULT The Buffer parameter specified an address that caused the
syscall to program check. The following reason code can
accompany the return code: JRBadAddress.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgctl service stores the reason code. The
msgctl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. Changing the access permissions only affects message queue syscall requests

that occur after the msgctl service has returned. The msgsnd and msgrcv
services, which are waiting while the permission bits are changed by msgctl, are
not affected.

2. Ipc_SET can change permissions, and may affect the ability of a thread to use
the next message queue syscall.

3. Quiescing a message queue stops additional messages from being added,
while allowing existing messages to be received. You can quiesce a message
queue by clearing (Ipc_SET) write permission bits.

4. You can also quiesce a message queue by reducing MSG_QBYTES (Ipc_SET)
to zero. (Note: It would take a superuser to re-raise the limit.) Requesters are
told EAGAIN or wait.

5. When a message queue ID is removed (Ipc_RMID) from the system, all waiting
threads regain control with RV=-1, RC=EIDRM, and RC=JRIpcRemoved.

6. If you do not wish to change all the fields, first initialize (Ipc_STAT) the buffer,
change the desired fields, and then make the change (Ipc_SET).

msgctl (BPX1QCT)

378 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

7. For Command Ipc_RMID, the remove is complete by the time control returns to
the caller.

Related services
v “msgget (BPX1QGT) — Create or Find a Message Queue” on page 380
v “msgrcv (BPX1QRC) — Receive from a Message Queue” on page 384
v “msgsnd (BPX1QSN) — Send to a Message Queue” on page 388

Characteristics and restrictions
The invoker is restricted by ownership, read and read-write permissions defined by
msgget and msgctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1QCT (msgctl) Example” on
page 1207.

msgctl (BPX1QCT)

Chapter 2. Callable services descriptions 379

msgget (BPX1QGT) — Create or Find a Message Queue

Function
The msgget function returns a message queue ID that it created or that the user is
allowed to access.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QGT,(Key,
Message_Flag,
Return_value,
Return_code,
Reason_code)

Parameters
Key

Supplied parameter

Type: Integer

Length: Fullword

Identification for this message queue. This can be a user-defined value that
serves as a lookup value to determine if this message queue already exists, or
the reserved value Ipc_PRIVATE.

Message_Flag
Supplied parameter

Type: Integer

Length: Fullword

Valid values for this field include any combination of the following (additional
bits cause an EINVAL):

Ipc_CREAT Creates a message queue if the key that is specified does not
already have an associated ID. Ipc_CREATE is ignored when
Ipc_PRIVATE is specified.

Ipc_EXCL Causes the msgget function to fail if the key that is specified
has an associated ID. Ipc_EXCL is ignored when Ipc_CREAT is
not specified, or when Ipc_PRIVATE is specified.

msgget (BPX1QGT)

380 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Ipc_RcvTypePID
Creates a message queue that can only be read from (by the
msgrcv service) when Message_Type is the process ID of the
invoker. This restriction does not apply if the caller of the
msgrcv service has the same effective UID as the creator of the
message queue.

Ipc_SndTypePID
Creates a message queue that can only be written to (by the
msgsnd service) when Message_Type is the process ID of the
invoker. This restriction does not apply if the caller of the
msgsnd service has the same effective UID as the creator of
the message queue.

Ipc_PLO1 Use PLO for serialization.

Ipc_PLO2 Use PLO if practical.

S_IRUSR Permits the process that owns the message queue to read it.

S_IWUSR Permits the process that owns the message queue to alter it.

S_IRGRP Permits the group that is associated with the message queue to
read it.

S_IWGRP Permits the group that is associated with the message queue to
alter it.

S_IROTH Permits others to read the message queue.

S_IWOTH Permits others to alter the message queue.

The values that begin with an ″Ipc_″ prefix are defined in BPXYIPCP, and are
mapped onto S_TYPE, which is in BPXYMODE.

The values that begin with an ″S_I″ prefix are defined in BPXYMODE, and are
a subset of the access permissions that apply to files.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgget service returns −1 or the message
queue identifier.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgget service stores the return code. The
msgget service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The msgget service can return one of the following values in the
Return_code parameter:

msgget (BPX1QGT)

Chapter 2. Callable services descriptions 381

Return_code Explanation
EACCES A message queue identifier exists for the Key parameter, but

operation permission, as specified by the low-order 9– bits of the
Message_Flag parameter, is not granted (the ″S_″ items). The
following reason code can accompany the return code:
JRIpcDenied.

EEXIST A message queue identifier exists for the Key parameter, and
both Ipc_CREAT and Ipc_EXCL are specified. The following
reason code can accompany the return code: JRIpcExists.

EINVAL The Message_Flag operand included bits that are not supported
by this function. The following reason code can accompany the
return code: JRIpcBadFlags.

ENOENT A message queue identifier does not exist for the Key parameter,
and Ipc_CREAT was not set. The following reason code can
accompany the return code: JRIpcNoExist.

ENOSPC The system limit on the number of message queue IDs has been
reached. The following reason code can accompany the return
code: JRIpcMaxIDs.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgget service stores the reason code.
The msgget service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. As long as a thread knows the message queue ID, it may issue a msgctl,

msgsnd, or msgrcv request (msgget is not needed).

2. This function returns the message queue identifier that is associated with the
Key parameter.

3. This function creates a data structure that is defined by MSQID_DS if one of
the following is true:
v The Key parameter is equal to Ipc_PRIVATE.
v The Key parameter does not already have a message queue identifier

associated with it, and Ipc_CREAT is set.

4. Upon creation, the data structure that is associated with the new message
queue identifier is initialized as follows:
v Ipc_CUID and Ipc_UID are set to the effective user ID of the calling task.
v Ipc_CGID and Ipc_GID are set to the effective group ID of the calling task.
v The low-order 9-bits of Ipc_MODE are equal to the low-order 9-bits of the

Message_Flag parameter.
v MSG_QBYTES is set to the system limit that is defined by parmlib.

5. The message queue is removed from the system when BPX1QCT (msgctl) is
called with command Ipc_RMID.

6. Users of message queues are responsible for removing them when they are
no longer needed. Failure to do so ties up system resources.

7. In a client/server environment, two message queues could be used: one
inbound to the server, created with Ipc_SndTypePID, and the other outbound
from the server, created with Ipc_RcvTypePID. This arrangement guarantees

msgget (BPX1QGT)

382 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

that the server knows the process ID of the client and that the client is the only
process that receives the server’s returned message. The server could call the
msgrcv service with PID=0 to see if there are any messages that belong to
process IDs that have gone away.

8. Message_Flags Ipc_PLO1 and Ipc_PLO2 are ignored if the PLO (Perform
Lock Operation) instruction is not present on the hardware. (See SCCBPLO in
IHASCCB and the Ipc_PLOInUse bit in the S_MODE byte returned with
w_getipc.)

9. Performance of the PLO instruction for serialization varies with the msgrcv()
type, the number of messages on the queue, and the number of tasks that are
doing msgsnd and msgrcv requests. A msgrcv request with a message type
that is less than zero and that has long message queues is expected to be a
poor performer. A msgrcv request with a message type that is greater than
zero is expected to be an equivalent or good performer. A msgrcv request with
a message type equal to zero is expected to be a very good performer.

10. Message queues that are created with Ipc_RcvTypePID, Ipc_SndTypePID,
Ipc_PLO1 and Ipc_PLO2 show these bits, and may show the Ipc_PLOInUse
bit in the S_MODE byte that is returned with the w_getipc request.

11. Message queue PLO serialization is not compatible with the use of select() for
message queues. When the msgrcv service detects a select() for a message
queue, serialization is changed to use traditional latches.

12. Performance runs should be made with Ipc_PLO1, because Ipc_PLO2 could
switch to latch serialization, and the user would not be aware of this. Upon the
first msgrcv() with a message type that is less than zero, the message queue
will attempt to switch to latch serialization.

Related services
v “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on

page 376
v “msgrcv (BPX1QRC) — Receive from a Message Queue” on page 384
v “msgsnd (BPX1QSN) — Send to a Message Queue” on page 388
v “w_getipc (BPX1GET) — Query Interprocess Communications” on page 901

Characteristics and restrictions
1. There is a maximum number of message queues that are allowed in the

system.

2. The invoker is restricted by ownership, read, and read-write permissions that
are defined by msgget and msgctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1QGT (msgget) Example” on
page 1209.

msgget (BPX1QGT)

Chapter 2. Callable services descriptions 383

msgrcv (BPX1QRC) — Receive from a Message Queue

Function
The msgrcv service receives messages from a message queue.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QRC,(Message_Queue_ID,
Message_Address,
Message_Alet,
Message_Length,
Message_Type,
Message_Flag,
Return_value,
Return_code,
Reason_code)

Parameters
Message_Queue_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the message queue identifier.

Message_Address
Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains the address of a a buffer that is mapped by
MSGBUF or MSGXBUF (see “BPXYMSG — Map InterProcess Communication
Message Queues” on page 986).

Message_Alet
Supplied parameter

Type: Address

Length: Fullword

msgrcv (BPX1QRC)

384 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of the fullword that contains the ALET for Message_Address, which
identifies the address space or data space where the buffer resides.

You should specify a Message_Alet of 0 if the buffer is in the user’s address
space (current primary address space).

You should specify a Message_Alet of 2 if the buffer resides in the home
address space.

If a value other than 0 or 2 is specified for the Message_ALET, the value must
represent a valid entry in the dispatchable unit access list (DUAL).

Message_Length
Supplied parameter

Type: Integer

Length: Fullword

Specifies the length of the message text that is to be placed in the buffer that is
pointed to by Message_Address parameter. If Msg_Info is specified, this buffer
is 20 bytes longer than Message_Length; otherwise this buffer is 4 bytes longer
than Message_Length. The message that is received may be truncated (see
MSG_NOERROR of Message_Flag). A value of zero with MSG_NOERROR is
useful for receiving the message type without the message text.

Message_Type
Supplied parameter

Type: Integer

Length: Fullword

Specifies the type of message requested, as follows:

v If Message_Type is equal to zero, the first message on the queue is
received.

v If Message_Type is greater than zero, the first message of Message_Type is
received.

v If Message_Type is less than zero, the first message of the lowest type that
is less than or equal to the absolute value of Message_Type is received.

Message_Flag
Supplied parameter

Type: Integer

Length: Fullword

MSG_NOERROR specifies that the received message is to be truncated to
Message_Length (mapped in BPXYMSG). The truncated part of the message is
lost, and no indication of the truncation is given to the caller.

MSG_INFO specifies that the received message is to be of the MSGXBUF and
not the MSGBUF format, mapped in BPXYMSG. MSG_INFO specifies that
extended information is to be received. This is similar to the msgxrcv() C
language function.

Ipc_NOWAIT specifies the action that is to be taken if a message of the desired
type is not on the queue, as follows:

msgrcv (BPX1QRC)

Chapter 2. Callable services descriptions 385

v If Ipc_NOWAIT is specified, the caller is to return immediately with an error
(ENOMSG).

v If Ipc_NOWAIT is not specified, the calling thread is to suspend execution
until one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue is removed from the system (EIDRM).

– The caller receives a signal (EINTR).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgrcv service returns −1, or the number
of MSG_MTEXT bytes returned.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgrcv service stores the return code. The
msgrcv service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The msgrcv service can return one of the following values in the
Return_code parameter:

Return_code Explanation
E2BIG MSG_MTEXT is greater than Message_Length, and

MSG_NOERROR is not set. The following reason code can
accompany the return code: JRMsq2Big.

EACCES Operation permission is denied to the calling task: JRIpcDenied.
If the message queue was built with the Ipc_RcvTypePID, and
the MSG_TYPE was other than the invoker’s process ID, the
following reason code accompanies the return code:
JRTypeNotPID.

EIDRM The Message_Queue_ID was removed from the system while the
invoker was waiting. The following reason code can accompany
the return code: JRIpcRemoved.

EINTR The function was interrupted by a signal. The following reason
code can accompany the return code: JRIpcSignaled.

EINVAL Message_Queue_ID is not a valid message queue identifier; or
the Message_Length parameter is less than 0. The following
reason codes can accompany the return code: JRIpcBadID or
JRMsqBadSize.

EFAULT The Message_Address parameter specified an address that
caused the syscall to program check. The following reason code
can accompany the return code: JRBadAddress.

ENOMSG The queue does not contain a message of the desired type, and
Ipc_NOWAIT is set. The following reason code can accompany
the return code: JRMsqNoMsg.

Reason_code
Returned parameter

Type: Integer

msgrcv (BPX1QRC)

386 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the msgrcv service stores the reason code.
The msgrcv service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. Within the type specifications, the longest waiting thread will be reactivated first

(FIFO). For example, if there are two threads waiting on message type 3 and
one thread waiting on message type 2, when a message send for type 3
occurs, the oldest waiter for message type 3 receive is posted first.

2. Read access to the specified message queue is required.

Related services
v “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on

page 376
v “msgget (BPX1QGT) — Create or Find a Message Queue” on page 380
v “msgsnd (BPX1QSN) — Send to a Message Queue” on page 388

Characteristics and restrictions
The caller of the msgrcv service is restricted by ownership, read, and read-write
permissions that are defined by msgget and msgctl Ipc_SET.

Examples
See “BPX1QRC (msgrcv) Example” on page 1210 for an example using this
callable service.

msgrcv (BPX1QRC)

Chapter 2. Callable services descriptions 387

msgsnd (BPX1QSN) — Send to a Message Queue

Function
The msgsnd service sends a message to a message queue.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QSN,(Message_Queue_ID,
Message_address,
Message_Alet,
Message_Size,
Message_Flag,
Return_value,
Return_code,
Reason_code)

Parameters
Message_Queue_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the message queue identifier.

Message_address
Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains the address of the message to be sent. This
area is mapped by MSGBUF. The message type is the first word of the
message. It must be greater than zero.

Message_Alet
Supplied parameter

Type: Address

Length: Fullword

msgsnd (BPX1QSN)

388 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of the fullword that contains the ALET for Message_address that
identifies the address space or data space where the buffer resides.

You should specify a Message_address of 0 if the buffer resides in the user’s
address space (current primary address space).

You should specify a Message_address of 2 if the buffer resides in the home
address space.

If a value other than 0 or 2 is specified for the Message_ALET, the value must
represent a valid entry in the dispatchable unit access list (DUAL).

Message_Size
Supplied parameter

Type: Integer

Length: Fullword

Specifies the length of the message text that is pointed to by the
Message_address parameter. The length does not include the 4-byte type that
precedes the message text. For example, a message with a MSG_TYPE and
no MSG_MTEXT would have a Message_Size of zero.

Message_Flag
Supplied parameter

Type: Integer

Length: Fullword

Specifies the action that is to be taken if one or more of these conditions are
true:

v Placing the message on the message queue would cause the current
number of bytes on the message queue (msg_cbytes) to be greater than the
maximum number of bytes that are allowed on the message queue
(msg_qbytes).

v The total number of messages on the message queue (msg_qnum) is equal
to the system-imposed limit.

The actions to be taken are as follows:

v If Ipc_NOWAIT is specified, the caller returns immediately with an error
(EAGAIN).

v If Ipc_NOWAIT is not specified, the calling thread suspends execution until
one of the following occurs:

– The message is sent.

– The message queue is removed from the system (EIDRM).

– The caller receives a signal (EINTR).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgsnd service returns −1 or 0. The
message was sent unless a −1 is received.

msgsnd (BPX1QSN)

Chapter 2. Callable services descriptions 389

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgsnd service stores the return code. The
msgsnd service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The msgsnd service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES Operation permission is denied to the calling task: JRIpcDenied.

If the message queue was built with Ipc_SndTypePID, and the
MSG_TYPE was other than the invoker’s process ID, the
following reason code accompanies the return code:
JRTypeNotPID.

EAGAIN The message cannot be sent, and Message_Flag is set to
Ipc_NOWAIT. The following reason codes can accompany the
return code: JRMsqQueueFullMessages, JRMsqQueueFullBytes.

EIDRM The Message_Queue_ID was removed from the system while the
caller was waiting. The following reason code can accompany the
return code: JRIpcRemoved.

EINTR The function was interrupted by a signal, and the message was
not sent. The following reason code can accompany the return
code: JRIpcSignaled.

EINVAL Message_Queue_ID is not a valid message queue identifier; the
value of MSG _TYPE is less than 1; or the value of
Message_Size is less than zero or greater than the
system—imposed limit. The following reason codes can
accompany the return code: JRIpcBadID, JRMsqBadSize, or
JRMsqBadType.

EFAULT The Message_address parameter specified an address that
caused the service to program check. The following reason code
can accompany the return code: JRBadAddress.

ENOMEM There were not enough system storage exits to send the
message; the message was not sent. The following reason code
can accompany the return code: JrSmNoStorage.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msgsnd service stores the reason code.
The msgsnd service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
v Write access to the specified message queue is required.

Related services
v “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on

page 376

msgsnd (BPX1QSN)

390 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v “msgget (BPX1QGT) — Create or Find a Message Queue” on page 380
v “msgrcv (BPX1QRC) — Receive from a Message Queue” on page 384

Characteristics and restrictions
The caller of this service is restricted by ownership and read and read-write
permissions that are defined by msgget and msgctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1QSN (msgsnd) Example” on
page 1212.

msgsnd (BPX1QSN)

Chapter 2. Callable services descriptions 391

msync (BPX1MSY) — Synchronize Memory with Physical Storage

Function
The msync callable service writes all modified pages over the requested range to
their permanent storage locations on disk. It also deletes any in-memory cached
pages over the requested range, resetting the contents of those pages to that which
resides on disk.

Requirements

Authorization: Supervisor state or problem state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MSY,(Map_address,
Map_length,
Sync_Options,
Return_value,
Return_code,
Reason_code)

Parameters
Map_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the mapping from which
the modified pages are to be written to their permanent storage locations on
disk, or invalidated. The value of map_address must be a multiple of the page
size.

Map_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the size (in bytes) of the mapping that is
to have all updated pages written out to disk, or invalidated. The length can be
the size of the whole mapping, or a part of it. If the specified length is not a
multiple of the page size, it is rounded up to a page boundary.

Sync_Options
Supplied parameter

msync (BPX1MSY)

392 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of the fullword that contains the option flags for the service. The
specified value can be a combination (for example, using an exclusive OR) of
one or more of the following flags, with the limitation that MS_ASYNC and
MS_SYNC are mutually exclusive. These constants are defined in the
BPXYCONS macro.

Constant Description
MS_ASYNC Performs asynchronous writes. MS_ASYNC returns

immediately when all write operations are
scheduled. If the requestor’s intent is to write
consistent data to the disk, do not use this option.

MS_SYNC Performs synchronous writes. MS_SYNC will return
after all write operations are completed.

MS_INVALIDATE Invalidates the cached memory—mapped pages.
After the cached copy of the data in memory has
been invalidated for a MAP_SHARED mapping, any
further references to these pages will be obtained
by the system from their permanent storage
locations on disk. For a MAP_PRIVATE mapping,
only updated (private) pages are invalidated. Any
further references to these pages will be obtained
from the shared cache.

Notes:

1. If MS_INVALIDATE is the only flag specified, the requested cached
memory—mapped pages are invalidated without any modified pages first
being written to disk.

2. If MS_INVALIDATE is specified with either MS_SYNC or MS_ASYNC, all
the modified pages in the requested address range are written to disk
before the cached copy of data in memory is invalidated.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msync service returns the value of 0 if the
request is successful, or −1 if it is not successful.

Upon successful completion, the msync service writes all modified pages over
the range (map_address, map_address+map_length) to their permanent
storage locations on disk, invalidates the cached mmap pages, or does both.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msync service stores the return code. The
msync service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values.

msync (BPX1MSY)

Chapter 2. Callable services descriptions 393

The msync service can return one of the following values in the Return_code
parameter:

Return_code Explanation
EAGAIN The caller must be in key 8. (JRNotKey8)
EINVAL One of the following conditions occurred:

v The value of map_address is not a multiple of the page size.
(JRNotPage)

v The value in the Sync_Options parameter is incorrect.
(JROPtNotSupp)

v The input address or length is negative.
(JRNegativeValueInvalid)

EIO An I/O error occurred while writing to the file system (file system
JR). This return code is set only if MS_SYNC is set in the
Sync_Options parameter. I/O errors during asynchronous write
operations are not reported to the application.

ENOMEM One of the following conditions occurred:

v Some or all of the addresses in the range (map_address,
map_address + map_length) are not valid for the address
space. (JRAddressNotAvailable)

v One or more specified pages are not mapped. (JRNotMapped)

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the msync service stores the reason code. The
msync service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The msync service is used by programs that require a file to be in a known

state (such as in building transaction-oriented programs).

2. When a request is made to write the cached pages by a process that has
mapped the area with the MAP_SHARED option, updates made by all
processes sharing the specified file-offset range are written, not just the updates
made by the msync requesting process. The same is true for invalidate
requests.

3. Only full pages are processed. If the map_length parameter contains a value
that is not a multiple of the page size, the length will be rounded up to a full
page.

4. In relation to advisory locking mechanisms, there is no difference between
sharing a file using the mmap services, and sharing a file using the read/write
services. Specifically, before a series of bytes are accessed using either
method, a byte range lock is required to ensure the consistency of the data
being accessed. It logically follows that if the intent is to write consistent data to
the disk when a file is shared using memory map services, an advisory lock
should be held on the pages being acted upon, before calling the msync service
(with the MS_SYNC option).

5. Constants used for this callable service are defined in the BPXYCONS macro.
See “BPXYCONS — Constants Used by Services” on page 956.

msync (BPX1MSY)

394 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824
v “mmap (BPX1MMP) — Map Pages of Memory” on page 357
v “mprotect (BPX1MPR) — Set Protection of Memory Mapping” on page 373
v “munmap (BPX1MUN)— Unmap Previously Mapped Addresses” on page 396

Characteristics and restrictions
1. The range that is specified (map_address, map_address + map_length) must

not contain any areas that are not currently memory mapped. It may, however,
contain areas that have been unmapped, in which case no action is taken
against the unmapped areas.

2. To successfully write or invalidate MAP_SHARED mappings, the range that is
specified must have the PROT_WRITE access level. If any portion of the
specified range has either the PROT_NONE or PROT_READ access levels at
the time of the msync request, that portion will not be written or invalidated, and
no error condition will be raised.

3. Because memory map is implemented using a cached copy of the original data
that resides on disk, concurrent updates made using the write callable service to
a file that is being memory mapped will produce undefined results. If this type of
activity is desired, explicit serialization must be implemented between a process
invoking the msync service with the invalidate option, and another process
invoking the write service (page-multiple advisory lock).

4. When the msync service is called for MAP_PRIVATE mappings, any data that is
modified by that process is not written to the file, and such data is not visible to
other processes. The only supported action is to invalidate the pages that were
cached exclusively for the use of the requesting process (this has no impact on
the MAP_SHARED cache). For the invalidate request to be successful, the
range that is specified must have the PROT_WRITE access level. If another
process mapping the same file-offset range with the MAP_SHARED option
invalidates the shared cache, then, from the perspective of the MAP_PRIVATE
process, only the pages that were not updated by the MAP_PRIVATE process
(still shared) are invalidated. The modified (and now private) pages remain
intact in the cache. This type of activity could cause inconsistencies within the
MAP_PRIVATE mapping.

Examples
For an example using this callable service, see “BPX1MSY (msync) Example” on
page 1178.

msync (BPX1MSY)

Chapter 2. Callable services descriptions 395

munmap (BPX1MUN)— Unmap Previously Mapped Addresses

Function
The munmap callable service removes the mapping for pages in the requested
range. It should be used only to unmap regions that have been previously mapped
by the application with the mmap callable service.

Requirements

Authorization: Supervisor state or problem state, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MUN,(Map_address,
Map_length,
Return_value,
Return_code,
Reason_code)

Parameters
Map_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of an existing mapping that is
to be unmapped. The specified address does not have to be the start of a
mapping. The value of map_address must be a multiple of the page size. If the
address falls within a MAP_MEGA map, the address that is provided is rounded
down to a megabyte multiple so that an entire segment is included in the
unmap operation. It is not possible to unmap part of a segment when
processing a MAP_MEGA map.

Map_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword containing the size (in bytes) of the mappings that are
to be unmapped. The length can be the size of the whole mapping, or a part of
it. If the specified length is not in multiples of the page size, it will be rounded
up to a page boundary. If map_address plus map_length falls within a

munmap (BPX1MUN)

396 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

MAP_MEGA map, the length is rounded up so that it includes an entire
segment (but not necessarily the entire MAP_MEGA mapping).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the munmap service returns the value of 0 if
the request is successful, or −1 if it is not successful.

Upon successful completion, the munmap service unmaps all pages in the
range (map_address, map_address+map_length).

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the munmap service stores the return code.
The munmap service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values.

The munmap service can return one of the following values in the Return_code
parameter:

Return_code Explanation
EAGAIN The caller must be in key 8. (JRNotKey8)
EINVAL One of the following conditions occurred:

v The value of map_address is not multiples of the page size.
(JRNotPage)

v Some or all of the addresses in the range (map_address,
map_address + map_length) are not valid for the address space.
(JRAddressNotAvailable)

v The input address is negative, or the input length is zero or
negative. (JRZeroOrNegative)

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the munmap service stores the reason code.
The munmap service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. An address of 0 with a length of X'7FFFF000' unmaps all the storage that is

associated with this process.

2. For both private and shared mappings, if the munmap service unmaps a subset
of the range of the original mmap request, further references to those pages

munmap (BPX1MUN)

Chapter 2. Callable services descriptions 397

result in a program check exception. When the entire range of the original
mmap request has been unmapped, the memory allocated by the mmap service
is freed.

3. If there are no mappings in the requested address range, the munmap service
has no effect. The service returns successfully.

4. The range that is specified (map_address, map_address + map_length) may
contain areas that have been unmapped, in which case no action is taken
against the unmapped areas.

5. If a mapping to be removed is private, any modifications that are made in the
specified address range are discarded.

6. If a mapping to be removed is shared, all modifications that are made in the
specified address range since the last msync (if any) are written to disk. If this is
not desired, the msync service must be called to invalidate the updates that
have been made to the mapped region before the range is unmapped.

7. If a memory-mapped region is not unmapped before the process terminates,
process termination does not automatically write out to disk any modified data in
the mapped region. Modified private data in a MAP_PRIVATE region is
discarded. If the mapped region is MAP_SHARED, the modified data continues
to reside in the cache (if the same file-offset range is being shared), and may
ultimately be written out to disk by another process via the msync service.
However, if no other processes map the same file-offset range as
MAP_SHARED, the modified data is discarded.

8. Only entire pages are unmapped. If the map_length parameter contains a value
that is not a multiple of the page size, the length is rounded up to a full page.
For MAP_MEGA maps, only entire segments are unmapped. The map_address
and map_length are adjusted to ensure that entire segments are unmapped.

9. An unmap request may span MAP_MEGA and non-MAP_MEGA ranges.

Related services
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824
v “mmap (BPX1MMP) — Map Pages of Memory” on page 357
v “mprotect (BPX1MPR) — Set Protection of Memory Mapping” on page 373
v “msync (BPX1MSY) — Synchronize Memory with Physical Storage” on page 392

Characteristics and restrictions
There are no restrictions on the use of the munmap service.

Examples
For an example using this callable service, see “BPX1MUN (munmap) Example” on
page 1179.

munmap (BPX1MUN)

398 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mvsiptaffinity (BPX1IPT) — Run a Program on the IPT Thread

Function
The mvsiptaffinity callable service allows a task created with pthread_create to
request that a user-defined assembler routine run on its initial pthread-creating
thread (IPT). The requesting pthread is blocked until the requested routine has
been executed.

This service manages MVS resources under the IPT, instead of under the task
created with pthread_create. Some resources that can be managed with this
service are:
v Load modules
v Opened data sets
v Other MVS resources with task affinity

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1IPT,(Routine_address,
Parameter_list,
Return_value,
Return_code,
Reason_code)

Parameters
Routine_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword containing the address of the routine control is passed
to on the pthread’s IPT. The requesting pthread is responsible for ensuring that
the routine to be run is in memory when it is called and remains there until the
call is complete.

Parameter_list
Supplied parameter

Type: Address

Length: Fullword

mvsiptaffinity (BPX1IPT)

Chapter 2. Callable services descriptions 399

The name of a fullword containing the address of the routine parameter list. The
value in this fullword is passed in register 1 when the specified routine receives
control. If the routine does not require parameters, specify 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvsiptaffinity service returns −1 if it is not
successful. If it is successful, the mvsiptaffinity service returns 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvsiptaffinity service stores the return
code. The mvsiptaffinity service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The mvsiptaffinity service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EFAULT A bad address was received as an argument of the call, or the

specified routine experienced an abend or program check that
was not handled by the routines recovery. The following reason
codes can accompany the return code: JRBadAddress and
JRRoutineError.

EAGAIN Another pthread within the process has this call pending. At most
one pthread can request this service at a time. The requesting
task can try again later when the current pending call is
complete.

EACCES A task other than a pthread-created task is not permitted to
perform this service.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the mvsiptaffinity service stores the reason code.
The mvsiptaffinity service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The specified routine to be executed receives control with the following

attributes:
v Problem program state
v Key of the IPT task
v AMODE 31
v Primary ASC mode

2. The register usage on entry to the specified routine is:

mvsiptaffinity (BPX1IPT)

400 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v R0: Undefined.

v R1: Address of Parameter_list, as specified by the caller of the mvsiptaffinity
service.

v R2–R12: Undefined.

v R13: Address of a 72-byte work area in the same key as the routine gains
control under.

v R14: The return address from the specified routine, to the mvsiptaffinity
service. This address must be preserved by the invoked routine.

v R15: Address of the invoked routine.

3. Only tasks created with pthread_create can invoke this service. If a task that
was created using MVS non-POSIX interfaces requests this service, or if it is an
IPT itself, it receives an EACCESS return code.

4. At most one pthread can have this service request pending at a time. If a
pthread already has this service pending, when another pthread requests this
service, the last pthread receives an EAGAIN return code. It is the caller’s
responsibility to serialize the invocation of mvsiptaffinity, or contain retry logic if
the EAGAIN return code is obtained.

5. The EXITRTN assembler routine cannot issue callable services after it gains
control under the IPT.

6. The specified routine can establish its own recovery environment. However,
even if recovery is not established, the mvsiptaffinity service establishes its own
recovery environment while running under the IPT. For all recoverable errors,
this recovery routine retries, returning the EFAULT return code to the requestor.
It also ensures that any recovery routine established by the IPT itself is not
entered unexpectedly.

Related services
There are no related services.

Characteristics and restrictions
There are no restrictions on the use of the mvsiptaffinity service.

Examples
For an example using this callable service, see “BPX1IPT (mvsiptaffinity) Example”
on page 1151.

mvsiptaffinity (BPX1IPT)

Chapter 2. Callable services descriptions 401

mvspause (BPX1MP) — Wait on User Events Plus Signals

Function
The mvspause callable service allows a thread to suspend until a signal arrives or
some application-defined event is posted.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task - No EUT FRRs
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MP,(Return_value,
Return_code,
Reason_code)

Parameters
Return_Value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 indicating an event
occurred, or −1 otherwise.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvspause service stores the return code.
The mvspause service returns Return_code only if Return_value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The mvspause service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EFAULT Error addressing parameters. The parameters on the prior

mvspauseinit call were not fully validated at mvspauseinit time.
The following reason code unique to the mvspause service can
accompany the return code: JRECBStateBad.

EINTR The mvspause call was interrupted by a signal.

mvspause (BPX1MP)

402 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EMVSPARM Incorrect parameters were passed to an MVS service. The

following reason codes unique to the mvspause service can
accompany the return code: JRECBListNotSetup,
JRECBStateBad.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
reason code further qualifies the return code value. The mvspause service
stores a reason code only when the return value is −1. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The intended use of mvspause is for a program to wait on user ECBs plus

signals.

2. The user must first invoke the mvspauseinit service to declare to the system the
list of ECB pointers to use. The system makes a copy of the list of ECB pointers
to wait on and uses the existing MVS WAIT service to wait for the user events
and the signal event.

3. When one of the ECBs in the ECB list has been posted or a signal is received,
the mvspause operation concludes and control is returned to the caller. When a
signal is received, the mvspause service posts the signal ECB and runs the
signal handler before returning to the user.

4. The user has the option of reinvoking the mvspause service without reinvoking
the mvspauseinit service. The user should be aware, however, that the system
has made a copy of the list of pointers that point to the user’s ECBs. Any
changes to the caller’s copy of the ECB pointer array are not reflected in the
system copy unless the mvspauseinit service is invoked again. Furthermore,
when the user wishes to reinvoke the mvspause without reinvoking the
mvspauseinit service, the user must clear all ECBs that were posted. This
includes clearing the signal ECB. If the user does not clear posted ECBs, the
mvspause detects the already posted ECB and returns immediately. The user
must take care when clearing ECBs, because not all ECBs may have been
posted. Asynchronous operations could post an ECB at any time during the
user’s processing. The user should clear only ECBs that are processed, and not
blindly clear all ECBs.

The following logic example displays one method for processing ECBs:
CALL MVSpauseInit(list of ECB addresses);

for(;;) /* Do forever */
{
call MVSpause()
for(i=1;i<=MaxEcbs;i++)
{
Copy value of Ecb(i)
if (Ecb(i) was posted)
{
Clear Ecb(i)
switch(i)
{
case 1: CALL Signal-Occurred;

mvspause (BPX1MP)

Chapter 2. Callable services descriptions 403

break;
case 2: CALL Rtn_for_2nd_Ecb;

break;
case 3: CALL Rtn_for_3rd_Ecb;

break;
... /* As many as are needed */

default: no ECBs POSTed
} /* end switch */

} /* end if */
} /* end for */
if (terminating condition occurred)

break; /* Exit Do Forever loop */
} /* end do forever */

Related services
v “mvspauseinit (BPX1MPI) — Set Up to Wait on User Events Plus Signals” on

page 405

Characteristics and restrictions
There are no restrictions on the use of the mvspause service.

Examples
See “BPX1MP (mvspause) Example” on page 1172 for an example using this
callable service.

mvspause (BPX1MP)

404 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mvspauseinit (BPX1MPI) — Set Up to Wait on User Events Plus
Signals

Function
The mvspauseinit callable service allows the thread to declare to the system a list
of event control blocks (ECBs) the application program will use to receive event
notifications. This service is used in conjunction with the mvspause service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task - No EUT FRRs
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MPI,(Addr_of_ECBlist,
Return_value,
Return_code,
Reason_code)

Parameters
Addr_of_ECBlist

Address of a list of up to 1018 user-defined event control blocks (ECBs). The
system uses the first ECB in the list.

Type: Pointer

Length: Fullword

The name of a fullword from which the service extracts the address of the input
ECB list. The mvspauseinit service requires this list to contain a maximum of
1018 ECBs, with the first ECB dedicated to the system. The user is responsible
for obtaining the storage for all ECBs.

The last ECB pointer in the list must have the high-order bit set to 1
(80000000x). This indicates that it is the last ECB address in the list.

Return_Value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns a 0 upon normal
completion, or −1 otherwise.

mvspauseinit (BPX1MPI)

Chapter 2. Callable services descriptions 405

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvspauseinit service stores the return
code. The mvspauseinit service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The mvspauseinit service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EFAULT Error addressing parameters. The following reason codes unique

to the mvspauseinit service can accompany the return code:
JRECBError, JRECBListBad.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service routine stores the reason code. The
reason code further qualifies the return code value. The mvspauseinit service
stores a reason code only when the return value is −1. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The intended use of the mvspauseinit service is for a program to declare to the

system a list of pointers to user ECBs in user-managed storage. These ECBs
are used by the mvspause function to suspend the thread until a signal arrives
or a user-defined event is posted.

2. The user is responsible for initializing all ECBs, including the signal ECB. The
first ECB is the signal ECB. The system does not alter the ECBs during
mvspauseinit. This means that an asynchronous operation may post an ECB in
the ECB list while mvspauseinit is operating.

3. After mvspauseinit returns to the caller, the mvspause service may be invoked
as many times as necessary without reinvoking the mvspauseinit service. If the
application program needs to change one or more ECB addresses, the
application must reinvoke the mvspauseinit service before invoking the
mvspause service.

Note: Only one ECB list is allowed per thread. If a user invokes the
mvspauseinit service multiple times, each invocation replaces the ECB
list specified on previous invocations of mvspauseinit.

mvspauseinit (BPX1MPI)

406 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Array of pointers
to user ECBs User ECB1

User ECB2

User ECB4

User ECB3

Addr_of_ECBlist

•
•
•

Related services
v “mvspause (BPX1MP) — Wait on User Events Plus Signals” on page 402

Characteristics and restrictions
There are no restrictions on the use of the mvspauseinit service.

Examples
For an example using this callable service, see “BPX1MPI (mvspauseinit) Example”
on page 1174.

mvspauseinit (BPX1MPI)

Chapter 2. Callable services descriptions 407

mvsprocclp (BPX1MPC) — Clean Up Kernel Resources

Function
The mvsprocclp callable service cleans up the z/OS UNIX-related resources for an
entire process or on a thread-by-thread basis. After cleaning up resources, the
mvsprocclp service terminates the thread or the entire process with the final thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MPC,(Status_field,
Return_value,
Return_code,
Reason_code)

Parameters
Status_field

Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword status field. If the invocation of this service causes a full
process cleanup to occur and the contents of the status field conform to the
allowable exit status values, the contents are made available to the parent
when the wait service is issued. For the mapping of the status field and a
description of the allowable exit status values see “BPXYWAST — Map the
Wait Status Word” on page 1053.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which the mvsprocclp service returns one of the
following values:

Value Explanation
0 Thread-related resources were cleaned up for the calling thread.
1 Process-related resources were cleaned up for the calling

process.

mvsprocclp (BPX1MPC)

408 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Value Explanation
−1 The service failed to clean up process resources.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvsprocclp service stores the return code.
The mvsprocclp service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the mvsprocclp service stores the reason code.
The mvsprocclp service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The mvsprocclp service normally cleans up only the thread-related data for the

calling thread. The two following situations, however, cause full process cleanup
to occur:

v If the call is made from the initial thread of the process and no other threads
exist in the process.

v If the call is made from the last thread that is left in the process and that
thread is not the initial thread, and the initial thread has not performed any
z/OS UNIX system calls.

In these two cases, both the thread-related and process-related resources are
cleaned up and z/OS UNIX process termination is performed. See the _exit
service for a description of z/OS UNIX process ending.

2. An important distinction between this service and the _exit service is that this
service does not actually cause the user’s tasks to end. The _exit service has
the added effect of causing a full MVS-like ending, in that all the tasks in the
executing process are ended. The mvsprocclp service cleans up only the
process-related resources and causes a process termination to occur, leaving
the other MVS-related resources in the address space unaffected.

3. The mvsprocclp service does not trigger a core dump when the dump flag is on
in the status word.

4. For message queues, each thread is removed from the send and receive
waiting chains (the message to be sent is lost). End of memory may require the
message queue to be rebuilt.

5. When shared memory is being used, each process is terminated and the shared
memory segment attached to the terminating process is detached. If the last
attachment is removed and a shmctl RMID had been issued, the segment is
removed from the system.

mvsprocclp (BPX1MPC)

Chapter 2. Callable services descriptions 409

6. If semaphores are being used, each thread is removed from the waiting chain.
The adjustment values are associated with the process, not the thread. The
adjustments are made to each semaphore set atomically. If an adjustment
would cause a semaphore value to overflow a limit (0 or SEM#MAX_VAL), no
adjustment is made to that semaphore. Adjustments will continue for the set. No
assumptions may be made as to the order in which the semaphore sets will be
adjusted.

When semval changes, the waiting chain is searched and other threads may
regain control (as with semop, semctl operations). As adjustments are
completed, sem_pid and sem_otime are updated for each semaphore set.

Related services
v “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 150
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Characteristics and restrictions
The mvsprocclp service is provided for non-C applications that invoke z/OS UNIX
services. As a rule-of-thumb, if your program causes the task to be dubbed, issue
mvsprocclp when it is complete. If your program is already dubbed when invoked,
do not call mvsprocclp when exiting. If you know the termination of your program
will cause the task to terminate, you can allow end-of-task processing to perform
mvsprocclp for you. To determine if your program is already dubbed, you can test
STCBOTCB in mapping macro IHASTCB. If this field is 0, it is not dubbed. You can
also use the querydub callable service (“querydub (BPX1QDB) — Obtain the Dub
Status of the Current Task” on page 559).

Examples
For an example using this callable service, see “BPX1MPC (mvsprocclp) Example”
on page 1173.

mvsprocclp (BPX1MPC)

410 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mvssigsetup (BPX1MSS) — Set Up MVS Signals

Function
The mvssigsetup callable service allows a task to catch or intercept signals. This
service also allows a task to intercept cancelation and quiesce interrupts. Only one
mvssigsetup service in a process can be active. If a second mvssigsetup service
must be performed in a process, an mvsunsigsetup service must be performed on
the thread that issued the mvssigsetup service request before the second
invocation of the mvssigsetup service. Both MVS task termination and the
mvsprocclp service (BPX1MPC) perform the mvsunsigsetup service.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MSS,(Signal_interface_routine_address,
User_data,
Default_override_signal_set,
Default_terminate_signal_set,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_interface_routine_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword containing the address of the user-supplied signal
interface routine (SIR) that gets control when a signal handler needs to be
invoked. The signal handler is defined by the sigaction call; see “sigaction
(BPX1SIA) — Examine or Change a Signal Action” on page 746. You can also
invoke the SIR to process a default signal action, depending on the values
specified for Default_override_signal_set. See the usage note on using the
upper bit of the SIR address for indirect signal handler addresses.

User_data
Supplied parameter

Type: Character string

mvssigsetup (BPX1MSS)

Chapter 2. Callable services descriptions 411

Character set: No restriction

Length: 4 bytes

The name of a fullword containing 4 bytes of user-supplied data passed to the
signal interface routine on invocation from signal processing.

Default_override_signal_set
Supplied parameter

Type: Character string

Character set: No restriction

Length: 8 bytes

The name of an 8-byte area containing a 64-bit mask of signals that the SIR
processes when their respective default actions take place. The leftmost bit
represents signal number 1, and the rightmost bit represents signal number 64.
The signals SIGSTOP and SIGDUMP cannot be intercepted. The bit positions
that represent these signals are ignored. Signal 64 represents cancelation or
quiesce requests.

Default_terminate_signal_set
Supplied parameter

Type: Character string

Character set: No restriction

Length: 8 bytes

The name of an 8-byte area containing a 64-bit mask of signals specified in the
Default_override_signal_set parameter that also causes the process to end. The
leftmost bit represents signal number 1, and the rightmost bit represents signal
number 64. When set to 1, the signal represented results in a task that is either
stopped or in a wait state to be interrupted by the signal. It is up to the signal
interface routine to end the process. The bit that represents signal 64 of this
mask is reserved.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvssigsetup service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvssigsetup service stores the return code.
The mvssigsetup service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The mvssigsetup service can return one of the following
values in the Return_code parameter:

mvssigsetup (BPX1MSS)

412 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EMVSINITIAL The service failed. The following reason codes can accompany

the return code: JRNotPRB, JRPSWKeyNotValid, and
JRAlreadySigSetup.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvssigsetup service stores the reason
code. The mvssigsetup service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
The user-supplied signal interface routine (SIR) is given control when the current
PSW key is equal to the signal delivery key for the process. The signal delivery key
for the process is defined as the PSW key when the process was dubbed for the
first request for a callable service. A process image that results after the exec
service, BPX1EXC, or the execmvs service, BPX1EXM, always has a signal
delivery key of 8 and is not set up for signals.

If the signal handler addresses specified on the call to BPX1SIA are not the actual
handler addresses but pointers to the handler addresses, turn on the upper bit of
the SIR address supplied on this service to enable ptrace to set break points at the
beginning of the signal handlers.

For information in the BPXYPPSD macro, see “BPXYPPSD — Map Signal Delivery
Data” on page 1001.

The SIR receives control with the following register interface:

Register Contents
Reg 0 0
Reg 1 Address of standard parameter list. PARM1= address

of BPXYPPSD; Reg 1 = ADDR(PpsdSirPARMS).
Regs 2–12 0
Reg 13 0 No save area for registers is provided to the SIR.

The SIR does not save caller’s registers.
Reg 14 0 No return address.
Reg 15 Set to address of the SIR.

The SIR receives control in the following system states:

Authorization: Problem program state, PSW key when the process was
created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked

mvssigsetup (BPX1MSS)

Chapter 2. Callable services descriptions 413

Signal Mask: All signals that may be blocked by the signal mask are
blocked.

Following are the steps that a user-supplied SIR must perform.

1. The SIR must obtain local storage for a local copy of the BPXYPPSD and
copy the BPXYPPSD information into this local storage.

2. The PPSD contains the information necessary for the SIR to determine the
reason for the interruption. The interruption can be the result of a signal,
cancelation, or quiesce request.

3. If the interrupt cannot be processed at this time, possibly due to general
register 13 not currently containing the address of a program stack, or the last
service called on the current thread was cond_setup, then the queue_interrupt
service request is issued (see “queue_interrupt (BPX1SPB) — Return the Last
Interrupt Delivered” on page 561). Then go to step 11 on page 415.

4. If the interrupt is a signal and the default action is to be performed by the SIR,
write the appropriate messages to the terminal and end the process. For more
information on how to end the process, see “_exit (BPX1EXI) — End a
Process and Bypass the Cleanup” on page 150.

5. If the interrupt is a cancelation or a terminating quiesce request, clean up any
necessary thread-related resources and end the thread. To end the thread,
issue the pthread_get_and_exit service with Options_field set to
PTEXITTHREAD. If the interrupt is because of a cancelation, issue the
pthread_exit_and_get service with Status_field set to −1. For more information
on how to end the thread, see “pthread_exit_and_get (BPX1PTX) — Exit and
Get a New Thread” on page 494. If the interrupt is a freeze quiesce request,
issue the quiesce_threads service to freeze the thread; see “pthread_quiesce
(BPX1PTQ) — Quiesce Threads in a Process” on page 504. The SIR receives
these types of interrupts only if bit 64 of the Default_override_signal_set is set
on.

6. Obtain language stack storage for the signal handler.

7. Examine the sigaction call flags in the BPXYPPSD for the signal being
delivered. Some of these flags, specified on the sigaction call, are intended to
allow the user certain options when interfacing with signal catchers, or to
provide additional processing. For example, the SA_SIGINFO flag specifies
that additional signal information, also present in BPXYPPSD, should be
passed to the signal catcher in a siginfo structure. It is up to the SIR to
interpret and implement these sigaction flags. Refer to “sigaction (BPX1SIA) —
Examine or Change a Signal Action” on page 746 for more information on the
function of the sigaction flags. The relevant flags are:
v SA_ONSTACK
v SA_RESETHAND
v SA_RESTART
v SA_SIGINFO
v SA_NODEFER

8. Set the signal processor mask to the appropriate value before invoking the
signal handler. This mask is formed by taking the union of the current signal
mask (PPSDCATCHERMASK), the value of Sa_mask specified on the
sigaction call for the signal being delivered (PPSDSAMASK), and then
including the signal being delivered (unless the SA_NODEFER flag is set). The
signal processor mask is set by calling the sigprocmask service (BPX1SPM).
Recursive calls to the SIR can occur after calling the BPX1SPM service here
to unblock signals. Therefore, the SIR must use the local copy of the
BPXYPPSD macro after calling the sigprocmask service (BPX1SPM).

mvssigsetup (BPX1MSS)

414 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

9. Conform to the language-dependent requirements for invoking signal-handlers.

10. On return from the signal handler, call the BPX1SPM service to set the signal
processor mask to the interrupted value that was saved in the BPXYPPSD
field PPSDCURRENTMASK on entry to this SIR.

11. Use the CSRL16J MVS service to load 16 registers and jump to the address
that was interrupted by the signal.

The use of the Default_terminate_signal_set is to indicate to the kernel which
signals intercepted by the SIR cause the process to end. For example, a user might
wish to intercept the SIGUSR1 signal, but rather than performing the default of
termination, the user might wish to have a message issued and then the signal
thrown away (ignored). In this case, the user would turn the corresponding bit on in
the Default_override_signal_set and off in the Default_terminate_signal_set. This bit
set combination tells the kernel not to interrupt functions that return an EINTR.

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “exec (BPX1EXC) — Run a Program” on page 133
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process” on page 504
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

Characteristics and restrictions
See Appendix E.

Examples
For an example using this callable service, see “BPX1MSS (mvssigsetup) Example”
on page 1177.

mvssigsetup (BPX1MSS)

Chapter 2. Callable services descriptions 415

MVSThreadAffinity (BPX1TAF) — MVS Thread Affinity Service

Function
The MVSThreadAffinity callable service allows a task created with pthread_create to
request that a user-defined assembler routine is to be run on a specified target
pthread. The requesting and target pthread must have been created with
pthread_create, and both threads must be under the same initial pthread-creating
thread (IPT). The requesting pthread is blocked until the requested routine has
been run. The target pthread may be the IPT.

This service provides the ability for a program to manage MVS resources under the
target pthread or IPT, instead of under the requesting pthread. Resources that can
be managed with this service include load modules, opened data sets, and other
MVS resources with task affinity.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TAF,(Routine_address,
Parameter_list,
Thread_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Routine_address

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword containing the address of the routine to which control is
to be passed on the target pthread. The requesting pthread is responsible for
ensuring that the routine to be run is in memory when it is called, and remains
there until the call is complete.

Parameter_list
Supplied parameter

Type: Address

Length: Fullword

MVSThreadAffinity (BPX1TAF)

416 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword that contains the address of the routine parameter list.
The value in this fullword is passed in register 1 when the specified routine
receives control. If the routine does not require parameters, specify 0.

Thread_ID
Supplied parameter

Type: Character string

Character set: N/A

Length: 8 bytes

The name of an 8–byte field that contains the target pthread under which the
routine is to run. This is the value returned by BPX1PTS, or pointed to by the
PTXL field, PTXLTHIDPTR, provided by BPX1PTX. (See “BPXYPTXL — Map
the Parameter List for pthread_create” on page 1018.) A value of all zeros will
target the IPT.

Return_value
Returned parameter

Type: Integer

Character set: N/A

Length: Fullword

The name of a fullword in which the MVSThreadAffinity service returns 0 if the
request completes successfully, or −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Character set: N/A

Length: Fullword

The name of a fullword in which the MVSThreadAffinity service stores the return
code. The MVSThreadAffinity service returns Return_code only if Return_value
is −1. See z/OS UNIX System Services Messages and Codes for a complete
list of possible return code values. The MVSThreadAffinity service can return
one of the following values in the Return_code parameter:

Return_code Explanation
EFAULT A bad address was received as an argument of the call; or the

specified routine experienced an abnormal end or program check
that was not handled by the routine’s recovery.Consult Reason_code
to determine the exact reason the error occurred. The following
reason codes can accompany the return code: JRBadAddress and
JRRoutineError.

EAGAIN Another pthread within the process has this call pending for the
specified pthread. At most one pthread can request this service at a
time for a given pthread. The requesting pthread can try again later
when the current pending call is complete.

EACESS A task other than a pthread-created task or IPT is not permitted to
perform this service.

EINVAL A thread with the specified thread ID was not found. The reason
code accompanying this return code is JRThreadNotFound.

MVSThreadAffinity (BPX1TAF)

Chapter 2. Callable services descriptions 417

Reason_code
Returned parameter

Type: Integer

Character set: N/A

Length: Fullword

The name of a fullword in which the MVSThreadAffinity service stores the
reason code. The MVSThreadAffinity service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. See
z/OS UNIX System Services Messages and Codes for the reason codes.

Usage notes
1. The specified routine to be executed receives control with the following

attributes:

v Problem program state

v Key of the target pthread task

v AMODE 31

v Primary ASC mode

2. The register usage on entry to the specified routine is:

v R0: Undefined

v R1: Address of Parameter_list, as specified by the caller of the
MVSThreadAffinity service

v R2–R12: Undefined

v R13: Address of a 72–byte work area in the key with which the routine gains
control

v R14: The return address from the specified routine to the MVSThreadAffinity.
This address must be preserved by the invoked routine.

v R15: Address of the invoked routine

3. Only tasks created with pthread_create or the IPT can invoke this service. If a
task that is not an IPT or a pthread-created task requests this service, it
receives an EACCESS return code.

Related services
v “mvsiptaffinity (BPX1IPT) — Run a Program on the IPT Thread” on page 399
v “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 494

Characteristics and restrictions
There are no restrictions on the use of the MVSThreadAffinity service.

Examples
For an example using this callable service, see “BPX1TAF (MVSThreadAffinity)
Example” on page 1279.

MVSThreadAffinity (BPX1TAF)

418 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

mvsunsigsetup (BPX1MSD) — Detach the Signal Setup

Function
The mvsunsigsetup callable service deletes the task’s signal set up established by
the mvssigsetup service, BPX1MSS. See “mvssigsetup (BPX1MSS) — Set Up MVS
Signals” on page 411. The parameters specified in the mvssigsetup service are
returned by the mvsunsigsetup service. The signal actions for all signals in the
process set by the sigaction service, BPX1SIA, are set to default action SIG_DFL.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MSD,(Signal_interface_routine_address,
User_data,
Default_override_signal_set,
Default_terminate_signal_set,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_interface_routine_address

Returned parameter

Type: Address

Length: Fullword

The name of a fullword return area where Signal_interface_routine_address, set
by the mvssigsetup service, is returned.

User_data
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword return area where User_data, set by the mvssigsetup
service, is returned.

Default_override_signal_set
Returned parameter

Type: Character string

mvsunsigsetup (BPX1MSD)

Chapter 2. Callable services descriptions 419

Character set: No restriction

Length 8 bytes

The name of an 8-byte area where Default_override_signal_set, set by the
mvssigsetup service, is returned.

Default_terminate_signal_set
Returned parameter

Type: Character string

Character set: No restriction

Length: 8 bytes

The name of an 8-byte area where Default_terminate_signal_set, set by the
mvssigsetup service, is returned.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the mvsunsigsetup service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvsunsigsetup service stores the return
code. The mvsunsigsetup service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The mvsunsigsetup service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EMVSINITIAL The service failed (JRNotSigSetup).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the mvsunsigsetup service stores the reason
code. The mvsunsigsetup service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Related services
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411

Characteristics and restrictions
See Appendix E.

mvsunsigsetup (BPX1MSD)

420 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1MSD (mvsunsigsetup)
Example” on page 1176.

mvsunsigsetup (BPX1MSD)

Chapter 2. Callable services descriptions 421

nice (BPX1NIC) — Change the nice Value of a Process

Function
The nice callable service changes the nice value of the calling process.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1NIC,(Nice_change,
Return_value,
Return_code,
Reason_code)

Parameters
Nice_change

Supplied parameter

Type: Signed Integer

Length: Fullword

The name of a fullword that contains a value that indicates the relative change
in the nice value of the calling process.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the nice service returns −1 if it is not
successful. If it is successful, the nice service returns the new nice value minus
NICE_ZERO. The constant NICE_ZERO is defined in the BPXYCONS macro
(see “BPXYCONS — Constants Used by Services” on page 956).

Because the nice service can return the value -1 on successful completion, it is
necessary to set the Return_code parameter to 0 before a call to nice. If nice
returns the value -1, the Return_code parameter can be checked to see if an
error occurred or if the service was successful.

Return_code
Returned parameter

Type: Integer

nice (BPX1NIC)

422 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the nice service stores the return code. The
nice service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The nice service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EPERM The nice_change value is negative, and the calling process does

not have the appropriate privileges.
EMVSSAF2ERR A security product internal error has occurred. Consult

Reason_code for the exact reason for the error.
ENOSYS The system does not support this function. Your installation has

chosen not to enable it.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the nice service stores the reason code. The
nice service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. A process’s nice value is a non-negative integer for which a more positive value

would result in a lower CPU priority. A minimum nice value of 0 and a maximum
value of (2*NICE_ZERO)-1 are imposed on all processes. If the specified
nice_change value would result in a nice value that is outside this range, the
nice value is set to the limit value. The default nice value for all processes is set
to the constant value NICE_ZERO, which is defined in BPXYCONS.

2. If the specified nice_change value is negative, the value would result in a
lowering of a process’s nice value, thus giving the process a higher CPU
priority. Only processes with the appropriate privileges can lower their nice
values. Refer to “Authorization” on page 8 for information on appropriate
privileges.

3. The changing of a process’s nice value has the same effect on a process’s
priority value, because they both represent the process’s relative CPU priority.
For example, increasing the nice value of a process to its maximum value of
(2*NICE_ZERO)-1 has the effect of setting its priority value via the setpriority
service to its maximum value (19), and will be reflected on the nice, getpriority,
and setpriority services.

4. If the calling process is in a multiple-process address space, each of the
processes in the address space has its nice value changed by the call to the
nice service.

5. If the ENOSYS return code is received, your installation does not support this
service. Contact your system administrator if you require activation of this
service.

6. To set up the nice service, see the documentation for parmlib member
BPXPRMxx in z/OS UNIX System Services Planning.

nice (BPX1NIC)

Chapter 2. Callable services descriptions 423

Related services
v “setpriority (BPX1SPY) — Set the Scheduling Priority of a Process” on page 695
v “getpriority (BPX1GPY) — Get the Scheduling Priority of a Process” on page 260

Characteristics and restrictions
If the calling process is running in a multiple-process address space, the nice
values of all the processes in the address space are changed upon successful
completion of the nice service.

Examples
For an example using this callable service, see “BPX1NIC (nice) Example” on
page 1180.

nice (BPX1NIC)

424 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

oe_env_np (BPX1ENV) — Examine, Change, or Examine and Change
an Environmental Attribute

Function
The oe_env_np service examines, changes, or examines and changes an
environmental attribute. The environmental attribute to be processed is determined
by the value that is specified by the Function_code parameter.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1ENV,(Function_code,
InArgCount,
InArgListPtr,
OutArgCount,
OutArgListPtr,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword specifying a numeric value that identifies the
environmental attribute the caller wants to examine, change, or both examine
and change. Each environmental attribute has a specific Function_code value;
these are defined in the BPXYCONS macro. See “BPXYCONS — Constants
Used by Services” on page 956.

Constant Function
DFP_CLEANUP_EXIT_REG Registers a DFP cleanup exit that is to be called

during process cleanup processing. No other input
parameters are applicable for this function. Upon
success, a return value of zero is supplied. No
unique error codes apply to this function code.

oe_env_np (BPX1ENV)

Chapter 2. Callable services descriptions 425

Constant Function
ENQWAIT_PROCESS Determines the kernel behavior when

pthread_quiesce (freeze or term) and
pthread_cancel encounter threads in MVS ENQ
waits.

FREEZE_EXIT_REG Registers/deregisters a user exit that is to be given
control when a pthread_quiesce(freeze_exit) call is
made.

QUICK_FREEZE_EXIT_REG Registers a user exit that is to be given control
when a pthread_quiesce_and_get_np call is made.

MVS_USERID Retrieves the MVS user ID of the invoker.
ENV_TOGGLE_SEC Toggles the task-level security.
ENV_STOR_SERVICE Modifies storage attributes of an address space.
SHUTDOWN_REG Registers the caller for special treatment at OMVS

shutdown time.

The value that is specified for the Function_code also determines the number
and length of input and output parameters. See “Usage notes” for details on
defined function codes.

InArgCount
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword specifying a numeric value that indicates the number of
parameters pointed to by the InArgListPtr parameter. If no input arguments are
required, specify the name of a fullword that contains 0. If 0 is specified, no
environmental attributes are changed.

InArgListPtr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword containing an address that points to an array of
addresses that point to parameters. If the value that is specified for InArgCount
is 0, the value that is specified for the InArgListPtr is ignored. See “Usage
notes” for details on how to specify input parameters.

OutArgCount
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword specifying a numeric value that indicates the number of
parameters pointed to by the OutArgListPtr parameter. If no output arguments
are required, specify the name of a fullword that contains 0. If 0 is specified, no
environmental attributes are examined.

OutArgListPtr
Supplied parameter

Type: Address

oe_env_np (BPX1ENV)

426 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword containing an address that points to an array of
addresses that point to parameters. If the value that is specified for
OutArgCount is 0, the value that is specified for the OutArgListPtr is ignored.
See “Usage notes” for details on how to specify input parameters.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the oe_env_np service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the oe_env_np service stores the return code.
The oe_env_np service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The oe_env_np service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EFAULT The InArgListPtr, OutArgListPtr or associated parameter lists

point to a location that is partially or completely outside of the
addressable storage range.

EINVAL The Function_code value specified is not defined, or the
InArgCount or OutArgCount parameter contains an incorrect
count for the specified Function_code. The following reason
codes can accompany the return code: JRFuncUndefined,
JRBadArgCount or JRBadInputValue. If the SHUTDOWN_REG
function was requested, the following reason codes can
accompany the return code: JRJSTMustBeRegistered,
JRAlreadyInShutDown, JRBlockPermAlreadyRegistered,
JRBlockPermNotRegistered, JRBadInputValue, or
JRAlreadyInShutDown.

EMVSSAF2ERR There was an internal error in the security product. The
hexadecimal reason code value contains the two-byte security
product return code xx and reason code yy.

EPERM The calling process does not have the appropriate privilege to
perform the requested operation. The reason code JROK can
accompany this return code. If the SHUTDOWN_REG function
was requested, the caller must be given read permission to the
BPX.SHUTDOWN facility class profile.

ENOSYS The implementation does not support this memory locking
interface. The reason code JRNotBpxStorSwap can accompany
this return code.

Reason_code
Returned parameter

Type: Integer

oe_env_np (BPX1ENV)

Chapter 2. Callable services descriptions 427

Length: Fullword

The name of a fullword in which the oe_env_np service stores the reason code.
The oe_env_np service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the value that is specified by InArgCount or OutArgCount is 0, the

corresponding InArgListPtr or OutArgListPtr is ignored. They must still be
specified, but the value that is contained in the named field is irrelevant.

2. The oe_env_np service can examine, change, or examine and change
environmental attributes based on the argument counts that are specified by the
caller. If only an InArgCount is specified, an environmental attribute is changed,
but the previous value is not returned. If only an OutArgCount is specified, the
current setting of an environmental attribute is examined and returned but not
changed. If both an InArgCount and OutArgCount are specified, the
environmental attribute is changed and the previous setting is returned. If
neither InArgCount nor OutArgCount are specified, no environmental attributes
are examined or changed (NOOP), and the oe_env_np service sets
Return_value to 0.

3. The InArgListPtr and OutArgListPtr parameters each contain a fullword address
that points to an array. The argument count (InArgCount and OutArgCount)
defines the number of elements in each of these arrays. Each element in the
arrays contains a fullword address that points to a parameter. The length of
each parameter varies according to the Function_code specified.

The following figure is an example of an input or output parameter list as
specified by the InArgListPtr and OutArgListPtr parameter.

@Parm 1 Parm 1

ParmList

@ParmList

InArgListPtr or
OutArgListPtr

@Parm 2 Parm 2

@Parm n-1 Parm n-1

@Parm n Parm n

/
/

/
/

4. The following table defines the number of input and output arguments (if
specified) and the scope of each defined Function_code.

The scope of an environmental attribute is the range of influence the attribute
has in the kernel. The widest scope is SYSTEM: these attributes have influence
over all processes and threads. The next level is PROCESS: these attributes
have influence over a single process. The last and lowest level is THREAD:
these attributes have influence over a single thread.

Function_code # Input Args # Output Args Scope

ENQWAIT_PROCESS 1 1 Process

FREEZE_EXIT_REG 1 1 Process

QUICK_FREEZE_EXIT_REG 1 1 Process

MVS_USERID 0 1 Thread

oe_env_np (BPX1ENV)

428 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Function_code # Input Args # Output Args Scope

ENV_TOGGLE_SEC 0 0 Thread

ENV_STOR_SERVICE 1 0 Address Space

SHUTDOWN_REG 4 0 Process or
address space

5. Function_code and argument definitions:

v ENQWAIT_PROCESS

The purpose of the ENQWAIT_PROCESS Function_code is to register with
the kernel the behavior desired when a pthread_quiesce(freeze or term) or
pthread_cancel encounters a thread in an ENQ wait in the caller’s process.

When ENQWAIT_PROCESS is disabled, the kernel does not interrupt
threads that are found in ENQ waits. This means that pthread_quiesce(freeze
or term) and pthread_cancel events are not delivered to a thread until after
the ENQ wait has completed. This is the default behavior for all processes.

When ENQWAIT_PROCESS is enabled, the kernel interrupts threads that are
found in ENQ waits. The kernel delivers pthread_quiesce(freeze) events to
threads by scheduling an IRB on top of the SVRB for the ENQ wait, and
freezing the thread from the IRB. For pthread_quiesce(term) or
pthread_cancel events, the kernel abends threads in ENQ waits with a
retryable 422 abend, reason code X'00000189'.

To get pending pthread_cancel and pthread_quiesce(term) events delivered,
applications that invoke ENQ need to do the following:

– Establish an ESTAE before invoking ENQ.

– Have the ESTAE retry and check for the 422 abend with reason code
X'00000189'.

– When the abend is detected, call sigprocmask and block all signals. On
return from sigprocmask the pthread_cancel or pthread_quiesce(term)
events are delivered.

When a pthread_cancel interrupts a thread in an ENQ, the target thread is
abended (S0422-189). If an ESTAE has not been established or just
percolates, the entire process is terminated. This behavior is required for
standards compliance.

– Input arguments:
- 1st argument (fullword):

Value Definition
0 Disable ENQ wait interrupt support in the caller’s process.
1 Enable ENQ wait interrupt support in the caller’s process.

– Output arguments:
- 1st argument (fullword):

Value Definition
0 ENQ wait interrupt support is disabled in the caller’s

process.
1 ENQ wait interrupt support is enabled in the caller’s

process.

v FREEZE_EXIT_REG

The purpose of the FREEZE_EXIT_REG Function_code is to register with the
kernel the address of an exit that is to get control when the Freeze-Exit

oe_env_np (BPX1ENV)

Chapter 2. Callable services descriptions 429

function code of the pthread_quiesce service is requested. The exit gets
control once on each thread processed by the pthread_quiesce(Freeze_Exit)
service.

If a FREEZE_EXIT_REG is registered, the kernel gives control to the
specified exit as a result of the pthread_quiesce(freeze_exit) call.

The user exit is given control while the pthread_quiesce service is still in
progress. The user exit should not attempt to use any service that alters or
terminates the current process. No callable services should be requested. If
such services are attempted, the results are unpredictable.

The register usage on entry to the user exit is:

– R0: Undefined

– R1: Address of the parameter list defined by PpsdSIRParms. The first
word of this parameter list is the address of the Ppsd.

– R2–R15: Undefined

When the exit returns, there are no expected return values or codes. The exit
routine should terminate via SVC 3.

– Input arguments:
- 1st argument (fullword):

Value Definition
address Pthread_quiesce(Freeze_Exit) exit address.
0 Clear pthread_quiesce(Freeze_exit) address. Specifying

zero deregisters an exit address.

– Output arguments:
- 1st argument (fullword):

Value Definition
address Pthread_quiesce(Freeze_Exit) exit address.
0 No exit has been registered with the kernel.

v QUICK_FREEZE_EXIT_REG

The purpose of the QUICK_FREEZE_EXIT_REG Function_code is to register
with the kernel the address of the Language Environment quick freeze exit
that is to get control when the pthread_quiesce_and_get_np service
(BPX1PQG) is requested with THDQ_FREEZE or THDQ_FREEZE with
THDQ_GET_STATE. The exit receives control during quiesce freeze
processing from the BPX1PQG service in the key and state of the caller that
registered the exit.

The quick freeze exit routine passes back in the supplied THDQ area the
address of the stack start address for each supplied thread, and an indication
of whether the thread is safe to be quick frozen.

The register usage on entry to the user exit is:

– R0: Undefined

– R1: Address of an input parameter list. The parameter list contains a list of
the addresses of the following parameters:

a. The THDQ data area that was supplied to the BPX1PQG service

b. The user data parameter supplied to the BPX1PQG service

– R2–R12: Undefined

– R13: Address of an 8192–byte work area in the same key as the caller
that registered the exit

oe_env_np (BPX1ENV)

430 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

– R14: The return address from the user exit to the BPX1PQG service. This
address must be preserved by the user exit

– R15: The address of the user exit

The quick freeze exit routine is expected to pass back in the supplied THDQ
area the address of the stack start address for each supplied thread, and an
indication of whether the thread is safe to be quick frozen.

– Input arguments:
- 1st argument (fullword):

Value Definition
address Address of Quick_Freeze_Exit
0 Clear pthread_quiesce_and_get_np (Quick_Freeze_Exit)

address. Specifying zero deregisters an exit address.

– Output arguments:
- 1st argument (fullword):

Value Definition
address Pthread_quiesce_and_get_np (Quick_Freeze_Exit) exit

address.
0 No exit has been registered with the kernel.

- 2nd argument: address of stack start address for each supplied thread,
and an indication of whether the thread is safe to be quick frozen
(ThdqAllSafe bit in ThdqFlags).

v MVS_USERID

The purpose of the MVS_USERID Function_code is to query the current
MVS identity of the caller. The MVS user ID that is returned can be affected
by the presence of a task-level security environment. If a task-level security
environment has been created by the pthread_security_np service, the user
ID that is associated with the task is returned.

The InArgCount must be 0, and the OutArgCount must be 1.

– Input arguments:
- 1st argument (None)

Value Definition
NA NA

– Output arguments:
- 1st argument (Char 8)

Value Definition
Current MVS
userid

8-character user ID padded on the right with blanks.

v ENV_TOGGLE_SEC

The purpose of the ENV_TOGGLE_SEC Function_code is to toggle the
task-level security. If the calling task has a task-level security environment, it
is saved, and the task security is set back to the process level. If the calling
task has a saved security environment and currently has no task-level
security, the saved security environment is reinstated. If the calling task has
not made a prior call to pthread_security_np, this call has no effect.

There are no additional input or output arguments, so the InArgCount and the
OutArgCount must be 0.

oe_env_np (BPX1ENV)

Chapter 2. Callable services descriptions 431

v ENV_STOR_SERVICE

The purpose of the ENV_STOR_SERVICE Function_code is to modify the
storage attributes of the caller’s address space. The caller’s address space
cannot be made swappable unless it has previously been made
non-swappable by this function. If the function is called to make an address
space non-swappable and the current address space has already been made
non-swappable by this function, the call is ignored and the address space
remains non-swappable.

The InArgCount must be 1, and the OutArgCount must be 0.

– Input arguments:
- 1st argument (Structure):

ENV_STOR_FLAGS (Supplied Parameter)

ENV_STOR_FLAGS can be set to the following values defined in
BPXYCONS macro:

Value Definition
BPX_SWAP Makes the address space swappable. The caller needs at

least READ access to the BPX.STOR.SWAP FACILITY
class profile.

BPX_NONSWAP Makes the address space non-swappable. The caller
needs at least READ access to the BPX.STOR.SWAP
FACILITY class profile.

When an application makes an address space
non-swappable, it may cause additional real storage in the
system to be converted to preferred storage. Preferred
storage cannot be configured offline. Use of this service
can therefore reduce an installation’s ability to reconfigure
storage in the future. Any application using this service
should warn the customer about this side effect in the
installation documentation.

– Output arguments:

- 1st argument (None)

Value Definition
N/A N/A

v SHUTDOWN_REG

The purpose of the SHUTDOWN_REG Function_code is to request special
treatment for the caller at OMVS shutdown time.

There are constants defined in BPXYCONS for use with the
SHUTDOWN_REG function. See “BPXYCONS — Constants Used by
Services” on page 956.

The InArgCount must be 1, and the OutArgCount must be 0.

– Input arguments:
- 1st parameter (fullword):

The first parameter contains a value that indicates the type of shutdown
registration being requested:

Value Definition
1 Register as a blocking process or job
2 Register as a permanent process or job
3 Deregister as a blocking process or job
4 Deregister as a permanent process or job

oe_env_np (BPX1ENV)

432 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Value Definition
5 Register for notification of shutdown
6 Deregister for notification of shutdown

- 2nd parameter (fullword):

The second parameter contains a value that indicates the scope of
shutdown registration being requested:

Value Definition
1 Register for the calling job
2 Register for the calling process

The values in the first two parameters are mutually exclusive; they
cannot be combined.

- 3rd parameter (fullword):

The third parameter contains a value that indicates the registration
options being requested:

Value Definition
1 Block system calls that are waiting for restart (valid for

permanent registration only).
2 Abend system calls during shutdown/restart (valid for

permanent registration only). This option is mutually
exclusive with option value 1.

4 Send a SIGTERM signal when shutdown is initiated.
8 Invoke a specified exit when shutdown is initiated. This

option is mutually exclusive with option 4 (send a
SIGTERM).

- 4th parameter (fullword):

The fourth parameter contains the address of the exit that is to receive
control at shutdown time, or 0.

– Output arguments:
- (None)

Related services
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process” on page 504
v “pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security

Environment for Caller’s Thread” on page 512

Characteristics and restrictions
Users of the blocking and permanent registration options of the SHUTDOWN_REG
function must meet one of the following requirements:

v The calling address space must be a system started task address space.

v The caller must be running authorized (APF authorized, system key 0–7, or
supervisor state).

v The caller must be a privileged z/OS UNIX process. It must have either
superuser identity or read permission to the BPX.SHUTDOWN facility class
profile.

Examples
For an example using this callable service, see “BPX1ENV (oe_env_np) Example”
on page 1095.

oe_env_np (BPX1ENV)

Chapter 2. Callable services descriptions 433

open (BPX1OPN) — Open a File

Function
The open callable service gains access to a file and creates a file descriptor for it.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1OPN,(Pathname_length,
Pathname,
Options,
Mode,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pathname of the file.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the name of the file to be opened. The length
of this field is specified in Pathname_length.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

open (BPX1OPN)

434 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Options
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the binary flags that describe how the file
is to be opened. For descriptions of the options, see “Usage notes” on
page 437.

Options are mapped by the BPXYOPNF macro; see “BPXYOPNF — Map Flag
Values for open” on page 993.

Mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword in which the mode field is specified. The mode field,
which is mapped by BPXYMODE, specifies the file type and the permissions
the caller grants to itself, to its groups, and to any user. See “BPXYMODE —
Map the Mode Constants of the File Services” on page 986.

If create or exclusive create is not specified on the Options parameter, the
Mode parameter is ignored.

The file type is mapped by the BPXYFTYP macro; see “BPXYFTYP — File
Type Definitions” on page 969.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the open service stores the file descriptor if the
file was opened successfully, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the open service stores the return code. The
open service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The open service can return one of the following values in the
Return_code parameter:

open (BPX1OPN)

Chapter 2. Callable services descriptions 435

Return_code Explanation
EACCES Reasons for being denied access include these:

v The calling process does not have permission to search one of
the directories specified in the Pathname parameter.

v The calling process does not have permission to open the file
in the way specified by the Options parameter.

v The file does not exist, and the calling process does not have
permission to write into files in the directory in which the file
would have been created.

v The truncate option was specified, but the process does not
have write permission for the file.

EAGAIN Resources were temporarily unavailable.
EBUSY The pathname specifies a master pseudoterminal that is either

already in use, or for which the corresponding slave is open.
EEXIST The exclusive create option was specified, but the file already

exists. The following reason code can accompany the return
code: JRFileExistsExclFlagSet.

EFBIG A request to create a new file is prohibited because the file size
limit for the process is set to 0.

EINTR The open operation was interrupted by a signal.
EINVAL The Options parameter does not specify a valid combination of

the O_RDONLY, O_WRONLY and O_TRUNC bits; or the file type
that was specified in the Mode parameter is not valid. The
following reason codes can accompany the return code:
JRInvOpenFlags and JROpenFlagConflict.

EISDIR The file specified by Pathname is a directory, and the Options
parameter specifies write or read/write access. The following
reason code can accompany the return code:
JRDirWriteRequest.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

EMFILE The process has reached the maximum number of file
descriptors it can have open.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters. Filename truncation is
not supported.

ENFILE The maximum number of file descriptors that can be open has
been reached.

ENODEV Typical causes:

v An attempt was made to open a character special file for a
device that is not supported.

v An attempt was made to open a character special file for a
device that is not yet initialized.

The following reason code can accompany the return code:
JRNoCTTY.

ENOENT Typical causes:

v The request did not specify that the file was to be created, but
the file named by Pathname was not found.

v The request asked for the file to be created, but some
component of Pathname was not found, or the Pathname
parameter was blank.

The following reason codes can accompany the return code:
JREndingSlashOCreat, JRNoFileNoCreatFlag, and JRQuiescing.

open (BPX1OPN)

436 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOSPC The directory or file system intended to hold a new file has

insufficient space.
ENOTDIR A component of Pathname is not a directory.
ENXIO The open request specified write-only and nonblock for a FIFO

special file, but no process has the file open for reading. For
pseudoterminals, it can mean that the minor number associated
with the pathname is too big.

EPERM The caller is not permitted to open the specified slave
pseudoterminal; or the corresponding master is not yet open.
EPERM is also returned if the slave is closed with HUPCL set,
and an attempt is made to reopen it.

EROFS The Pathname parameter names a file on a read-only file
system, but options that would allow the file to be altered were
specified: write-only, read/write, truncate, or—for a new
file—create. The following reason codes can accompany the
return code: JRReadOnlyFileSetWriteReq and
JRReadOnlyFileSetCreatReq.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the open service stores the reason code. The
open service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. When a file is created with the Create or Exclusive_create options of the

Options parameter, the file permission bits as specified in the Mode parameter
are modified by the process’s file creation mask (see “umask (BPX1UMK) —
Set the File Mode Creation Mask” on page 875), and then used to set the file
permission bits of the file that is being created.

The file’s owner ID is set to the process’s effective user ID (UID). By default, the
owning GID is set to that of the parent directory. However, if the
FILE.GROUPOWNER.SETGID profile exists in the UNIXPRIV class, the owning
GID is determined by the set-gid bit of the parent directory, as follows:

v If the parent’s set-gid bit is on, the owning GID is set to that of the parent
directory.

v If the parent’s set-gid bit is off, the owning GID is set to the effective GID of
the process.

2. Exclusive Create Option : If the exclusive create bit is set and the create bit is
not set, the exclusive create bit is ignored.

3. Truncate Option : Turning on the truncate bit opens the file as though it had
been created earlier, but never written into. The mode and owner of the file do
not change (although the change time and modification time do); but the file’s
contents are discarded. The file offset, which indicates where the next write is to
occur, points to the first byte of the file.

4. Nonblock Option : A FIFO special file is a shared file from which the first data
written is the first data read. The Nonblock option is a way of coordinating write

open (BPX1OPN)

Chapter 2. Callable services descriptions 437

|
|
|
|

|
|

|
|

and read requests between processes that share a FIFO special file. Provided
that no other conditions interfere with opening the file successfully, it works as
follows:

v If a file is opened read-only and Nonblock is specified, the open request
succeeds. Control returns to the caller immediately.

v If a file is opened write-only and Nonblock is specified, the open request
completes successfully, provided that another process has the file open for
reading. If another process does not have the file open for reading, the
request ends with Return_value set to −1.

v If a file is opened read-only and Nonblock is omitted, the request is blocked
(control is not returned to the caller) until another process opens the file for
writing.

v If a file is opened write-only and Nonblock is omitted, the request is blocked
(control is not returned to the caller) until another process opens the file for
reading.

5. Synchronous Update Option : When this bit is set, the program is assured that
all data updates have been written to permanent storage.

Related services
v “close (BPX1CLO) — Close a File” on page 97
v “exec (BPX1EXC) — Run a Program” on page 133
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “lseek (BPX1LSK) — Change a File’s Offset” on page 332
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “write (BPX1WRT) — Write to a File or a Socket” on page 935
v “umask (BPX1UMK) — Set the File Mode Creation Mask” on page 875

Characteristics and restrictions
See “Usage notes” on page 437.

Examples
See “BPX1OPN (open) Example” on page 1182 for an example using this callable
service.

MVS-related information
The Execution access requested bit is used by the exec service (see “exec
(BPX1EXC) — Run a Program” on page 133) to verify that the process has
permission to run the specified file. When the open service succeeds, the specified
file is treated as read-only for this case.

open (BPX1OPN)

438 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

opendir (BPX1OPD) — Open a Directory

Function
The opendir callable service opens a directory so that it can be read with the
readdir service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1OPD,(Directory_name_length,
Directory_name,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the name of the directory.

Directory_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Directory_name_length

The name of a field that contains the name of the directory. The length of this
field is specified in Directory_name_length.

Return_value
Returned parameter

Type: Integer

Length: Fullword

opendir (BPX1OPD)

Chapter 2. Callable services descriptions 439

The name of a fullword in which the opendir service stores a directory file
descriptor that describes the specified directory, if the request is successful; or
−1, if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the opendir service stores the return code. The
opendir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The opendir service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The process does not have permission to search some

component of the name that is specified as Directory_name; or it
does not have permission to work with the directory itself.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Directory_name argument. This error is issued if
more than 24 symbolic links are detected in the resolution of
Directory_name.

EMFILE Too many other files are already open for the process.
ENAMETOOLONG Directory_name is longer than 1023 bytes; or a component of the

pathname is more than 255 bytes long.
ENFILE Too many files are already open.
ENOENT The specified directory was not found. The following reason

codes can accompany the return code: JROpenDirNotFound and
JRQuiescing.

ENOTDIR Some component of the pathname is not a directory. The
following reason code can accompany the return code:
JRTargetNotDir.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the opendir service stores the reason code.
The opendir service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The opendir service opens a directory so that the first readdir service—see

“readdir (BPX1RDD) — Read an Entry from a Directory” on page 571—starts
reading at the first entry in the directory.

2. Return_value is a file descriptor for a directory only. It can be used only as input
to services that expect a directory file descriptor. These services are closedir,
rewinddir, and readdir.

opendir (BPX1OPD)

440 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on

page 608

Characteristics and restrictions
There are no restrictions on the use of the opendir service.

Examples
For an example using this callable service, see “BPX1OPD (opendir) Example” on
page 1181.

opendir (BPX1OPD)

Chapter 2. Callable services descriptions 441

openstat (BPX2OPN) — Open a File and Obtain Status Information

Function
The openstat callable service gains access to a file, creates a file descriptor for it,
and obtains its status.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1OST,(Pathname_length,
Pathname,
Options,
Mode,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pathname of the file that
is to be opened.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a fullword that contains the name of the file that is to be opened.
The length of this field is specified in Pathname_length.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory. The search for the file starts at the root directory.

openstat (BPX2OPN)

442 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Options
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the binary flags that describe how the file
is to be opened. For a description of the options, see the options described for
the open callable service in “Usage notes” on page 437.

Options are mapped by the BPXYOPNF macro; see “BPXYOPNF — Map Flag
Values for open” on page 993.

Mode
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword in which the mode field is specified. The mode field,
which is mapped by BPXYMODE, specifies the file type and the permissions
granted by the caller to itself, to its groups, and to any user. See“BPXYFTYP —
File Type Definitions” on page 969.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the length of the Status_area parameter.
To determine the value of Status_area_length, use the BPXYSTAT macro (see
“BPXYSTAT — Map the Response Structure for stat” on page 1034).

Status_area
Supplied and returned parameter

Type: Structure

Length: The length of BPXYSTAT or
Status_area_length, whichever is less.

The name of an area to which the openstat service returns the status
information for the file. Status_area is mapped by the BPXYSTAT macro (see
“BPXYSTAT — Map the Response Structure for stat” on page 1034).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the openstat service stores the file descriptor, if
the file is opened successfully; or −1, if it is not successful.

Return_code
Returned parameter

openstat (BPX2OPN)

Chapter 2. Callable services descriptions 443

Type: Integer

Length: Fullword

The name of a fullword in which the openstat service stores the return code.
The openstat service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The openstat service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EACCESS The calling process was denied access for one of the following

reasons:

v The calling process does not have permission to search one of
the directories that was specified in the Pathname parameter.

v The calling process does not have permission to open the file
in the way that was specified on the Options parameter.

v The file does not exist, and the calling process does not have
permission to write into files in the directory in which the file
would have been created.

v The truncate option was specified, but the calling process does
not have write permission for the file.

EAGAIN Resources were temporarily unavailable.
EBUSY The Pathname parameter specified a master pseudoterminal that

is already in use, or for which the corresponding slave is open.
EEXIST The exclusive create option was specified, but the file already

exists. The following reason code can accompany the return
code: JRFileExistsExclFlagSet.

EFBIG A request to create a new file is prohibited because the file size
limit for the process is set to 0.

EINTR The openstat operation was interrupted by a signal.
EINVAL The Options parameter does not specify a valid combination of

the O_RDONLY, O_WRONLY and O_TRUNC bits; or the file type
that was specified in the Mode parameter is not valid. The
following reason codes can accompany the return code:
JRInvOpenFlags and JROpenFlagConflict.

EISDIR The file that is specified by Pathname is a directory, and the
Options parameter specifies write or read/write access. The
following reason code can accompany the return code:
JRDirWriteRequest.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

EMFILE The process has reached the maximum number of file
descriptors it can have open.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters. Filename truncation is
not supported.

ENFILE The maximum number of file descriptors that can be open has
been reached.

openstat (BPX2OPN)

444 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENODEV Typical causes:

v An attempt was made to open a character special file for a
device that is not supported.

v An attempt was made to open a character special file for a
device that is not yet initialized.

The following reason code can accompany the return code:
JRNoCTTY.

ENOENT Typical causes:

v The openstat request did not specify that the file was to be
created, but the file that was named by Pathname was not
found.

v The openstat request specified that the file was to be created,
but some component of Pathname was not found, or the
Pathname parameter was blank.

The following reason codes can accompany the return code:
JREndingSlashOCreat, JRNoFileNoCreatFlag, and JRQuiescing.

ENOSPC The directory or file system that was intended to hold a new file
has insufficient space.

ENOTDIR A component of Pathname is not a directory.
ENXIO The openstat request specified write-only and nonblock for a

FIFO special file, but no process has the file open for reading.
For pseudoterminals, this could mean that the minor number that
is associated with the pathname is too big.

EPERM The caller is not permitted to open the specified slave
pseudoterminal; or the corresponding master is not yet open.
EPERM is also returned if the slave is closed with HUPCL set
and an attempt is made to reopen it.

EROFS The Pathname parameter names a file on a read-only file
system, but options that would allow the file to be altered were
specified: write-only, read/write, truncate, or (for a new file)
create. The following reason codes can accompany the return
code: JRReadOnlyFileSetWriteReq and
JRReadOnlyFileSetCreatReq.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the openstat service stores the reason code.
The openstat service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
For information about opening and creating files, see “open (BPX1OPN) — Open a
File” on page 434.

Related services
v “open (BPX1OPN) — Open a File” on page 434
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195

openstat (BPX2OPN)

Chapter 2. Callable services descriptions 445

Characteristics and restrictions
See “Usage notes”.

Examples
For an example using this callable service, see “BPX2OPN (openstat) Example” on
page 1183.

openstat (BPX2OPN)

446 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

osenv (BPX1OSE) — Get or Set Security Attributes or WLM Enclave
Membership Attributes

Function
The osenv callable service allows the invoking pthread to get, set, or unset security
attributes or WLM (Workload Manager) enclave membership attributes that are
associated with it.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created

Dispatchable unit mode: Task (must be a pthread-created task)
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1OSE, (Function_code,
Request_flags,
Osenv_token,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing an unsigned integer that represents the
function requested. Valid values, which are defined in the BPXYCONS macro,
represent the five functions:
v OSENV_GET (1)
v OSENV_SET (2)
v OSENV_UNSET (4)
v OSENV_PERSIST (8)
v OSENV_UNPERSIST (16)

Only one function may be requested per invocation, with the exception of the
OSENV_SET and OSENV_UNPERSIST functions, which may be specified
together on a single invocation. To use any of the osenv functions, the caller
must be running under a pthread-created task.

v The OSENV_GET function captures the attributes that are requested and
creates an environment (osenv) that is associated with the current attributes

osenv (BPX1OSE)

Chapter 2. Callable services descriptions 447

of the caller. The caller becomes associated with this osenv, and a token
representing the osenv is returned to the caller. The osenv environment can
be propagated to other pthreads using the OSENV_SET function.

The current task must not be actively associated with an osenv environment;
that is, any previous invocations of the OSENV_GET or OSENV_SET
functions must have been followed by a corresponding invocation of the
OSENV_UNSET function.

If the request flags specify that pthread security is to be part of the
environment, the caller may not have a task-level security environment,
unless it is set by the pthread_security_np service.

v The OSENV_SET function is passed an input osenv token. The
OSENV_SET function captures the current attributes that are of interest, so
that they can be restored later with the OSENV_UNSET function. It then
changes these attributes to the values that are associated with the input
osenv token. The caller becomes associated with the input osenv.

An invocation of the OSENV_SET function may optionally include an
invocation of the OSENV_UNPERSIST function. This might be done when a
prior invocation that specified OSENV_PERSIST (which expresses future
interest) is being converted to actual interest using the OSENV_SET function.
Note that the prior OSENV_PERSIST might have been invoked under a
different TCB from the OSENV_SET invocation.

The current task must not be actively associated with an osenv environment;
that is, any previous invocations of the OSENV_GET or OSENV_SET
functions must have been followed by a corresponding invocation of the
OSENV_UNSET function. Note also that the current task must belong to the
same process as the task that obtained the osenv token using the
OSENV_GET function.

If the request flags specify that pthread security is to be set, the caller may
not have a task-level security environment, unless it is set by the
pthread_security_np service.

If the request flags specify that WLM enclave membership is to be set, and
the caller is currently in a WLM enclave, the caller must be allowed to leave
its current WLM enclave and belong to the osenv WLM enclave. In certain
circumstances this is not permitted.

v The OSENV_UNSET function restores the saved attributes that were
captured on the prior OSENV_SET invocation, and removes the task from its
osenv attributes. (If the OSENV_GET function was used, no restoration is
performed.) The caller is no longer associated with the input osenv
environment. If the input osenv is no longer associated with any pthreads,
the input osenv and the corresponding osenv token are no longer eligible for
use.

v The OSENV_PERSIST function ensures that the osenv token that is currently
in use by the task remains valid, so that the OSENV_SET function can be
used at a later time. Each invocation of the OSENV_PERSIST function must
eventually be balanced by an invocation of the OSENV_UNPERSIST function
(which might also specify OSENV_SET).

The current task must be actively associated with an osenv environment; that
is, it must have a prior invocation of the OSENV_GET or OSENV_SET
function outstanding without a subsequent invocation of the OSENV_UNSET
function.

osenv (BPX1OSE)

448 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The OSENV_UNPERSIST function frees up the interest in the osenv
environment that was expressed by a prior invocation of the
OSENV_PERSIST function, so that associated resources can be freed when
no further interest exists.

The current task must be actively associated with an osenv environment; that
is, it must have a prior invocation of the OSENV_GET or OSENV_SET
function outstanding without a subsequent invocation of the OSENV_UNSET
function.

Request_flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the attributes that are of interest for the
input function_code. The following values represent the two attributes:
v OSENV_WLM (1), for WLM enclave membership
v OSENV_SECURITY (2), for a pthread security environment

v When the Function_code is OSENV_GET, the behavior of the osenv service
is as follows:

– If WLM enclave membership is requested, the WLM enclave token that is
associated with the pthread is captured. If the pthread is not in a WLM
enclave, no WLM enclave is reflected in the osenv environment.

– If WLM enclave membership is not requested, no WLM enclave is
reflected in the osenv environment.

– If a pthread security environment is requested, the task-level pthread
security is captured. If task-level security exists but it is not pthread
security, the request is rejected. If the pthread is not under any task-level
security, no task-level security is reflected in the osenv environment; that
is, address-space-level security is inherited by any task using the
OSENV_SET function that requests osenv security inheritance.

– If no security environment is requested, no task-level security is reflected
in the osenv environment; that is, address-space-level security is inherited
by any task using the OSENV_SET function that requests osenv security
inheritance.

In effect, the osenv environment that is created by the OSENV_GET function
has the full set of attributes associated with it, and the input Request_flags
control which values are copied from the caller’s environment.

v When the Function_code is OSENV_SET, the behavior of the osenv service
is as follows:

– If WLM enclave membership is requested, the current WLM enclave
membership (if there is one) is extracted and saved.

If the osenv environment is associated with a WLM enclave and the
pthread currently belongs to the same WLM enclave, no further action
takes place.

If the osenv environment is associated with a WLM enclave and the
pthread currently belongs to a different WLM enclave, the pthread is
removed from the current WLM enclave and joined to the
osenv-associated WLM enclave.

If the osenv environment is associated with a WLM enclave and the
pthread currently does not belong to a WLM enclave, the pthread is joined
to the osenv-associated WLM enclave.

osenv (BPX1OSE)

Chapter 2. Callable services descriptions 449

If the osenv environment is not associated with a WLM enclave and the
pthread currently does not belong to a WLM enclave, no further action
takes place.

If the osenv environment is not associated with a WLM enclave and the
pthread currently belongs to a WLM enclave, the pthread is removed from
the current WLM enclave.

– If a pthread security environment is requested, the pthread task may not
have task-level security. The level of security (if any) that is associated
with the pthread is captured. If the pthread has task-level security, the
request is rejected. Otherwise, the pthread is given the same pthread
task-level security as the osenv environment. If the osenv has no pthread
task-level security, the pthread is given address-space-level security.

v When the Function_code is OSENV_UNSET, OSENV_PERSIST, or
OSENV_UNPERSIST, the Request_flags parameter is not relevant.

Osenv_token
Returned parameter for the OSENV_GET function. Supplied parameter for the
OSENV_SET function. Not relevant for the OSENV_UNSET, OSENV_PERSIST
or OSENV_UNPERSIST functions.

Type: Structure

Length: 8 bytes

For the OSENV_GET function, the name of an 8-byte area that contains the
returned osenv token. For the OSENV_SET function, the name of an 8-byte
area that contains the input osenv token.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osenv service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osenv service stores the return code. The
osenv service stores a return code only if the return value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The osenv service may return one of the following values in
the Return_code parameter:

Return code Explanation
EACCES Permission is denied. Consult Reason_code to determine the

exact reason the error occurred. The following reason code
unique to the osenv service can accompany the return code:
JROK.

osenv (BPX1OSE)

450 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return code Explanation
EINVAL The system determined that one or more of the parameters

passed to the service are in error. Consult Reason_code to
determine the exact reason the error occurred. The following
reason codes unique to the osenv service can accompany the
return code: JRThreadTerm, JROptNotSupp, JRNoPersist,
JROsenvWrongEnclave JROsenvBeginEnvOutstanding,
JROsenvNotEJoinedTcb, JROsenvEnclabeSubTaskExists,
JROsenvSecurityMismatch, JROsenvNotActive,
JROsenvPersistCntBad.

ENOSYS The function is not implemented. Consult Reason_code to
determine the exact reason the error occurred. The following
reason code unique to the osenv service can accompany the
return code: JRNoSecurityProduct.

ESRCH No such process or thread exists. Consult Reason_code to
determine the exact reason the error occurred. The following
reason code unique to the osenv service can accompany the
return code: JROK.

EMVSPARM Bad parameters were passed to the osenv service. Consult
Reason_code to determine the exact reason the error occurred.
The following reason codes unique to the osenv service can
accompany the return code: JROptNotSupp, JRInvOsenvTok.

EMVSSAFEXTRERR SAF/RACF extract error. No reason code is applicable.
EMVSSAF2ERR SAF/RACF error. Consult Reason_code to determine the exact

reason the error occurred. The following reason codes unique to
the osenv service can accompany the return code:
JRSAFParmListErr, JRSAFInternal.

EMVSEXPIRE The password for the specified resource has expired. Consult
Reason_code to determine the exact reason the error occurred.
The following reason code unique to the osenv service can
accompany the return code: JROK.

EMVSWLMERROR A WLM service ended in error.Consult Reason_code to determine
the exact reason the error occurred. The following reason codes
unique to the osenv service can accompany the return code:
JRWlmJoinError, JRIwmeleavError.

EALREADY Operation already in progress. Consult Reason_code to
determine the exact reason the error occurred. The following
reason codes unique to the osenv service can accompany the
return code: JRAlreadyActive, JRSecActive.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the osenv service stores the reason code. The
osenv service stores a reason code only when the return value is −1. The
reason code further qualifies the return code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. The osenv services provide a higher layer of encapsulation for a variety of

existing services. When a pthread belongs to an osenv and has requested
inheritance using the Request_flags, it should not use the lower-level services to
alter attributes. In a WEB environment, a typical flow in a WLM server space is
a loop:

osenv (BPX1OSE)

Chapter 2. Callable services descriptions 451

a. The initial thread issues a server_pwu (SRV_GET_WRK) request, which
selects a work request from a WLM-managed queue and begins a WLM
server transaction.

b. The initial thread optionally issues a pthread_security_np request.

c. The initial thread calls the Java™ Virtual Machine (JVM) to run an
application.

d. The OSENV_GET function is invoked to capture attributes, and the output
osenv token is saved for future use.

e. JVM invokes the application (multi-threaded):

v The OSENV_PERSIST function is invoked in the flow where a Java
thread is created, so that the attributes will be available when the new
thread gets control.

v The OSENV_SET and OSENV_UNPERSIST functions are invoked in the
flow where a Java thread is mapped to its MVS TCB, so that it can inherit
the desired attributes.

v The OSENV_UNSET function is invoked under each pthread as it
finishes, to restore the original attributes and eventually remove the osenv
environment it has created.

Note that the original pthread that invoked the OSENV_GET function
does not change attributes as a result of the OSENV_UNSET function,
and continues to run with the attributes it already has.

v JVM completes cleanup for the application invocation.

f. WEB cleanup is performed. This includes calling the pthread_security_np
(TLS_DELETE_THREAD_SEC#) and server_pwu (SRV_END_WRK and
SRV_DEL_ENC) services.

2. The osenv services may not be used under every permutation. The permissible
permutations are as follows. Each starts with a pthread that is not associated
with an osenv and returns the pthread to a state in which it is not associated
with an osenv, at which point it can choose either permissible permutation.

a. The OSENV_GET function is invoked (and possibly the osenv token is
passed off to other pthreads, or the OSENV_PERSIST or
OSENV_UNPERSIST functions are invoked); the OSENV_UNSET function
is invoked (and possibly services are used to change security or WLM
enclave membership).

b. The OSENV_SET function is invoked (and possibly the osenv token is
passed off to other pthreads, or the OSENV_PERSIST or
OSENV_UNPERSIST functions are invoked); the OSENV_UNSET function
is invoked (and possibly services are used to change security or WLM
enclave membership).

3. When a pthread is associated with an osenv using the OSENV_GET function,
any change in attributes that is done through other programming interfaces will
not be undone by the next OSENV_UNSET request.

When a pthread is associated with an osenv using the OSENV_SET function,
the pthread should not use callable services to modify the captured attributes
(as specified by the request_flags on OSENV_SET). For example, the
__server_pwu service should not be used to join or leave a WLM enclave (or
begin or end a WLM server transaction) when the WLM enclave attribute was
requested. In the same way, the pthread_security_np service should not be
used to alter the security attributes when the pthread security attribute was
requested. Some of these invocations would fail anyway because of an incorrect
environment. For example, if a pthread uses the OSENV_SET function to set an

osenv (BPX1OSE)

452 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

osenv environment with a WLM enclave (with request_flags specifying a WLM
enclave) and the pthread requests __server_pwu (SRV_GET_WRK), the
request fails.

The use of native assembler interfaces to WLM or RACF is not intercepted.
However, these interfaces are only available to authorized programs, which are
expected to refrain from using such services to alter attributes that are
associated with the pthread under the osenv environment.

When a pthread is associated with an osenv environment using the
OSENV_GET function, no alteration of the attributes by native interfaces is
detected by the next invocation of the OSENV_UNSET function, and the caller
retains whatever associations are present when the OSENV_UNSET function is
invoked.

When a pthread is associated with an osenv environment using the
OSENV_SET function, alteration of the attributes by native interfaces may or
may not be detected by the next OSENV_UNSET invocation. It is possible that
the caller will get a successful return value from the OSENV_UNSET request
and retain whatever changes were made.

4. When a pthread that is associated with an osenv is terminated, it is no longer
associated with the environment. If this is the last pthread that is associated
with the osenv, the osenv is no longer valid for use. If the number of
OSENV_PERSIST requests has not been matched by an equal number of
OSENV_UNPERSIST requests, the resources that are associated with the
osenv may not be reclaimed until the process terminates. When the
OSENV_PERSIST function is used, the osenv_ set function together with the
OSENV_UNPERSIST function should be used as soon as possible on a normal
flow. This narrows the window more effectively than if the OSENV_UNPERSIST
function is used just before the OSENV_UNSET function.

The OSENV_UNPERSIST function should be used during recovery or
termination processing as appropriate to balance a prior OSENV_PERSIST
request. Because the OSENV_UNPERSIST function must be called from a TCB
that has an active osenv outstanding, it may be necessary to use the
OSENV_SET function with the OSENV_UNPERSIST function (which expects
the TCB to have no active osenv outstanding), followed by the OSENV_UNSET
function, if the TCB is not intended to stay in the osenv environment. Note that
on an OSENV_SET with OSENV_UNPERSIST call that fails because of task
membership in a WLM enclave that is different from the target osenv WLM
enclave, the OSENV_UNPERSIST function need not be invoked, and will
probably fail.

Related services
v “server_init (BPX1SIN) — Server Initialization” on page 658
v “server_pwu (BPX1SPW) — Server Process Work Unit” on page 662
v “pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security

Environment for Caller’s Thread” on page 512

Characteristics and restrictions
If the caller is already in a WLM Begin environment (that is, if it has issued a native
IWMSTBGN or __server_pwu (SRV_GET_WRK) request), the OSENV_SET
function is not allowed to modify the WLM enclave membership. If it is necessary
that it do so, the function fails.

osenv (BPX1OSE)

Chapter 2. Callable services descriptions 453

Examples
For an example using this callable service, see “BPX1OSE
((__osenv_get/set/unset/persist/unpersist) Example” on page 1185.

osenv (BPX1OSE)

454 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

__passwd (BPX1PWD) — Verify/Change the User Password

Function
The __passwd callable service verifies or changes (or both) the input user_name’s
password.

Requirements

Authorization: Supervisor state or problem state, any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PWD,(User_name_length,
User_name,
Password_length,
Password,
New_Password_length,
New_Password,
Return_value,
Return_code,
Reason_code)

Parameters
User_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of User_name.

User_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the User_name_length parameter

The name of a field, of length User_name_length, that contains, left-justified,
the name of the user whose password is to be verified or changed or both. The
name is specified in the Resource Access Control Facility (RACF) command
that defines the user to the system.

Password_length
Supplied parameter

__passwd (BPX1PWD)

Chapter 2. Callable services descriptions 455

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Password. The length must
be between 1 and 8.

Password
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Password_length parameter

The name of a field, of length Password_length, that contains, left-justified, the
password that is to be verified.

New_Password_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of New_Password. The length
must be between 1 and 8.

New_Password
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the New_Password_length
parameter

The name of a field, of length New_Password_length, that contains,
left-justified, the new password for the specified user.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __passwd service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __passwd service stores the return code.
The __passwd service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The __passwd service can return one of the following
values in the Return_code parameter:

__passwd (BPX1PWD)

456 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL User_name, Password, or New_Password length is incorrect.

Consult Reason_code to determine the exact reason the error
occurred. The following reason codes can accompany the return
code: JRUserNameLenError, JRPasswordLenError,
JRNewPasswordLenError, and JRUserNameBad.

EPERM The caller does not have read access to the BPX.DAEMON
FACILITY class profile.

ESRCH The user name specified is not defined to OMVS.
EACCES The password specified is not authorized; access is denied.
EMVSEXPIRE The password has expired.
EMVSPASSWORD The new password is not valid.
EMVSSAFEXTRERR The user’s access has been revoked.
EMVSSAF2ERR The RACF Get UMAP service had an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __passwd service stores the reason code.
The __passwd service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

In the case of EMVSSAF2ERR, the reason code contains the RACF return and
reason codes, respectively, in the two low-order bytes.

For a more detailed description of the RACF Get UMAP service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing
8 16 Unable to establish recovery
8 20 The user represented by User_name is

incompletely defined.

Usage notes
1. If the BPX.DAEMON FACILITY class profile is defined, all programs that are

loaded into the caller’s address space must be considered controlled programs
by the security product (such as RACF). If the BPX1PWD service detects that a
load of a non-program control was done, it fails with an errno of MVSERR and
an errnnojr of JRENVDIRTY.

2. If the User_name or Password lengths are less than 1 or greater than 8, an
EINVAL is returned.

3. New_Password is ignored if New_Password_length is 0. If New_Password is
specified, its length must be less than 8. Further installation requirements may
apply; for example, the length may need to be a minimum of 6. If the
Return_code indicates EMVSPASSWORD, the installation exit routine may have
failed the request because the New_Password did not meet some installation
standard. If no installation exit is installed on this system, RACF rejected the
password.

__passwd (BPX1PWD)

Chapter 2. Callable services descriptions 457

|
|
|
|
|

4. If an entry for the specified User_name is not found in the user database, or if
the User_name is not defined to the OMVS segment, an ESRCH error is
returned.

5. If the BPX.DAEMON class is defined, the calling program must be loaded from
a controlled library. See z/OS UNIX System Services Planning.

6. If the caller of the __passwd service has read access to the BPX.SRV.userid
SURROGATE profile, where userid is the userid specified in the User_name
parameter, a null Password (Password_length set to zero) may be specified,
and the __passwd service will return a successful Return_value.

If, however, a New_password is specified along with a null Password, the
__passwd service fails with an EINVAL. See z/OS UNIX System Services
Planning for more information about setting up surrogate profiles.

7. When a RACROUTE REQUEST=AUTH results in ABEND282 RC5C, the dump
is suppressed and the request fails with a return code of EMVSSAF2ERR
(X'00A4') and a reason code of JrRACFBlankExists (X'7400').

Related services
v “getpwnam (BPX1GPN) — Access the User Database by User Name” on

page 266

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1PWD (__passwd) Example”
on page 1206.

__passwd (BPX1PWD)

458 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pathconf (BPX1PCF) — Determine Configurable Pathname Variables
Using a Pathname

Function
The pathconf callable service determines the current values of a configurable limit
or option (variable) that is associated with a file or directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PCF,(Pathname_length,
Pathname,
Name,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pathname parameter.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name that contains the pathname of the file. The file has the length that is
specified in Pathname_length.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

pathconf (BPX1PCF)

Chapter 2. Callable services descriptions 459

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Name
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains a value that indicates the configurable limit
or option (variable) that is to be returned in Return_value. Use the BPXYPCF
macro to specify which pathname variable you want returned; see “BPXYPCF
— Command Values for pathconf and pathconf” on page 993.

Variable Returned Description
PC_CHOWN_RESTRICTED Change ownership (“chown (BPX1CHO) — Change

the Owner or Group of a File or Directory” on
page 86) function is restricted to a process with
appropriate privileges, and to changing the group ID
(GID) of a file only to the effective group ID of the
process or to one of its supplementary group IDs.

PC_LINK_MAX Maximum value of a file’s link count.
PC_MAX_CANON Maximum number of bytes in a terminal canonical

input line.
PC_MAX_INPUT Minimum number of bytes for which space will be

available in a terminal input queue; therefore, the
maximum number of bytes a portable application
may require to be typed as input before reading
them.

PC_NAME_MAX Maximum number of bytes in a filename (not a
string length; count excludes a terminating null).

PC_NO_TRUNC Pathname components longer than 255 bytes
generate an error.

PATH_MAX Maximum number of bytes in a pathname (not a
string length; count excludes a terminating null).

PIPE_BUF Maximum number of bytes that can be written
atomically when writing to a pipe.

_POSIX_VDISABLE Terminal special characters maintained by the
system can be disabled using this character value.
For information on querying and setting these
special characters, see “tcgetattr (BPX1TGA) — Get
the Attributes for a Terminal” on page 837 or
“tcsetattr (BPX1TSA) — Set the Attributes for a
Terminal” on page 850.

PC_ACL The security product supports access control lists.
PC_ACL_ENTRIES_MAX The maximum number of entries that can be placed

in an access control list for the specified file.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pathconf service returns the current value
of the pathname variable corresponding to the Name specified, or −1 if not
successful.

pathconf (BPX1PCF)

460 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If the named pathname variable does not have a limit for the specified file, then
Return_value is set to −1, and Return_code and Reason_code remain
unchanged.

If _POSIX_CHOWN_RESTRICTED is specified for Name, and
_POSIX_CHOWN_RESTRICTED is active, Return_value is set to 1.

If _POSIX_CHOWN_RESTRICTED is specified for Name, and
_POSIX_CHOWN_RESTRICTED is not active, Return_value is set to 0.

If _POSIX_NO_TRUNC is specified for Name, and _POSIX_NO_TRUNC is
active, Return_value is set to 1.

If _POSIX_NO_TRUNC is specified for Name, and _POSIX_NO_TRUNC is not
active, Return_value is set to 0.

If PC_ACL is specified for Name, and PC_ACL is supported, Return_value is
set to 1.

If PC_ACL is specified for Name, and PC_ACL is not supported, Return_value
is set to 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pathconf service stores the return code.
The pathconf service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values.

If the named pathname variable does not have a limit for the specified file,
Return_value is −1 and Return_code is unchanged. Otherwise the pathconf
service can return one of the following values in the Return_code parameter:

Return_code Explanation
EACCES Search permission is denied for a component of the path prefix.
EINVAL Refer to the “Usage notes” for situations in which EINVAL is

returned. The following reason code can accompany the return
code: JRNotSupportedForFileType.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or some component of
the pathname is longer than 255 characters. Name truncation is
not supported.

ENOENT The named file does not exist; or the Pathname argument points
to an empty string. The following reason code can accompany
the return code: JRNotSupportedForFileType.

ENOTDIR A component of the path prefix is not a directory.

Reason_code
Returned parameter

Type: Integer

pathconf (BPX1PCF)

Chapter 2. Callable services descriptions 461

Length: Fullword

The name of a fullword in which the pathconf service stores the reason code.
The pathconf service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If Name refers to MAX_CANON, MAX_INPUT, or _POSIX_VDISABLE, the

following applies:
v If Pathname does not refer to a terminal file, the function returns −1 in

Return_value, and sets Return_code to EINVAL.

2. If Name refers to NAME_MAX, PATH_MAX, or _POSIX_NO_TRUNC, the
following applies:
v If Pathname does not refer to a directory, the function still returns the

requested information using the parent directory of the specified file.

3. If Name refers to PC_PIPE_BUF, the following applies:
v If Pathname refers to a pipe or a FIFO, the value that is returned applies to

the referred to object itself. If Pathname refers to a directory, the value that is
returned applies to any FIFOs that exist or that can be created within the
directory. If Pathname refers to any other type of file, the pathconf service
returns −1 in Return_value, and sets the Return_code to EINVAL.

4. If Name refers to PC_LINK_MAX, the following applies:
v If File_descriptor refers to a directory, the value that is returned applies to the

directory.

Related services
v “fpathconf (BPX1FPC) — Determine Configurable Pathname Variables Using a

Descriptor” on page 189

Characteristics and restrictions
There are no restrictions on the use of the pathconf service.

Examples
For an example using this callable service, see “BPX1PCF (pathconf) Example” on
page 1188.

pathconf (BPX1PCF)

462 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pause (BPX1PAS) — Suspend a Process Pending a Signal

Function
The pause service suspends execution of the calling thread until delivery of a signal
whose action is either to execute a signal-catching function or to end the thread.

Requirements

Authorization: Supervisor state or problem state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PAS,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pause service returns −1 if completion of a
signal-handling function causes control to be returned. The pause service does
not otherwise return to its caller.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pause service stores the return code. The
pause service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The pause service can return the following value in the
Return_code parameter:

Return_code Explanation
EINTR A signal was received and handled successfully.

Reason_code
Returned parameter

pause (BPX1PAS)

Chapter 2. Callable services descriptions 463

Type: Integer

Length: Fullword

The name of a fullword in which the pause service stores the reason code. The
pause service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. A thread that calls the pause service does not resume processing until a signal

is delivered with an action to either process a signal-handling function or end
the thread. Some signals can be blocked by the thread’s signal mask; see
“sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on
page 759 for details.

2. If an incoming unblocked signal ends the thread, pause never returns to the
caller.

3. If the signal action is to process a signal-catching function, the signal interface
routine (SIR), which is defined by the mvssigsetup call, is given control when
the pause service returns.

4. A return code is set when any failures are encountered that prevent this function
from completing successfully.

5. The signal interface routine is given control only when the PSW key of the caller
is equal to the signal delivery key of the process. The signal delivery key is set
to the PSW key of caller of the first callable service that dubbed the process.

6. If the caller has a PSW key that is different from the signal delivery key, or has
a PSW key of zero, pause returns a return code of EMVSERR and a reason
code of JRPSWKeyNotValid.

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
For an example using this callable service, see “BPX1PAS (pause) Example” on
page 1187.

pause (BPX1PAS)

464 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pfsctl (BPX1PCT) — Physical File System Control

Function
The pfsctl callable service conveys a command and argument to a Physical File
System. The meanings of the command and argument are specific to the Physical
File System and are defined by the Physical File System.

For detailed information about the use of pfsctl, see z/OS DFSMSdfp Advanced
Services, SC26-7400.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PCT,(File_System_type,
Command,
Argument_length,
Argument,
Return_value,
Return_code,
Reason_code)

Parameters
File_System_type

Supplied parameter

Type: Character string

Character set: Printable characters

Length: 8 bytes

The name of a field that contains the 8-character file system type name. The
file system type name matches the TYPE operand that was specified on the
FILESYSTYPE statement, or the NAME operand of the SUBFILESYSTYPE
statement that defined this Physical File System in the BPXPRMxx parmlib
member.

Command
Supplied parameter

Type: Integer

Length: Fullword

pfsctl (BPX1PCT)

Chapter 2. Callable services descriptions 465

The name of a fullword that contains the command that is to be passed to the
Physical File System.

Argument_length
Supplied parameter.

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the argument.

Argument
Parameter supplied and returned

Type: Defined by the Physical File System

Character set: No restriction

Length: Specified by the Argument_length parameter

Specifies the name of a buffer, of length Argument_Length, that contains the
argument that is to be passed to the Physical File System.

The buffer may be modified by the Physical File System to return information to
the caller.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pfsctl service returns −1 if the request is
not successful.

Depending on the Physical File System and the request involved, the length of
any returned information that is placed in the Argument buffer may be returned
here.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pfsctl service stores the return code. The
pfsctl service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The pfsctl service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EFAULT The Argument buffer address is not valid; or an address passed

in the buffer is not valid.
EINTR The service was interrupted by a signal.

pfsctl (BPX1PCT)

466 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL A supplied parameter is incorrect.

One of the following Reason_codes may accompany this
Return_code:

v JRFilesysNotThere - The File_System_type specified does not
exist.

v JrIOBufLengthInvalid - The Argument_length specified an
incorrect value.

v JrInvloctlCmd - The Command value was negative.
EMVSPARM The command or argument parameters were rejected by the

Physical File System. In this case the accompanying
Reason_code is generated by the Physical File System. Refer to
its documentation to determine the exact reason the error
occurred.

ENOSYS This function is not supported by the Physical File System that
was specified. The following reason code can accompany this
return code: JRPfsctl.

EPERM Permission was denied by the Physical File System. The calling
program does not have sufficient authority for the service that
was requested.

EIBMBADTCPNAME PC#SetIbmOptCmd was used, and the name that was specified
did not match any of the transports configured under Common
INET. The caller did not succeed in getting affinity to a single
transport, and this is probably an error for the application.

ENXIO PC#SetIbmOptCmd was used. The name that was specified did
not match a socket stack, but Common INET is not configured on
this system. Because this system does not have multiple socket
transports configured, there is already a natural affinity to one
single stack, and this failure may not be a problem for the
application.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pfsctl service stores the reason code. The
pfsctl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. This service is provided for generic communication between a program that is

running in a user process and a Physical File System.

It is similar to w_ioctl, but the command is directed to the Physical File System
itself, rather than to or for a particular file or device.

2. There is no restriction on the length of the argument buffer. The address and
length of the argument buffer are passed to the Physical File System in a UIO
structure on the vfs_pfsctl operation.

3. As an example of how a Physical File System writer could make use of this
function, consider the requirement to display status and performance statistics
about the Physical File System. You can collect this information in the Physical
File System, but you need a way to display it to the user.

pfsctl (BPX1PCT)

Chapter 2. Callable services descriptions 467

|
|
|
|
|
|

With pfsctl, your status utility program can easily fetch the information it needs
from the Physical File System. The utility needs to know the File_System_type
name that the Physical File System was started with, and this can be made
known to it by the Physical File System with the Name/token callable services.
(See z/OS MVS Programming: Assembler Services Guide for information on
the Name/token callable services.)

4. Command values less than 0x40000000 are considered to be authorized
commands. A check for appropriate privileges is made and the results of this
check are passed to the Physical File System in the osi_privileged bit.

5. Command values less than zero are reserved by the system.

6. PC#SetIbmOptCmd — The pfsctl service can be used to choose a particular
sockets transport; this is similar to the setibmopt(IBMTCP_IMAGE) C function.

The Command value for this function is ’C0000005’x. You specify the desired
transport with the File_System_type parameter. The Argument parameter is not
used, and Argument_length should be 0, unless you are setting persistent
address space affinity, as explained below.

The PC#SetIbmOptCmd function is used by programs that must connect to a
specific socket transport, also known as a specific TCP/IP stack, when z/OS
UNIX is configured with multiple transports for the AF_INET or AF_INET6
address families. After a transport is chosen, all subsequent BPX1SOC
requests for address family AF_INET or AF_INET6 create sockets that are
exclusively attached to that single transport.

This is similar to the function provided by ioctl(SIOCSETRTTD), except that
ioctl(SIOCSETRTTD) detaches an existing socket from all but the specified
transport, while pfsctl(PC#SetIbmOptCmd) causes future sockets to be
attached to only the one transport. Using pfsctl for this function is significantly
more efficient than using ioctl.

When there is only one transport configured, all BPX1SOC requests for that
address family go directly to it, regardless of any prior calls to
pfsctl(PC#SetIbmOptCmd). A call to pfsctl(PC#SetIbmOptCmd) is therefore not
necessary in a single transport configuration, but the call will still fail if the
name that is specified does not match that of a socket stack. There could be
something wrong in the caller’s configuration files that needs to be addressed.

A pfsctl(PC#SetIbmOptCmd) request may be issued more than once to change
the chosen transport and affect future sockets that are created. If
File_System_type is all blanks, the caller’s process is reset to indicate no
transports chosen.

The chosen transport is inherited over fork and preserved over exec. If this is
not desired, the child process should call pfsctl(PC#SetIbmOptCmd) with a
blank name to reset itself.

If Argument_length is four and the Argument value is one, this transport affinity
also becomes an address space-level transport affinity. Otherwise, only
process-level affinity is established. Address-space affinity persists over job
steps within a job and over UNIX process termination and re-dubbing in that
address space. It applies to all UNIX processes running within that address
space, so long as the MVS JOBID of the address space does not change.
Clearing a process’s affinity also clears the address space affinity if an
argument value of one is passed on that call.

Address-space-level affinity is intended for multiple job-step procedures in
which one job step makes a call to BPX1PCT so that a program in a later job
step will be restricted to the one specified transport (where that program does

pfsctl (BPX1PCT)

468 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|

|
|
|
|
|
|

not have its own call to BPX1PCT or cannot be changed to do so). It may also
be used to set affinity for a TSO address space, which affects all the programs
and commands invoked afterwards.

To minimize the performance impact of this feature, an address space is
checked for address-space level affinity only once in the life of a process, and
that check is only made in the socket, gethostid, and gethostname functions.
Consequently, the effect of setting address space affinity when other processes
are currently running in the address space, or for future programs that have
their own calls to BPX1PCT, is unpredictable. Address-space level affinity is
not, strictly speaking, inherited over fork; however, it is applied to a process the
first time a call to socket, gethostid, or gethostname is made, so that if the fork
occurs after one of those calls, the process’s affinity is inherited by its children.

The BPXTCAFF program supplied by IBM may also be used to establish an
address-space-level transport affinity for started procedures, submitted job
streams, and the TSO CALL command. The BPXTCAFF program takes one
parameter, the transport name, and makes a call to
BPX1PCT(PC#SetIbmOptCmd), passing that name with an argument value of
one, as follows:
//STEP0 EXEC,PGM=BPXTCAFF,PARM=TPNAME

Refer to z/OS UNIX System Services Planning for more information about
transport affinity.

7. PC#SetIbmAsyIO — The pfsctl service can be used to choose a Sockets
transport that supports asynchronous I/O.

The Command value for this function is ’C0000006’x. The File_System_type
and Argument parameters are not significant, and Argument_length should be
0.

This is similar to the function provided by PC#SetIbmOptCmd (above), except
that you do not have to know the name of the TCP/IP stack.

Note: This function is obsolete and should not be used.

When there is only one transport, all BPX1SOC requests for that address
family go directly to it, regardless of any prior calls to pfsctl(PC#SetIbmAsyIO).
It is not an error to call pfsctl(PC#SetIbmAsyIO) when there is only one
transport configured, therefore, programs using this function do not have to be
sensitive to how an installation is configured. If the single transport does not
support asynchronous I/O, attempts to call BPX1AIO later will fail.

The choice of an asynchronous capable transport can be reset with a call to
pfsctl(PC#SetIbmOptCmd) with a File_System_type of all blanks.

The chosen transport is inherited over fork and preserved over exec. If this is
not desired, the child process should call pfsctl(PC#SetIbmOptCmd) with a
blank name to reset itself.

8. PC#AddFile — The pfsctl service can be used to add a file to the kernel file
cache.

The Command value for this function is ’80000007’x. File_System_type is a
character string initialized to ″KERNEL″. Argument_length contains the length
of the pathname. Argument contains the full pathname of the file that is to be
added to the LFS File Cache.

The file that is being cached must be an existing regular, local HFS file (not a
remote NFS or DFS file). It must not reside in a file system that is owned by a
PFS that is running in a colony address space (outside of kernel PFS).

pfsctl (BPX1PCT)

Chapter 2. Callable services descriptions 469

|
|
|
|
|
|

The intended usage is for read-only files that are loaded into the cache at
startup time. If a recently updated file is to be added to the cache, it may be
necessary to unmount and then mount the file system containing this file.

9. PC#DeleteFile — The pfsctl service can be used to delete a file from the
kernel file cache.

The Command value for this function is ’80000008’x. File_System_type is a
character string initialized to ″KERNEL″. Argument_length contains the length
of the pathname. Argument contains the full pathname of the file to be deleted
from the LFS File Cache.

10. PC#PurgeFile — The pfsctl service can be used to remove all the files from
the kernel file cache.

The Command value for this function is ’8000000A’x. File_System_type is a
character string initialized to ″KERNEL″. Argument_length and Argument are
not used in this command.

11. PC#RefreshFile — The pfsctl service can be used to refresh the files in the
kernel file cache.

The Command value for this function is ’80000009’x. File_System_type is a
character string initialized to ″KERNEL″. Argument_length and Argument are
not used in this command.

If there has been significant addition or deletion of files in the cache, refreshing
the cache will eliminate fragmentation in the cache dataspace.

12. PC#ERRORTEXT — The pfsctl service can be used to retrieve text for an
error code.

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1PCT (pfsctl) Example” on
page 1189.

pfsctl (BPX1PCT)

470 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

__pid_affinity (BPX1PAF) — Add or Delete an Entry in a Process’s
Affinity List

Function
The __pid_affinity service adds or deletes an entry in a process’s affinity list. When
a process terminates, each process in its affinity list is notified (sent a signal) of the
event. The __pid_affinity service dynamically creates or breaks an association
between two processes. Its function is similar to the notification mechanism
between parent and child processes, except that in this case the processes are not
related in any way.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PAF,(Function_code,
Target_Pid,
Signal_Pid,
Signal,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the function
to be performed. The following Function_code constants are defined by the
BPXYCONS macro (see “BPXYCONS — Constants Used by Services” on
page 956):

Constant Function
PAF_ADD_PID# The process and associated signal that are specified by

Signal_Pid are to be added to the affinity list of the
process that is specified by Target_Pid.

PAF_DELETE_PID# The process and associated signal that are specified by
Signal_Pid are to be deleted from the affinity list of the
process that is specified by Target_Pid.

__pid_affinity (BPX1PAF)

Chapter 2. Callable services descriptions 471

Target_Pid
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the PID
(Process ID) of the process whose affinity list is to be altered. See “Usage
notes” for limitations on the PIDs that can be specified.

Signal_Pid
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the PID
(Process ID) of the process that, when the Target_Pid process terminates, is to
be sent the signal that is specified by the Signal parameter. See “Usage notes”
for limitations on the PIDs that can be specified.

Signal
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the signal
that the Signal_Pid process is to receive when the process that is specified by
Target_Pid terminates. The signal must be one that is defined by the
BPXYSIGH macro.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __pid_affinity service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __pid_affinity service stores the return
code. The __pid_affinity service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The __pid_affinity service can return one of the
following values in the Return_code parameter:

__pid_affinity (BPX1PAF)

472 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL One or more of the following conditions were detected:

v The value of Signal is not a supported signal.
v Target_Pid does not contain a value greater than 1.
v Signal_Pid does not contain a value greater than 1.
v Signal_Pid and Target_Pid are the same.

The following reason codes can accompany the return code:
JRInvalidSignal, JRTargetPid, JRPidsSame, and JRSignalPid.

EPERM The caller does not have permission to send a signal to the
process that is specified on the Signal_Pid parameter.

EMVSSAF2ERR A System Authorization Facility (SAF) or RACF call had an error.
ESRCH One or more of the following conditions were detected:

v No process was found that corresponds to Target_Pid.
v No process was found that corresponds to Signal_Pid.

The following reason codes can accompany the return code:
JRTargetPid and JRSignalPid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __pid_affinity service stores the reason
code. The __pid_affinity service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

In the case of EMVSSAF2ERR, Reason_code contains the RACF return and
reason codes, respectively, in the two low-order bytes. For a more detailed
description of the RACF Check Privilege service return and reason code values,
see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 The caller is not the owner of the target process.
8 12 There was an internal error during RACF

processing.

Usage notes
1. The PIDs that are specified by the Target_Pid and Signal_Pid parameters must

be greater than 1. Specifying a PID that is equal to or less than 1 results in an
error.

2. In order for the caller to add an entry to the affinity list of a process
(Target_Pid), the Signal_Pid process must exist, and the caller’s process must
have permission to send it a signal.

3. During process termination, the process attempts to send all the specified
signals to the corresponding PID or PIDs in its affinity list. If a signal cannot be
sent (for instance, if the process has already terminated), termination continues.

4. If a process changes identity after it has been added to another process’s
affinity list, the signal is sent upon process termination without permission being
reverified.

__pid_affinity (BPX1PAF)

Chapter 2. Callable services descriptions 473

5. Identical entries that contain the same PID (Signal_Pid) and signal are not
allowed in a process’s affinity list. If an attempt is made to add a process and
an identical entry is found, the service completes successfully without adding
another entry.

6. To delete an entry from an affinity list, the PID (Signal_Pid) specified by the
caller must be the same as an entry in the Target_Pid process’s affinity list.

Related services
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1PAF (__pid_affinity) Example”
on page 1186.

__pid_affinity (BPX1PAF)

474 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pipe (BPX1PIP) — Create an Unnamed Pipe

Function
The pipe callable service creates a pipe. A pipe is an I/O channel that a process
can use to communicate with another process, with another thread (in this same
process or another process), or in some cases with itself. Data can be written into
one end of the pipe and read from the other.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PIP,(Read_file_descriptor,
Write_file_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
Read_file_descriptor

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pipe service stores the file descriptor for
the read end of the pipe if the pipe is created successfully.

Write_file_descriptor
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pipe service stores the file descriptor for
the write end of the pipe if the pipe is created successfully.

Return_value
Returned parameter

Type: Integer

Length: Fullword

pipe (BPX1PIP)

Chapter 2. Callable services descriptions 475

The name of a fullword in which the pipe service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pipe service stores the return code. The
pipe service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The pipe service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EMFILE Opening the pipe would exceed the limit on the number of file

descriptors that the process may have open.
ENFILE Opening the pipe would exceed the number of files that the

system can have open simultaneously.

Reason_code

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pipe service stores the reason code. The
pipe service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. Processes can read from the Read_file_descriptor and write to the

Write_file_descriptor. Data written will be read first-in, first-out (FIFO).

2. When the pipe call creates a pipe, the O_NONBLOCK and FD_CLOEXEC flags
are turned off on both ends of the pipe. You can turn these flags on with the
fcntl call; see “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174.

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “open (BPX1OPN) — Open a File” on page 434
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

Characteristics and restrictions
There are no restrictions on the use of the pipe service.

Examples
For an example using this callable service, see “BPX1PIP (pipe) Example” on
page 1190.

pipe (BPX1PIP)

476 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

poll (BPX1POL) — Monitor Activity on File Descriptors and Message
Queues

Function
The poll service checks the I/O status of multiple open file descriptors and message
queues. The file descriptors can be for character special files, pipes, sockets, or
files.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1POL,(PollArrayPtr,
NMsgsFds,
Timeout,
Return_value,
Return_code,
Reason_code)

Parameters
PollArrayPtr

Supplied parameter

Type: Pointer

Length: Fullword

The name of a field that contains a pointer to an array of Pollfd structures. The
elements of the array must be arranged such that the PollFd structures that
contain file descriptors precede the PollFd structures that contain message
queue identifiers, if any are specified.

There is one Pollfd structure for each file descriptor or message queue that is
being polled. A Pollfd structure specifies the file descriptor or message queue
and the event(s) for which it is being polled. On return, the poll service sets the
corresponding bit in the response section of the Pollfd structure if the requested
condition is true.

The events that can be polled are:

POLLRDNORM Normal data may be read without blocking.

POLLRDBAND Data from a nonzero priority band may be read

poll (BPX1POL)

Chapter 2. Callable services descriptions 477

without blocking. For STREAMs, this flag is set
in revents , even if the message is of zero
length.

POLLIN Same as POLLRDNORM

POLLWRNORM Normal data may be written without blocking.

POLLWRBAND Priority data (priority band greater than 0) may
be written.

POLLPRI Out-of-band data may be received without
blocking.

POLLOUT Same as POLLWRNORM

POLLNVAL The specified fd/msgid value is not valid. This
flag is only valid in the revents bitmask; it is
ignored in the events bitmask.

POLLERR An error has occurred. This flag is only valid in
the revents bitmask; it is ignored in the events
bitmask.

POLLHUP The device has been disconnected. This event
and POLLOUT are mutually exclusive; a stream
can never be writable if a hang-up has
occurred. However, this event and POLLIN,
POLLRDRNORM, POLLRDBAND, or POLLPRI
are not mutually exclusive. This flag is valid in
the revents bitmask. It is ignored in the events
member.

(See BPXYPOLL - Poll Fd Structure for more information about the format of
this field.)

NMsgsFds
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains two numbers, the sum of which gives the
total number of PollFd structures pointed to by PollArrayPtr .

The first number, which is in the first halfword of the fullword, tells how many
message queue PollFd structures were specified. This number must not exceed
32,767. The second number, which is in the second halfword of the fullword,
tells how many file descriptor PollFd structures were specified. This number
should not exceed 65,535.

Timeout
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains a timeout value, in milliseconds, that controls
how the file descriptors/message queues are checked.

1. No waiting :

poll (BPX1POL)

478 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If the Timeout value is 0, poll returns immediately after checking the
selected descriptors and queues; no waiting is done.

2. Wait for a specified period of time :

If the Timeout value is greater than 0, it specifies the number of milliseconds
to wait for one of the events to occur before returning to the caller. (1000
milliseconds equal 1 second).

3. Wait forever :

If the timeout value is -1, poll blocks until a requested event occurs or until
the call is interrupted.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the poll service returns one of the following:

v The number of events that were found to be ready.

The return_value is similar to NMsgsFds . The first halfword of return_value
contains the number of message queues with ready events. The second
halfword contains the number of file descriptors with ready events.

v 0, if the timeout value expired before any of the events were met.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the poll service stores the return code. The poll
service returns Return_code only if Return_value is −1. See z/OS UNIX System
Services Messages and Codes for a complete list of possible return code
values. The poll service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The allocation of internal data structures failed, but a subsequent

request may succeed.
EINTR The select service request was interrupted by a signal for the

caller.
EINVAL One of the parameters specified a value that was not correct.

Consult the reason code to determine the exact reason for the
error. The following reason codes can accompany this return
code: JRWaitForever, JRInvalidNfds, JRNoFdsTooManyQIds.

poll (BPX1POL)

Chapter 2. Callable services descriptions 479

Return_code Explanation
EIO One of the descriptors in the poll mask has become inoperative

and it is being repeatedly included in a poll, even though other
operations against this descriptor have been failing with EIO. A
socket descriptor can become inoperative, for example, if TCP/IP
is shut down. When a descriptor fails, a failure from poll cannot
tell you which descriptor has failed, so generally poll will succeed,
and these descriptors will be reported to you as being ready for
whatever events were specified on the poll. When the inoperative
descriptor is subsequently used on a receive or other operation,
you will receive the EIO failure, and can then react to the
problem with the individual descriptor. In general, you would
close() the descriptor and remove it from the next poll mask. If
the individual descriptor’s failing return code is ignored, though,
and an inoperative descriptor is repeatedly polled and used (even
though each time it is used the call fails with EIO), eventually the
poll call itself will fail with EIO.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the poll service stores the reason code. The
poll service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
Poll bits are supported as follows:

Regular Files Always poll true for reading and writing. This means that all poll
read and write bits are supported. They will never return with
POLLERR or POLLHUP .

FIFOs / PIPEs Do not have the concept of out-of-band data or priority band data.
They support POLLIN , POLLRDNORM , POLLOUT , and
POLLWRNORM . They ignore POLLPRI , POLLRDBAND , and
POLLWRBAND . They never return POLLERR or POLLHUP .

TTYs / OCS Same support as FIFOs and PIPEs, except that TTYs may return
POLLERR .

Sockets Have the concept of out-of-band data. They support POLLIN ,
POLLRDNORM , POLLOUT , POLLWRNORM , and POLLPRI for
out-of-band data. They ignore POLLRDBAND and POLLWRBAND .
They never return POLLHUP or POLLERR .

If the value of fd/msgid is less than 0, events is ignored and revents is set to 0 in
that entry on return from poll.

In each pollfd structure, poll clears the revents member, except that where the
application requested a report on a condition by setting one of the bits of events
listed above, the poll service sets the corresponding bit in revents if the requested
condition is true. In addition, poll sets the POLLERR flag in revents if the condition
is true, even if the application did not set the corresponding bit in events .

poll (BPX1POL)

480 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The poll request is not affected by the O_NONBLOCK flag.

A file descriptor for a socket that is listening for connections indicates that it is ready
for reading, once connections are available. A file descriptor for a socket that is
connecting asynchronously indicates that it is ready for writing, once a connection
has been established.

Characteristics and restrictions
There are no restrictions on the use of the poll service.

Examples
For an example using this callable service, see “BPX1POL (poll) Example” on
page 1191.

poll (BPX1POL)

Chapter 2. Callable services descriptions 481

Pread() and Pwrite() (BPX1RW) — Read from or Write to a File without
Changing the File Pointer

Function
The Pread() and Pwrite() callable service reads from or writes to a given position in
a file without changing the file pointer.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RW,(File_descriptor,
Fuio_Address,
Fuio_Alet,
Fuio_Length,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of an open file.

Fuio_Address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword field that contains the address of the Fuio control block,
which contains the user request. This area is mapped by the BPXYFUIO macro
(see “BPXYFUIO — Map File System User I/O Block” on page 970).

Fuio_Alet
Supplied parameter

Type: Address

Length: Fullword

Pread() and Pwrite() (BPX1RW)

482 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword field that contains the address of Fuio_alet.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1RW service returns the number of
bytes that were actually read or written, if the request is successful; or −1, if it is
not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1RW service stores the return code.
The BPX1RW service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. In addition to the return codes listed for the BPX1RED and
BPX1WRT callable services, the BPX1RW service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EINVAL The offset argument is not valid. The value is negative.
ENXIO A request was outside the capabilities of the device.
EOVERFLOW The file is a regular file and an attempt was made to read or

write at or beyond the offset maximum associated with the file.
ESPIPE File_descriptor is associated with a pipe or FIFO.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1RW service stores the reason code.
The BPX1RW service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1RW (Pwrite) Example” on
page 1226.

Pread() and Pwrite() (BPX1RW)

Chapter 2. Callable services descriptions 483

pthread_cancel (BPX1PTB) — Cancel a Thread

Function
The pthread_cancel callable service generates a cancellation request for the target
thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTB,(Thread_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Thread_ID

Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the thread ID for the thread that is to
be canceled.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_cancel service returns 0 if the
thread is canceled or the cancel is pending, or −1 if a failure occurs.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_cancel service stores the return
code. The pthread_cancel service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System

pthread_cancel (BPX1PTB)

484 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Services Messages and Codes. The pthread_cancel service can return one of
the following values in the Return_code parameter:

Return Code Explanation
EINVAL The value that was specified by thread ID is not valid. It does not

contain a value that is consistent with thread IDs managed by the
system. The following reason code can accompany this return
code: JRLightWeightThID.

ESRCH The value that was specified by Thread_ID does not refer to a
thread that currently exists. The following reason codes can
accompany this return code: JRThreadNotFound and
JRAlreadyTerminated.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_cancel service stores the reason
code. The pthread_cancel service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A successful call to BPX1PTB generates a cancellation request for the target

thread.

2. Delivery of the cancellation request either causes a nonretryable 422 abend
(with reason code 01A0), or causes the signal interface routine (established with
BPX1MSS) to receive control.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486
v “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 494
v “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498
v “pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 501
v “pthread_self (BPX1PTS) — Query the Thread ID” on page 518

Characteristics and restrictions
There are no restrictions on the use of the pthread_cancel service.

Examples
For an example using this callable service, see “BPX1PTB (pthread_cancel)
Example” on page 1195.

pthread_cancel (BPX1PTB)

Chapter 2. Callable services descriptions 485

pthread_create (BPX1PTC) — Create a Thread

Function
The pthread_create callable service creates new threads in the calling process.
Each thread that is created represents a single flow of control within the process
with its own unique attributes.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTC,(Init_rtn_addr,
Work_area_addr,
Attribute_area_addr,
Thread_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Init_rtn_addr

Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the initialization routine for
the thread that is to be created. This routine is given first control when a new
thread task is created to run the thread.

Work_area_addr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of a user-supplied work area
that is later passed to the initialization routine. This address is in the parameter
list that is returned by pthread_exit_and_get on a thread get request. For a
description of this parameter list, see “BPXYPTXL — Map the Parameter List
for pthread_create” on page 1018.

Attribute_area_addr
Supplied parameter

pthread_create (BPX1PTC)

486 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Address

Length: Fullword

The name of a fullword that contains the address of the pthread attribute area
that is used to define the attributes of the thread to be created. If a zero
address is specified, the attributes are set to their default value. For the
mapping of the pthread attribute area and the definition and defaults of the
supported attributes, see “BPXYPTAT — Map Attributes for
pthread_exit_and_get” on page 1003. The address of the pthread attribute area
is in the parameter list that is returned by pthread_exit_and_get on a thread get
request. The BPXYPTXL macro also has a description of this parameter list;
see “BPXYPTXL — Map the Parameter List for pthread_create” on page 1018.

Thread_ID
Returned parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field in which the service returns the thread ID for the
thread that is created. This field is valid only if the service returns successfully
with a return value of 0.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_create service returns 0 if the
request is successful, or −1 if it is not successful.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_create service stores the return
code. The pthread_create service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The pthread_create service can return one of
the following values in the Return_code parameter:

Return Code Explanation
EINVAL One of the parameters contains a value that is not correct.

Consult Reason_code to determine the exact reason the error
occurred. The following reason codes can accompany this return
code: JRPtatEye, JRPtatSysLen, JRPtatSysOff, JRPtatLen,
JRInitRtn, JRShSpMask, JRPtatWeight, JRPtatDetachState, and
JRPtatSyncType.

EAGAIN The system lacked the necessary resources to create the new
thread.

EINVAL The pthread_create service was requested in a
multiprocess/multiuser process. The following reason code can
accompany this return code: JRMultiProcUser.

pthread_create (BPX1PTC)

Chapter 2. Callable services descriptions 487

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_create service stores the reason
code. The pthread_create service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
Thread initialization routine

1. The pthread-creating task initialization routine has a user-specified routine to
initialize the user environment for each new task that is created to process
thread requests, and to control the processing of each thread that is to be run
on that task.

2. The pthread-creating task initialization routine is first given control when a new
MVS task is created to process a thread request. At this point, the initialization
routine should set up the user environment for the new task. After performing its
initialization, the initialization routine can retrieve the first thread to process by
invoking the pthread_exit_and_get callable service.

3. This routine performs its own initialization and cleanup processing for each
thread that is to be processed.

4. When this routine gains control, signals and cancellation requests are blocked.

5. The environment in which the initialization routine receives control is described
in the following table:

Authorization: Problem program, key inherited from TCB key of initial
pthread creating task

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31
ASC mode: Primary address space control (ASC) mode
Serialization: Enabled for interrupts
Locks: No locks held
Control parameters: All parameters addressable in Primary

6. Upon entry to the initialization routine, the register contents are as follows:

v R1 contains the address of a standard MVS parameter list. The parameter list
consists of the following parameters:

a. The address of an initial work area for use by the initialization routine
during its setup processing.

b. The address of a fullword field that contains the length of the initial work
area.

v R2–R12 are unspecified.

v R13 contains the address of a 144-byte save area for use by the initialization
routine to allow it to perform standard save area linkage.

v R14 contains the return address for the initialization routine to return control
to the system. This address must be preserved by the initialization routine.
The high-order bit (bit 0) of this address is always ON. This bit indicates the
addressing mode, which must always be AMODE(31).

v R15 contains the address of the initialization routine.

pthread_create (BPX1PTC)

488 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

7. After the first thread request is received, in order for the initialization routine to
process subsequent thread requests, it invokes pthread_exit_and_get within a
loop. It can then exit the previous thread and obtain a new thread to process.

8. To provide the most efficient interface with the high-level-language environment,
the following characteristics apply to the thread initialization routine:
a. Only one pthread-creating task initialization routine is allowed per process

image. When a process image is cleaned up after an invocation of the exec
(BPX1EXC) or execmvs (BPX1EXM) service, the address can be changed.
If the specified address is different within a given process image, the
pthread_create invocation fails with a return value of −1, a return code of
EINVAL, and a reason code of JRInitRtn.

b. Only one shared subpool mask is allowed per process image. When a
process image is cleaned up after an invocation of the exec (BPX1EXC) or
execmvs (BPX1EXM) service, the subpool mask can be changed. If the
specified shared subpool mask is different within a given process image, the
pthread_create invocation fails with a return value of −1, a return code of
EINVAL, and a reason code of JRShSpMask.

c. The work area and pthread attribute area are passed through from
pthread_create to the caller of pthread_exit_and_get without each being
copied. The caller of pthread_create must therefore ensure that the storage
that is provided for these items is not released or modified before these
items are used by the caller of pthread_exit_and_get.

MVS tasks and threads

Each thread that is created with pthread_create runs as an MVS subtask of the
initial pthread-creating task (IPT). The IPT is the task that issued the first
pthread_create call within the address space.

Note: The IPT is not the same as the pthread-creating task initialization routine.
The IPT refers to the task that the first thread runs on, whereas the
pthread-creating task initialization routine is the routine given control when a
pthread_create is done.

When all the threads created with pthread_create and the IPT have ended, the next
task in the address space to issue a pthread_create call is made the IPT.

Thread IDs

1. Threads that are created by pthread_create are represented by 8-character
thread IDs. A thread ID is unique only for a given process; multiple processes
can have threads that are represented by the same thread ID.

2. Threads that are to be managed by a user application should also represent
their threads with 8-character values. To distinguish between thread IDs that are
managed by the system and those that are managed by a user application, the
high-order bit of the thread ID indicates the origination of the thread ID. Thread
IDs that are managed by a user application must have the high-order bit turned
on. Thread IDs that are managed by the system have the high-order bit turned
off.

3. Since thread IDs that are managed by the system can represent only
mediumweight or heavyweight threads, those that are managed by a user
application are considered to be lightweight threads. Any z/OS UNIX service
that expects a thread ID as input fails if the thread ID represents a
user-application-managed, or lightweight, thread.

Exiting from the initial pthread-creating task (IPT)

pthread_create (BPX1PTC)

Chapter 2. Callable services descriptions 489

When exiting back to the operating system from the IPT, the caller may receive an
A03 abend if any pthread_created tasks are still running. These tasks may still be
running even if the IPT has called pthread_join for all the threads that it created. To
avoid the A03 abend, the IPT should call the _exit service when it is ready to return
to the operating system. The _exit service ends the IPT and all of its
pthread_created subtasks without causing an A03 abend to occur.

Other usage notes

1. The pthread attribute area is passed as input to the pthread_create callable
service to describe the attributes of the thread that is to be created. The area is
split into two sections. The first section is the system attribute area, which is
used by the system to build the new thread. The second section is the user
area, which is intended for use by the pthread-creating task initialization routine
that receives the address of the entire pthread attribute area from
pthread_exit_and_get.

2. The system offset and user offset fields indicate where the start of each area
begins. The system offset field (PTATSYSOFFSET) must be set to
(PTATSYSOFFVAL), or pthread_create fails with a −1 return value, a return
code of EINVAL, and a reason code that indicates the exact error. The user
offset field PTATUSEROFFSET must be set to 0 if no user attributes are
specified.

3. The system length and user length fields indicate the length of each area. The
system length field (PTATSYSLENGTH) must be set to PTATSYSLENVAL. If it
is not, pthread_create fails with a −1 return value, a return code of EINVAL, and
a reason code that indicates the exact error. The user length field
PTATUSERLENGTH can be set to any length. However, if the sum of
PTATUSERLENGTH + PTATSYSLENGTH does not equal PTATLENGTH,
pthread_create fails with a −1 return value, a return code of EINVAL, and a
reason code that indicates the exact error.

4. The following describes the characteristics of each thread attribute and its
impact on the pthread_create:

v Detach state specifies the detach state of the thread that is to be created. A
thread that is created in a DETACHED state cannot be joined (with the
pthread_join callable service) by other threads, and has its system-obtained
storage freed when it exits. A thread that is created in an UNDETACHED
state can be joined by other threads, and does not have its system-obtained
storage freed until it has been detached with pthread_detach. If the pthread
attribute area is not specified on a pthread_create invocation, the default
value is UNDETACHED.

v Weight specifies the weight of the thread that is to be created. A thread
created with the MEDIUMWEIGHT attribute allows the executing task to be
reused when the thread exits. When a heavyweight pthread exits, the
associated MVS task can no longer request threads threads to process. If the
pthread attribute area is not specified on a pthread_create invocation, the
default value is HEAVYWEIGHT.

v Sync type specifies the synchronous processing type of the thread to be
created. The supported sync types are SYNCHRONOUS and
ASYNCHRONOUS. A SYNCHRONOUS thread is one that is created only if
the resources are immediately available to create it. An ASYNCHRONOUS
thread is one that is queued until resources are available. An EAGAIN return
code is received from a pthread_create invocation for a SYNCHRONOUS
thread if the resources are not available. This can occur if the thread or task
limit has already been reached for the calling process. If the task limit has
been reached, only ASYNCHRONOUS threads can be created. If the thread

pthread_create (BPX1PTC)

490 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

limit has been reached, the service will fail regardless of the SYNC TYPE.
The thread or task limit is specified by parmlib member BPXPRMxx. If the
pthread attribute area is not specified on a pthread_create invocation, the
default value is SYNCHRONOUS.

v Shared Subpool Mask type specifies the set of subpools that are to be
shared between threads. The bit positions of the mask represent the subpool
number to be shared. If a bit is on, the subpool will be shared. You can
specify subpools 1-127 by turning on their corresponding bit positions in the
mask. Turning on the first bit indicates that subpool 1 is to be shared, and so
on, to bit position 127. Bit 128 is the enabling bit; if it is off the subpool mask
is ignored and the system default is used. The default shared subpools are 1,
2 and 78. The shared subpools must remain constant within the process
image; any variation results in the failure of the pthread_create service.

5. If the calling thread is in a Work Load Manager (WLM) enclave, the newly
created thread is joined to the same WLM enclave. This allows WLM to manage
the calling thread and the newly created thread as one “business unit of work”
entity for system accounting and management purposes.

Related services
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 494
v “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498
v “pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 501
v “pthread_self (BPX1PTS) — Query the Thread ID” on page 518

Characteristics and restrictions
To prevent unauthorized programs from gaining control in an authorized
environment, pthread_create does not allow unauthorized callers (problem program
state, key 8, and not jobstep authorized) if the IPT is running in an authorized key
(0–7). This restriction is required because the tasks that are created by
pthread_create inherit the TCB key of the IPT.

To prevent deadlocking tasks within an MVS address space, pthread_create is
supported only from the initial pthread_create task and from any of its daughter
tasks. Invocations of pthread_create from any other tasks fail with a −1 return value,
an EMVSERR return code, and a reason code of JRPTCNotSupp.

Examples
For an example using this callable service, see “BPX1PTC (pthread_create)
Example” on page 1196.

pthread_create (BPX1PTC)

Chapter 2. Callable services descriptions 491

pthread_detach (BPX1PTD) — Detach a Thread

Function
The pthread_detach callable service detaches a thread in the calling process. When
a thread is detached, its system storage can be reclaimed when the thread exits.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTD,(Thread_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Thread_ID

Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the thread ID for the thread that is to
be detached.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_detach service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_detach service stores the return
code. The pthread_detach service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System

pthread_detach (BPX1PTD)

492 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Services Messages and Codes. The pthread_detach service can return one of
the following values in the Return_code parameter:

Return Code Explanation
EINVAL The value that was specified by thread ID is not valid; it does not

contain a value that is consistent with thread IDs managed by the
system. The following reason code can accompany this return
code: JRLightWeightThid.

ESRCH The system has detected that the value that was specified by
thread ID refers to a thread that is already detached or that
cannot be found. The following reason codes can accompany this
return code: JRThreadNotFound and JRAlreadyDetached.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_detach service stores the reason
code. The pthread_detach service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486
v “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498

Characteristics and restrictions
There are no restrictions on the use of the pthread_detach service.

Examples
For an example using this callable service, see “BPX1PTC (pthread_create)
Example” on page 1196.

pthread_detach (BPX1PTD)

Chapter 2. Callable services descriptions 493

pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread

Function
The pthread_exit_and_get callable service exits a thread, gets a new thread request
to process, or both. To start a new thread request, see “pthread_create (BPX1PTC)
— Create a Thread” on page 486.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTX,(Status_field,
Options_field,
Signal_setup_userdata,
Return_value,
Return_code,
Reason_code)

Parameters
Status_field

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the status of the exiting thread. This status
is available to any other thread that uses the pthread_join service to wait for the
termination of this thread.

Options_field
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one of the following option values:

PTEXITTHREAD Exit the calling thread. This causes the cleanup
of system-related resources for the calling
thread.

PTGETNEWTHREAD Exit the last obtained thread and get the next
available thread to process. The first invocation

pthread_exit_and_get (BPX1PTX)

494 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

of pthread_exit_and_get from the
pthread-creating task initialization routine must
specify this option.

PTFAILIFLASTTHREAD Exit the calling thread only if it is not the last
thread in the process.

The default option value is PTEXITTHREAD. The option values are defined in
the BPXYCONS macro; see “BPXYCONS — Constants Used by Services” on
page 956. You can combine options by specifying a plus between them.

Signal_setup_userdata
Supplied parameter

Type: Character string

Character set: No restriction

Length: 4 bytes

The name of a fullword that contains 4 bytes of user data that is normally
supplied on the signal setup service mvssigsetup. This field is used only when
the PTGETNEWTHREAD option is specified. If this field contains a zero
address, the signal setup user data is not changed for this thread. This field is
ignored when the PTEXITTHREAD option is specified.

Return_Value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the service stores the return value. The return
value varies depending on the options specified, as follows:

PTEXITTHREAD option value specified:

−1 The caller asked to exit the calling thread, but the thread could not
be exited. For an explanation of the error, see Return_code and
Reason_code.

0 The thread was successfully exited.

PTGETNEWTHREAD option value specified:

−1 The caller asked for a new thread to process, but the thread request
could not be satisfied. No new thread requests can be handled by
the calling task. For an explanation of the error, see Return_code
and Reason_code.

>0 The address of the parameter list for the new thread request that is
to be processed. The parameter list consists of the following:

– The user work area address that was specified on the
pthread_create invocation.

– The user attribute area address that was specified on the
pthread_create invocation.

– The address of an 8-byte field that contains the thread ID of the
thread request.

– The address of a 4-byte thread run status field. For the possible
status values and their definitions, see “BPXYPTXL — Map the
Parameter List for pthread_create” on page 1018.

pthread_exit_and_get (BPX1PTX)

Chapter 2. Callable services descriptions 495

PTFAILIFLASTTHREAD option value specified:

−1 The caller asked to exit the calling thread only if it was not the last
thread, but the thread could not be exited. For an explanation of the
error, see Return_code and Reason_code.

0 The thread was successfully exited.

This parameter list is mapped by the BPXYPTXL macro; see “BPXYPTXL —
Map the Parameter List for pthread_create” on page 1018. The storage for the
list is supplied by the system and should not be modified or freed by the caller
of pthread_exit_and_get.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_exit_and_get service stores the
return code. The pthread_exit_and_get service returns Return_code only if
Return_value is −1. See z/OS UNIX System Services Messages and Codes for
a complete list of possible return code values. The pthread_exit_and_get
service can return one of the following values in the Return_code parameter:

Return Code Explanation
EINVAL One of the parameters contains a value that is not valid. The

following reason codes can accompany the return code:
JRInvOption, JRGetFirst, JRHeavyWeight, JRQuiesceInProcess,
and JRLastThread.

Reason_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_exit_and_get service stores the
reason code. The pthread_exit_and_get service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. See
z/OS UNIX System Services Messages and Codes for the reason codes.

Usage notes
1. The pthread_exit_and_get service provides a highly efficient mechanism for

processing mediumweight threads. A mediumweight thread is a unit of work
that causes reuse of MVS tasks. If a mediumweight thread exits, the task is
still capable of processing another mediumweight thread request. The
pthread_exit_and_get service provides pthread_exit with an option that obtains
a new thread for its caller to process.

2. The first invocation of pthread_exit_and_get from the pthread-creating task
initialization routine must specify the PTGETNEWTHREAD option. On the first
invocation, a thread request is retrieved without the occurrence of a thread
exit. All subsequent invocations result in a thread exit, following which the next
available thread request is obtained. If the PTGETNEWTHREAD option is not
specified on the first pthread_exit_and_get invocation, the service fails with a
−1 return value, an EINVAL return code, and a JRGetFirst reason code.

pthread_exit_and_get (BPX1PTX)

496 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

3. Using the PTGETNEWTHREAD option can cause a failure if the process is
being quiesced. If this happens, the pthread_exit_and_get service fails with a
−1 return value, an EINVAL return code, and a JRQuiesceInProgress reason
code. At this point, the caller should perform its own cleanup and return to the
operating system to allow the task to terminate.

4. If the PTFAILIFLASTTHREAD option is specified and the pthread_exit_and_get
is issued from the last thread, the thread is not exited and a JrLastThread
reason code is returned with a −1 return value and an EINVAL return code.
Any thread that has never issued a pthread_create or that was not created
with pthread_create is considered the last thread when the
PTFAILIFLASTTHREAD option is used.

5. When pthread_exit_and_get is used to get a new thread request, the signal
environment is inherited from the creator of the thread. The signal state for the
newly created thread is roughly analogous to that of a newly created process
after the fork and exec services have been performed. The one exception is
that the new thread inherits the setup state from the creator.

6. A successful invocation of pthread_exit_and_get awakens a thread that is
waiting for the exiting thread, through the pthread_join service. The thread exit
status that is specified on the pthread_exit_and_get call is made available to
the waiting thread.

7. After pthread_exit_and_get is requested with the PTEXITTHREAD option from
a given task, that task can no longer request z/OS UNIX services. An
exception is the mvsprocclp service (BPX1MPC), which can be issued to
undub the task. The caller should perform its own cleanup and return to the
operating system to allow the task to end.

8. If pthread_exit_and_get fails for any reason (with a return value of −1), the
caller should perform cleanup and return to the operating system to allow the
task to end.

9. When a thread that specified the PTGETNEWTHREAD option is terminated
with pthread_exit_and_get and the maximum allowable task limit is exceeded,
a JRMaxTasks reason code is returned.

10. When this service is called from the initial pthread-creating task (IPT), it waits
for all threads that were created with pthread_create to end.

11. For information about the pthread attribute area, see “pthread_create
(BPX1PTC) — Create a Thread” on page 486.

12. If you are going to use this service in a multiple-pthread environment, see
Appendix F.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486
v “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498

Examples
For an example using this callable service, see “BPX1PTX (pthread_exit_and_get)
Example” on page 1205.

pthread_exit_and_get (BPX1PTX)

Chapter 2. Callable services descriptions 497

pthread_join (BPX1PTJ) — Wait on a Thread

Function
The pthread_join callable service obtains the termination status for a specific
thread. The pthread_join service waits only if the thread has not ended, is not in a
detached state, and is not currently joined by another thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTJ,(Thread_ID,
Status_field_address,
Return_value,
Return_code,
Reason_code)

Parameters
Thread_ID

Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the thread ID for the target thread that
is to be waited upon.

Status_Field_Addr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of a status field in which to
return the exit status of the thread that is specified by the thread ID value. If this
field is zero, the thread exit status is not returned.

Return_Value
Returned parameter

Type: Integer

Length: Fullword

pthread_join (BPX1PTJ)

498 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the pthread_join service returns 0 if the request
is successful, or −1 if it is not successful.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_join service stores the return code.
The pthread_join service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The pthread_join service can return one of the following
values in the Return_code parameter:

Return Code Explanation
EINTR The calling process received a signal before the completion of an

event that would cause the pthread_join service to return. The
service was interrupted by a signal. In this case, the value
contained in Status_field_address is undefined.

EINVAL The value that was specified by thread ID is not valid; it does not
contain a value that is consistent with thread IDs managed by the
system. The following reason code can accompany this return
code: JRLightWeightThread.

ESRCH The value that was specified by thread ID does not refer to a
thread that is undetached. The following reason codes can
accompany this return code: JRThreadNotFound,
JRAlreadyJoined, and JRAlreadyDetached.

EDEADLK A deadlock was detected; or the value specified by thread ID
refers to the calling thread. The following reason codes can
accompany this return code: JRJoinLoop and JRJoinToSelf.

Reason_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_join service stores the reason
code. The pthread_join service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
pthread_join can be called repeatedly for a thread until the thread is detached.
However, a thread can be the target of only one pthread_join at a time.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486
v “pthread_detach (BPX1PTD) — Detach a Thread” on page 492

Characteristics and restrictions
There are no restrictions on the use of the pthread_join service.

pthread_join (BPX1PTJ)

Chapter 2. Callable services descriptions 499

Examples
For an example using this callable service, see “BPX1PTJ (pthread_join) Example”
on page 1199.

pthread_join (BPX1PTJ)

500 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pthread_kill (BPX1PTK) — Send a Signal to a Thread

Function
The pthread_kill callable service targets a signal to a particular thread. The service
is limited to interthread communication within a process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTK,(Thread_ID,
Signal,
Signal_options,
Return_value,
Return_code,
Reason_code)

Parameters
Thread_ID

Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the target thread that is to receive the
signal.

Signal
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that contains the signal number that is to be sent
to the thread that is indicated by the Thread_ID parameter. This must be one of
the signals defined in BPXYSIGH macro, or 0.

If the signal is 0, error checking takes place, but no signal is sent. The
pthread_kill service can be called with a signal value of 0, to verify that
Thread_ID parameter is correct before the signal is actually sent.

Signal_options
Supplied parameter

pthread_kill (BPX1PTK)

Chapter 2. Callable services descriptions 501

Type: Bit

Length: Fullword

The name of a fullword field that contains the binary flags that describe how the
signal is to be handled by both the kernel and the user-supplied signal interface
routine (SIR). The signaling options are passed to the SIR in the signal
information control block, which is mapped by BPXYPPSD; see “BPXYPPSD —
Map Signal Delivery Data” on page 1001. Signal_options are mapped as
follows:

First 2 bytes User-defined bytes that are delivered with the
signal to the SIR in the signal information
control block. These bytes are mapped by the
BPXYPPSD macro.

Last 2 bytes Flag bits, mapped by PPSDKILOPTS, that are
defined as follows:
v First bit - signal to bypass Ptrace processing
v Second bit - reserved
v Third bit - signal code specified in the first 2

bytes is set by the application
v Remaining bits - reserved

Return_Value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_kill service returns 0 if the request
is successful, or −1 if it is not successful.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_kill service stores the return code.
The pthread_kill service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The pthread_kill service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL One of the following conditions causes this return code:

v The value of Signal is not valid, or is not the number of a
supported signal.

v The thread corresponding to Thread_ID was not found, not
valid, or ended.

The following reason codes can accompany the return code:
JRInvalidSignal, JRLightWeightThid, JRThreadNotFound, and
JRThreadTerm.

Reason_Code
Returned parameter

Type: Integer

pthread_kill (BPX1PTK)

502 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the pthread_kill service stores the reason code.
The pthread_kill service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The pthread_kill service provides a mechanism for asynchronously directing a

signal to a thread in the calling process. This mechanism could be used, for
instance, by one thread to cause the processing of other threads within the
process.

2. The pthread_kill service is the only function that can issue the thread-scoped
signals (SIGTHSTOP and SIGTHCONT). The SIGTHSTOP signal stops a
specific thread; other threads in the process are not affected. The SIGTHCONT
signal can be issued by the pthread_kill service to resume the stopped thread.

SIGTHSTOP and SIGTHCONT can only be issued to threads within the same
process. If all the threads in a process are stopped with SIGTHSTOP, the
process is virtually hung. No other threads can send a SIGTHCONT signal to
wake them up. The stopped threads must be manually killed.

The SIGTHSTOP and SIGTHCONT signals are noncatchable, nonblockable,
and cannot be ignored.

Related services
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746

Characteristics and restrictions
There are no restrictions on the use of the pthread_kill service.

Examples
For an example using this callable service, see “BPX1PTK (pthread_kill) Example”
on page 1200.

MVS-related information
Delivery of a signal to the signal interface routine occurs only when the PSW key of
the caller is equal to the signal delivery key of the process. The signal delivery key
is set to the PSW key of the caller of the first callable service that dubbed the
process.

pthread_kill (BPX1PTK)

Chapter 2. Callable services descriptions 503

|
|
|
|

|
|
|
|

|
|

pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process

Function
The pthread_quiesce callable service performs quiesce or query functions on
threads. Depending on the function that is specified, pthread_quiesce queries the
thread environment in the current process, or synchronously quiesces all threads in
the current process (except for the calling thread, which returns when all threads
have been quiesced).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTQ (Quiesce_type,
User_data,
Return_value,
Return_code,
Reason_code)

Parameters
Quiesce_type

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one of the following values:

QUIESCE_TERM Terminates all threads (except the invoking
thread) that were created with pthread_create
and IPT threads, allowing the signal interface
routine to receive control when the quiesce
request is delivered.

QUIESCE_FORCE Terminates all threads (except the invoking
thread) that were created with pthread_create,
and IPT threads that do not allow the signal
interface routine to receive control when the
quiesce request is delivered.

PTHREAD_QUERY Counts the number of threads that were
created with pthread_create or IPT threads and
returns the count in Return_value.

QUIESCE_FREEZE Freezes all threads (except the invoking thread)

pthread_quiesce (BPX1PTQ)

504 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

in the process, including threads that were
created with pthread_create, IPT, and MVS
dubbed tasks. The signal interface routine is
allowed to receive control when the quiesce
event is delivered.

QUIESCE_UNFREEZE Continues execution of all threads (except the
invoking thread) in the process that are in a
frozen state.

FREEZE_THIS_THREAD Places the invoking thread into a frozen state,
in response to a QUIESCE_FREEZE request.

The Quiesce_type values are defined in the BPXYCONS macro; see
“BPXYCONS — Constants Used by Services” on page 956.

User_data
Supplied parameter

Type: Character string

Length: Fullword

The name of a fullword that is to be passed to the signal interface routine when
the quiesce request is delivered.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_quiesce service places the return
value. The return value varies depending on the Quiesce_type:

PTHREAD_QUERY quiesce type specified:

−1 The caller asked to query the number of threads that were created
with pthread_create and IPT threads in the process, but the request
could not be completed. For an explanation of the error, see the
return code and reason code.

0 The calling thread is the initial pthread-creating task (IPT), and no
other threads that were created with pthread_create exist in the
current process.

1 The calling thread is created with pthread_create, not the IPT, and
no other threads that were created with pthread_create or IPT
threads exist in the current process.

>1 The value indicates the number of threads that were created with
pthread_create and IPT threads in the current process.

All other quiesce types specified:

−1 The caller asked to quiesce a thread in the current process, but the
target threads may not all have been quiesced. For an explanation
of the error, see the return code and reason code.

0 The target threads in the current process were successfully
quiesced.

Return_code
Returned parameter

pthread_quiesce (BPX1PTQ)

Chapter 2. Callable services descriptions 505

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_quiesce service stores the return
code. The pthread_quiesce service returns a Return_code only if Return_value
is −1. For a complete list of possible return code values, see z/OS UNIX
System Services Messages and Codes. The pthread_quiesce service can
return one of the following values in the Return_code parameter:

Return_code Explanation
EINVAL The value specified for Quiesce_type was incorrect. The following

reason code can accompany the return code:
JRQuiesceTypeInvalid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_quiesce service stores the reason
code. The pthread_quiesce service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Requesting pthread_quiesce with the QUIESCE_TERM or QUIESCE_FORCE

options delivers a quiesce request to the IPT and all pthread_created threads
in the process. When Quiesce_type is QUIESCE_TERM, the request is
delivered to each thread by the signal interface routine (SIR) if the process is
set up to intercept the quiesce request. If the process is not set up for quiesce
request interception, or if Quiesce_type is QUIESCE_FORCE, the kernel
performs the quiesce request for each thread. For details on how to intercept
quiesce requests, see “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on
page 411.

2. The kernel issues 422 abends when performing the termination quiesce
request. If the request is intercepted by the user-defined SIR, it should perform
whatever cleanup is necessary, and then issue the pthread_exit_and_get
service to end the thread.

3. Requesting pthread_quiesce with the QUIESCE_TERM or QUIESCE_FORCE
options from a thread that is not the IPT, or that was not created with the
pthread_create service, has no effect on any threads in the process; and
pthread_quiesce returns with a 0 return value.

4. The pthread_quiesce service should be requested with one of the terminating
options before an exit (BPX1EXI) to prevent the other threads in the process
from receiving an asynchronous abend.

5. When requested with one of the terminating options, the pthread_quiesce
service posts all MVS tasks that are in pthread_exit_and_get (BPX1PTX)
waiting for more work. The pthread_exit_and_get service returns to the caller
with a −1 return value. The caller can then clean up the task-related resources
before the normal end (SVC 3) of the task.

6. If the pthread_quiesce service is invoked when Quiesce_type is
PTHREAD_QUERY from a thread that was not created with pthread_create
and is not an IPT thread, pthread_quiesce returns with a 0 return value.

pthread_quiesce (BPX1PTQ)

506 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

7. The use of QUIESCE_FREEZE is not limited to the IPT and pthread_created
threads. This option causes a quiesce event to be delivered to every other
thread in the process. Upon return from pthread_quiesce, all threads in the
process are no longer executing and are in a “frozen state”.

8. If the target thread is intercepting quiesce events (see “mvssigsetup
(BPX1MSS) — Set Up MVS Signals” on page 411), the signal interface routine
gains control and is expected to either issue the queue_interrupt service (this
is not a good time to freeze this thread) or issue the pthread_quiesce service
with the FREEZE_THIS_THREAD option. However, since the quiescer is
waiting for all threads to be placed into a frozen state, the pthread_quiesce
service should be issued as soon as possible. If the target thread is not
intercepting, the kernel places the thread into a frozen state.

9. The FREEZE_THIS_THREAD function places the thread into a frozen state
only if a freeze request is pending on the calling thread. If a request is not
pending, the FREEZE_THIS_THREAD function does not suspend execution.
Control is immediately returned to the caller with a return code of zero.

10. When you want to restart the process, use the pthread_quiesce service with
the QUIESCE_UNFREEZE option. All threads that are found to be in a frozen
state are restarted.

Related services
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “pthread_create (BPX1PTC) — Create a Thread” on page 486

Examples
For an example using this callable service, see “BPX1PTQ (pthread_quiesce)
Example” on page 1201.

pthread_quiesce (BPX1PTQ)

Chapter 2. Callable services descriptions 507

pthread_quiesce_and_get_np (BPX1PQG) — pthread Quiesce and Get
Service

Function
The pthread_quiesce_and_get_np service freezes or unfreezes a set of threads and
retrieves state data for those threads.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PQG,(RequestType,
ThdQDataList,
UserData,
Return_value,
Return_code,
Reason_code)

Parameters
RequestType

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an integer value that represents one or
more of the following request types, which are defined in the BPXYTHDQ
macro (see “BPXYTHDQ — Mapping of THDQ structure for BPX1PQG” on
page 1044):

THDQ_FREEZE Freezes the threads identified in the ThdqArray
array. This value can be specified by itself or
with THDQ_GET_STATE.

THDQ_GET_STATE Retrieves the state data for the threads
identified in the ThdqArray array. This value can
only be specified with THDQ_FREEZE.

THDQ_UNFREEZE_ALL Unfreezes all threads that are frozen in the
caller’s process.

ThdQDataList
Supplied or returned parameter

Type: Pointer

pthread_quiesce_and_get_np (BPX1PQG)

508 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword pointer field that on input contains the address of a
THDQ data structure that is mapped by BPXYTHDQ (see “BPXYTHDQ —
Mapping of THDQ structure for BPX1PQG” on page 1044). The THDQ data
structure contains a list of thread entries, each of which contains the thread ID
of the thread that is to be operated upon, and a return area in which the service
is to return state data for that thread.

This parameter is ignored for a THDQ_UNFREEZE_ALL function request. If
THDQ_GET_STATE is specified with the THDQ_FREEZE function request, this
parameter contains the address of a THDQ data structure. Upon return from the
service, the return area of each thread entry is filled in by the service with the
state data for the specified threads.

UserData
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that is to be passed to the quick freeze exit routine
when any freeze request is done. This parameter is ignored for a
THDQ_UNFREEZE_ALL request.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1PQG service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The address of a fullword in which the BPX1PQG service stores the return
code. The BPX1PQG service returns Return_code only when the Return_value
is −1. The BPX1PQG service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The function cannot be performed at this time because of

conflicts with other quiesce operations currently in progress. The
following reason codes can accompany this return code:
JRQuiesceInProg, JRThdsNotSafe.

EFAULT One of the parameters contained an address that was not
accessible to the caller.

EINVAL One of the parameters contained a value that is not valid. The
following reason codes can accompany this return code:
JRRequestTypeErr, JRInvThdq, JRNotFrozen.

EMVSERR An MVS environmental error has been detected. The following
reason codes can accompany this return code: JRNoFreezeExit,
JRNotExitKey, JRFrzExitError.

pthread_quiesce_and_get_np (BPX1PQG)

Chapter 2. Callable services descriptions 509

Return_code Explanation
ESRCH At least one of the specified threads could not be found in the

caller’s process. The following reason codes can accompany this
return code: JRThreadNotFound, JRRequestOrThread.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1PQG service stores the reason code.
The BPX1PQG service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value.

Usage notes
1. The BPX1PQG service can be directed against any thread in a process that has

issued a z/OS UNIX System Services callable service.

2. For the THDQ_FREEZE request and the THDQ_FREEZE with
THDQ_GET_STATE request type combination, a quick freeze exit interface
routine is invoked to determine the language environment of each thread, and
whether the thread is in a safe place to be frozen. The BPX1ENV callable
service (QUICK_FREEZE_EXIT_REG function) can be used to register a quick
freeze exit. The quick freeze exit routine is synched to so that it runs in the
state and key of the caller of BPX1ENV to register the exit. If the thread is not
in a safe place to be frozen, a freeze signal event is generated in the same
manner in which it is currently generated for BPX1PTQ.

3. For request type combinations in which the service returns data in a THDQ data
area, the THDQ data area and the data returned in this area are valid until a
THDQ_UNFREEZE_ALL request is done. After the unfreeze request, the state
data returned in this area can no longer be trusted, because the specified
threads are no longer in a frozen state.

4. Upon successful return from the BPX1PQG service, all threads that were
specified on input to the service have been placed into the specified state. If
THDQ_GET_STATE has been specified, the state data mapped in the
BPXYTHDQ data area is returned to the caller for each valid thread identified
on input. If one or more thread IDs do not represent a valid thread in the calling
process, the ThdQaNotFound flag in the corresponding Thdsq array entry is
turned on in the first entry found to be invalid. In this case, the specific
operation fails with a −1 return value and a return code of ESRCH.

5. If the service fails with a −1 return value, it is possible that the supplied THDQ
area has been only partially filled in. The THDQ area will only be completely
filled in if the service returns with a return value of 0.

6. Only one freeze request can be in progress at a given time for a given process.
A new freeze request cannot be honored until the prior freeze request has been
undone by an unfreeze request.

7. The THDQLENGTH field in the BPXYTHDQ data area can be optionally used
as a validity check against the total length of the THDQ structure. It can be set
either to the overall length of the THDQ structure, or to 0. If it is nonzero,
THDQLENGTH must include at least all bytes in the structure, including all
bytes for the total number of entries represented by the THDQNUMENTS field,

pthread_quiesce_and_get_np (BPX1PQG)

510 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

but not more than 65 535 bytes. If there are more than 255 threads to be
frozen, the THDQ structure will be longer than 65 535 bytes, and the
THDQLENGTH field must be set to 0.

Related services
v “pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process” on page 504
v “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 494

Characteristics and restrictions
There are no restrictions on the use of the BPX1PQG service.

Examples
For an example using this callable service, see “BPX1PQG
(Pthread_quiesce_and_get_np) Example” on page 1192.

pthread_quiesce_and_get_np (BPX1PQG)

Chapter 2. Callable services descriptions 511

pthread_security_np (BPX1TLS)—Create/Delete Thread-Level
Security Environment for Caller’s Thread

Function
The pthread_security_np service creates or deletes the thread-level security
environment for the caller’s thread. The authorization that is required to invoke this
service is one of the following:
v Read or update access to the BPX.SERVER FACILITY class profile
v A UID of 0 when the BPX.SERVER FACILITY class profile is not defined

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TLS,(Function_code,
Identity_Type,
Identity_Length,
Identity,
Password_Length,
Password,
Option_Flags,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the function
that is to be performed. The following Function_code constants are defined by
the BPXYCONS macro. See “BPXYCONS — Constants Used by Services” on
page 956.

Constant Function
TLS_CREATE_THREAD_SEC# Creates a thread-level security environment for the

caller’s thread. If a thread-level security environment
already exists, it is deleted before the new
environment is created.

pthread_security_np (BPX1TLS)

512 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Constant Function
TLS_DELETE_THREAD_SEC# Deletes the thread-level security environment for the

caller’s thread, if one exists. If the security
environment was created using the
TLS_TASK_ACEE# option, only the POSIX security
information is deleted; the task-level ACEE is left
alone.

TLS_TASK_ACEE# Initializes the UNIX (POSIX) security data for a task
that has an existing task-level security environment
(task-level ACEE). If the UNIX security data already
exists for the calling task, the existing UNIX security
data is deleted, and a new set of UNIX security data
is established.

Identity_Type
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value that identifies the format
of the user identity that is provided in the Identity parameter. Constants are
defined by the BPXYCONS macro. See “BPXYCONS — Constants Used by
Services” on page 956.

Constant Identity Format
TLS_IDENTITY_USERID# The user identity is in the format of a

1-to-8-character user ID.
TLS_IDENTITY_CERT# The user identity is in the form of a certificate

control block.

Identity_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Identity. The specified
length must be consistent with the allowable Identity types:

v USERID - 1 to 8 characters

v CERTIFICATE - the length of the certificate (OCRT) control block

Identity
Supplied parameter

Type: Character string or number, if using an identity
type of USERID; structure, if using an identity
type of CERTIFICATE.

Character set: Not applicable for an identity type of
CERTIFICATE. For an identity type of USERID,
the XPG4 portable character set that includes
upper and lower case letters (A-Z, a-z),
numerics (0-9), period (.), dash (-), and
underbar(_). In addition, the special characters
$, %, and # may be specified. (Since these
characters are not part of the XPG4 portable

pthread_security_np (BPX1TLS)

Chapter 2. Callable services descriptions 513

|
|
|
|
|
|

character set, however, the future possibility of
program portability should be considered before
using these characters.)

Length: Specified by the Identity_Length parameter

For an identity type of USERID, this area is the name of a field that contains
the user identity in the specified format.

For an identity type of CERTIFICATE, this area is mapped by the BPXYOCRT
macro (see “BPXYOCRT — Map the OE Certificate Support Structure” on
page 990).

Password_Length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Password. The length
that is specified can be 0-8 bytes long. If a Password is not required, specify the
name of a fullword that contains 0.

Password
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Password_Length parameter

The name of a field that contains the Password. If the value that is specified by
Password_Length is 0, the Password is ignored. This field can optionally
contain a pass ticket, which is treated in the same way as a password by
RACF.

Option_Flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword binary field that contains the pthread_security_np
options. If no options are required, specify the name of a fullword field that
contains 0. No options are currently defined, but future options are under
consideration.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword where the pthread_security_np service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

pthread_security_np (BPX1TLS)

514 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the pthread_security_np service stores the
return code. The pthread_security_np service returns Return_code only if
Return_value is −1. See z/OS UNIX System Services Messages and Codes for
a complete list of possible return code values. The pthread_security_np service
can return one of the following values in the Return_code parameter:

Return_code Explanation
EACCES Permission is denied; the specified password is incorrect. The

following reason code can accompany the return code: JROK.
EMVSEXPIRE The password for the specified identity has expired. The following

reason code can accompany the return code: JROK.
EINVAL One or more of the following conditions were detected:

v The Function_Code that was specified is undefined.
v The Identity_Type that was specified is undefined.
v The Identity_Length that was specified was not valid for the

Identity_Type.
v The Password_Length that was specified was not in the range

0 to 8.
v An undefined option flag was set.

The following reason codes can accompany the return code:
JRTLSRequestInvalid, JRTLSIdTypeInvalid,
JRTLSIdLengthInvalid, JRTLSAddressLengthInvalid, and
JRBadOptions.

EPERM One or more of the following conditions were detected:
v The calling address space is not authorized to use this service.
v A password was not supplied and the RACF SURROGAT

class has not been activated; or no SURROGAT class profile
has been defined for the specified user identity.

v A password was not supplied and the caller’s address space
does not have READ permission to the specified user identity’s
RACF SURROGAT class profile.

v A load from an unauthorized (not Program Control protected)
library was done in the address space.

The following reason codes can accompany the return code:
JRNotServerAuthorized, JRSurrogateUndefined,
JRNoSurrogatePerm, and JREnvDirty.

EMVSSAF2ERR An error occurred in the security product. Consult Reason_code
to determine the exact reason the error occurred. The following
reason codes can accompany the return code:
JRUnexpectedError, JRTLSCallerIsIPT, JRTLSNotDoneByOE,
and JRNoPtraceTaskSec, JRSAFNoUser, JRSAFGroupNoOMVS,
JRSAFUserNoOMVS, JRSAFNoUID, JRSAFNoGID,
JRSAFInternal, and JRRACFBlankExists.

ENOSYS The function is not supported on this system. The following
reason code can accompany the return code:
JRNoSecurityProduct.

ESRCH The identity that was specified is not defined to the security
product. The following reason code can accompany the return
code: JROK.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

pthread_security_np (BPX1TLS)

Chapter 2. Callable services descriptions 515

The name of a fullword in which the pthread_security_np service stores the
reason code. The pthread_security_np service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. For
the reason codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The ability to create a task-level security environment (ACEE) is a privileged

operation. An installation has the following two ways of allowing an application
to use this service:

a. For the highest level of security, the installation defines the BPX.SERVER
FACILITY class profile. For the application to access this service, it must
be given read access to this profile. In addition, all load modules that are
executing in the application’s address space must be defined to RACF. See
z/OS UNIX System Services Planning for more information on setting up
this security.

b. For a lower security arrangement, you can assign the user ID under which
the application is run a UID of 0 so that it operates as a superuser.

2. When a task-level security environment is established, the other z/OS UNIX
services are divided into two categories:

v Services that are used to access data in the file system base the permission
checks on the task-level security. Therefore, a function like open() will only
work if the identity of the user in the task security environment has
permission to the file. The pthread_security_np is very useful for creating a
file server.

v Services that tend to be process oriented continue to base the permission
checking on the security identity of the process. Functions like kill only work
if the process has permission to send the signal to the target process. The
IPC functions of shared memory, message queues, and semaphores are
also accessed with the security environment of the process.

The above permission checks are done on the first call to this service, and a
successful result is remembered so that future calls to the service run faster.
Therefore, revoking access to the BPX.SERVER FACILITY class profile does
not stop a running server from continuing to create task-level security
environments.

3. If a thread with a task-level security environment issues a spawn() function
call, the new process has the identity of the process, not of the thread, unless
the spawn with userid function is used.

4. Access to most MVS resources is based on the security identity of the thread.

5. The specification of a password is optional. The following are some examples
of situations in which a server would want to create a task-level security
environment without a password:

v Some servers allow access to a system with a user ID known as
ANONYMOUS. The ANONYMOUS user ID is defined to the system with
access to data available to the general public. It is up to the installation to
define and manage an ANONYMOUS userid so that integrity is not
compromised.

v Some servers are connected to global security servers. If other services are
used to authenticate a user, it is not necessary to provide a password to this
service. It is up to the application and the installation to define the level of
user authentication that is acceptable.

6. Debugging in this environment is only allowed for users with read permission
to the BPX.DEBUG FACILITY class profile.

pthread_security_np (BPX1TLS)

516 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

7. This service cannot be called from the Initial Pthread Task (IPT). The RTL
performs certain process-related functions on the IPT that would be adversely
affected by a task-level security environment.

8. The create function contains support to delete a previously established
task-level security environment. This enables a server to loop within a thread,
creating new task-level security environments for clients without having to
make an extra call to delete the old environment.

9. If the user identity that is specified by the caller has been defined as a a
SURROGATE userid (see z/OS UNIX System Services Planning for details on
how to define a SURROGATE user), and no password was specified, the
task-level ACEE that is created for the calling thread has the CLIENT feature
turned on. When RACF encounters a task-level ACEE with the CLIENT feature
turned on, authority checking is done using both the task and process-level
ACEEs. Both ACEEs must have permission to be able to access the resource.

10. If the identity type is CERTIFICATE, the userid is returned to the caller, filled in
with the userid that is associated with the certificate and null terminated.

When a RACROUTE REQUEST=AUTH results in ABEND282 RC5C, the
dump is suppressed and the request fails with a return code of
EMVSSAF2ERR (X'00A4') and a reason code of JrRACFBlankExists (X'7400').

11. If the function code specified is TLS_TASK_ACEE#, the values specified for
the Identity_Type, Identity_Length, Identity, Password_Length, Password, and
Option_Flags parameters are ignored. Because the user had the authority to
create a task-level ACEE and attach it to the TCB, no additional credentials are
necessary to redub the thread with the POSIX identity associated with the
userid of the task-level ACEE.

12. For the TLS_TASK_ACEE# function code to be used successfully, either the
caller must be supervisor state and system key (0–7), or the ACEE for the
calling task must have been created by WLM.

13. The POSIX identity established by a TLS_TASK_ACEE# can be deleted in one
of three ways:

v Issue another TLS_TASK_ACEE#. This deletes the old thread-level POSIX
identity before establishing the new identity. This method fails, however, if
the previous thread-level identity was not established by a previous
TLS_TASK_ACEE#.

v Issue a TLS_DELETE_THREAD_SEC#. This deletes the POSIX thread-level
identity, and the thread takes on the POSIX identity of the process.

v Issue a pthread_exit(). If the thread is heavyweight, the task terminates. If
the thread is mediumweight, only the POSIX identity is cleaned up; the
task-level MVS identity remains.

Related services
v “oe_env_np (BPX1ENV) — Examine, Change, or Examine and Change an

Environmental Attribute” on page 425
v “getlogin (BPX1GLG) — Get the User Login Name” on page 248

Characteristics and restrictions
The pthread_security_np service is restricted to users that have the appropriate
privileges, as defined above.

Examples
For an example using this callable service, see “BPX1TLS (pthread_security_np)
Example” on page 1289.

pthread_security_np (BPX1TLS)

Chapter 2. Callable services descriptions 517

|
|
|

pthread_self (BPX1PTS) — Query the Thread ID

Function
The pthread_self callable service gets the thread ID of the calling thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTS,(Thread_ID)

Parameters
Thread_ID

Returned parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field in which the service places the thread ID of the
calling thread.

Usage notes
1. The caller should request this service only once when it needs the thread ID of

the active thread. It should save a copy of the thread ID in its own storage for
repeated usage.

2. If this service fails, the calling thread ends abnormally.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486

Characteristics and restrictions
There are no restrictions on the use of the pthread_self service.

Examples
For an example using this callable service, see “BPX1PTS (pthread_self) Example”
on page 1203.

pthread_self (BPX1PTS)

518 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State

Function
The pthread_setintr callable service sets the specified interruptability state of the
calling thread and atomically returns the previous interruptability state.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PSI,(Interrupt_state,
Return_value,
Return_code,
Reason_code)

Parameters
Interrupt_state

Supplied parameter

Type: Structure

Length: Fullword

Specifies the name of a fullword that contains a numeric value that identifies the
interrupt state that is to be set. The following constants, which are defined in
the BPXYCONS macro, define the valid states (see “BPXYCONS — Constants
Used by Services” on page 956):

Constant Description
PTHREAD_INTR_ENABLE# When interruptability is enabled, new or

pending cancellation requests are acted
upon according to the interruptability type
set by the pthread_setintrtype service,
BPX1PST.

PTHREAD_INTR_DISABLE# When interruptability is disabled,
cancellation requests against the target
thread are held pending.

Return_value
Returned parameter

Type: Integer

Length: Fullword

pthread_setintr (BPX1PSI)

Chapter 2. Callable services descriptions 519

The name of a fullword in which the service returns the previous interrupt state,
or −1 if the service did not complete successfully.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_setintr service stores the return
code. The pthread_setintr service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The pthread_setintr service can return the
following value in the Return_code parameter:

Return Code Explanation
EINVAL One of the parameters contains a value that is not valid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_setintr service stores the reason
code. The pthread_setintr service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Setting the interruptability state allows you to control when cancellation requests

sent via the BPX1PTB service are handled.

2. BPX1PSI and BPX1PST establish three interruptability states:

Disabled: Cancellation requests are left pending.

Controlled: Cancellation requests are left pending until the next cancellation
point is reached. Cancellation points are defined as when:

– The test interrupt service is invoked (BPX1PTI).

– A thread is placed in an unbounded wait during a call to a z/OS UNIX
service. Some examples of these types of calls are
- “close (BPX1CLO) — Close a File” on page 97
- “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on

page 114
- “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
- “open (BPX1OPN) — Open a File” on page 434
- “pause (BPX1PAS) — Suspend a Process Pending a Signal” on

page 463
- “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498
- “pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur”

on page 528
- “read (BPX1RED) — Read from a File or Socket” on page 567
- “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the

Thread Until a Signal Is Delivered” on page 766
- “sigwait (BPX1SWT) — Wait for a Signal” on page 772
- “sleep (BPX1SLP) — Suspend Execution of a Process for an Interval

of Time” on page 774

pthread_setintr (BPX1PSI)

520 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

- “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on
page 829

- “tcsetattr (BPX1TSA) — Set the Attributes for a Terminal” on page 850
- “wait (BPX1WAT) — Wait for a Child Process to End” on page 893
- “write (BPX1WRT) — Write to a File or a Socket” on page 935

Asynchronous: Cancellation request can be delivered at any time.

3. The default interrupt state for newly created threads and the initial thread is
PTHREAD_INTR_ENABLE#.

4. The default interrupt type for newly created threads and the initial thread is
PTHREAD_INTR_CONTROLLED#.

5. The interruption types of controlled and asynchronous are set with BPX1PST;
see “pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt
Type” on page 522. These states are acted upon only if thread interruption is
enabled. If a cancellation request is pending and the interrupt state or type is
set to allow asynchronous cancellation requests, the thread is canceled before
control is returned to the invoker.

6. See Appendix G, “Optimizing performance using process- and thread-level
information” on page 1335.

Related services
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt Type” on

page 522
v “pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur” on

page 528

Characteristics and restrictions
There are no restrictions on the use of the pthread_setintr service.

Examples
For an example using this callable service, see “BPX1PSI (pthread_setintr)
Example” on page 1193.

pthread_setintr (BPX1PSI)

Chapter 2. Callable services descriptions 521

pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt
Type

Function
The pthread_setintrtype callable service sets the specified interruptability type of the
calling thread and atomically returns the previous interruptability type.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PST,(Interrupt_type,
Return_value,
Return_code,
Reason_code)

Parameters
Interrupt_type

Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword containing a numeric value identifying the interrupt type
to be set. The following constants, which are defined in BPXYCONS, define the
valid states.

Constant Description
PTHREAD_INTR_ASYNCHRONOUS# When interruptability is enabled and the

interruptability type is set to
PTHREAD_INTR_ASYNCHRONOUS#,
cancellation requests can be acted upon at
any time.

PTHREAD_INTR_CONTROLLED# When interruptability is enabled and the
interruptability type is set to
PTHREAD_INTR_CONTROLLED#,
cancellation requests are held pending until
a cancellation point is reached. See “Usage
notes” for a definition of cancellation points.

Return_value
Returned parameter

pthread_setintrtype (BPX1PST)

522 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword to which the service returns the previous interrupt type,
or −1 if the service did not complete.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_setintrtype service stores the
return code. The pthread_setintrtype service returns Return_code only if
Return_value is −1. For a complete list of possible return code values, see z/OS
UNIX System Services Messages and Codes. The pthread_setintrtype service
can return the following value in the Return_code parameter:

Return Code Explanation
EINVAL One of the parameters contains a value that is not valid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_setintrtype service stores the
reason code. The pthread_setintrtype service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. For
the reason codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The default interrupt type for newly created threads and the initial thread is

PTHREAD_INTR_CONTROLLED#. If a cancellation request is pending and the
interrupt state is set to PTHREAD_INTR_AYNCHRONOUS#, the cancellation
request is acted upon before control is returned to the invoker.

2. For more information on controlling cancellation requests, see the “Usage notes”
for “pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State” on
page 519.

3. See Appendix G, “Optimizing performance using process- and thread-level
information” on page 1335.

Related services
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State” on

page 519
v “pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur” on

page 528

Characteristics and restrictions
There are no restrictions on the use of the pthread_setintrtype service.

pthread_setintrtype (BPX1PST)

Chapter 2. Callable services descriptions 523

Examples
For an example using this callable service, see “BPX1PST (pthread_setintrtype)
Example” on page 1194.

pthread_setintrtype (BPX1PST)

524 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

pthread_tag_np (BPX1PTT) — Set, Query, or Both Set and Query the
Caller’s Thread Tag Data

Function
The pthread_tag_np service sets, queries, or both sets and queries the 65 bytes of
thread tag data that is associated with the caller’s thread.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTT,(New_Tag_Length,
New_Tag_Ptr,
Old_Tag_Length,
Old_Tag_Ptr,
Return_value,
Return_code,
Reason_code)

Parameters
New_Tag_Length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains either 0 or the length of the new tag data
that is pointed to by New_Tag_Ptr. If New_Tag_Length contains 0 and
New_Tag_Ptr contains a nonzero value, the caller’s thread tag data is cleared.
If New_Tag_Ptr contains a nonzero value, New_Tag_Length must be in the
range of 0 to 65. See “Usage notes” for more details.

New_Tag_Ptr
Supplied parameter

Type: Pointer

Length: Fullword

The name of a fullword that contains either 0 or the address of a location that
contains the new thread tag data. If New_Tag_Ptr contains 0, the caller’s thread
tag data is left unchanged. See “Usage notes” for more details.

pthread_tag_np (BPX1PTT)

Chapter 2. Callable services descriptions 525

Old_Tag_Length
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_tag_np service returns the length
of the old (current) thread tag data that is returned to the caller.

Old_Tag_Ptr
Returned parameter

Type: Pointer

Length: Fullword

The name of a fullword that contains either 0 or the address of a 65-byte area
in which the pthread_tag_np service returns the old (current) thread tag data. If
Old_Tag_Ptr contains 0, no thread tag data is returned to the caller and
Old_Tag_Length remains unchanged. See “Usage notes” for more details.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_tag_np service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_tag_np service stores the return
code. The pthread_tag_np service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The pthread_tag_np service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EFAULT One or more of the following conditions were detected:

v All or part of the location that is specified by New_Tag_Ptr and
New_Tag_Length was not addressable by the caller.

v All or part of the 66 bytes at the location that is specified by
Old_Tag_Ptr was not addressable by the caller.

The following reason codes can accompany the return code:
JRNewLocationErr, or JROldLocationErr.

EINVAL New_Tag_Ptr was nonzero, but New_Tag_Length was not in the
range of 0 to 65. The following reason code can accompany the
return code: JRNewLenBad.

Reason_code
Returned parameter

Type: Integer

pthread_tag_np (BPX1PTT)

526 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the pthread_tag_np service stores the reason
code. The pthread_tag_np service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If New_Tag_Ptr contains a nonzero value and New_Tag_Length contains 0, the

caller’s thread tag data is cleared.

2. If New_Tag_Ptr contains 0, the caller’s thread tag data is left unchanged and
the value specified by New_Tag_Length is not validity checked.

3. If the caller attempts to query the thread tag data and the tag data has never
been set or was cleared, no data is stored at the location that is specified by
Old_Tag_Ptr and Old_Tag_Length is set to 0.

4. If New_Tag_Ptr is nonzero, Tag_Length must be in the range of 0 to 65. If it is
not within range, the tag data is left unchanged and the pthread_tag_np service
is unsuccessful.

5. Thread tag data is displayed with the DISPLAY OMVS command when ’PID=’
option is specified. The thread tag data should be printable (EBCDIC) data.

6. When Old_Tag_Ptr is nonzero and the caller’s thread has tag data associated
with it (previously set and not cleared), the pthread_tag_np service stores the
tag data (left justified) at the location that is specified by the caller, and
Old_Tag_Length contains the length of the data that is stored.

Related services
None.

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1PTT (pthread_tag_np)
Example” on page 1204.

pthread_tag_np (BPX1PTT)

Chapter 2. Callable services descriptions 527

pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur

Function
The pthread_testintr callable service causes a cancellation point to occur. If a
cancellation request is pending, the cancellation request is acted upon before
BPX1PTI returns.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTI,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which pthread_testintr returns a 0 if the thread did not
have any pending cancellation requests, or −1 if pthread_testintr did not
complete (the cancellation request was not tested).

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the pthread_testintr service stores the return
code. The pthread_testintr service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

pthread_testintr (BPX1PTI)

528 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the pthread_testintr service stores the reason
code. The pthread_testintr service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If a cancellation request is pending when this service is requested, control is not

returned.

2. Calling the pthread_testintr service does not affect the interrupt state or type.

3. For more information on this service, see the usage notes for “pthread_setintr
(BPX1PSI) — Examine and Change the Interrupt State” on page 519.

Related services
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484
v “pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State” on

page 519
v “pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt Type” on

page 522

Characteristics and restrictions
There are no restrictions on the use of the pthread_testintr service.

Examples
For an example using this callable service, see “BPX1PTI (pthread_testintr)
Example” on page 1198.

pthread_testintr (BPX1PTI)

Chapter 2. Callable services descriptions 529

ptrace (BPX1PTR) — Control Another Process for Debugging

Function
The ptrace callable service provides information about another process and controls
its running. Use this service in debugger programs to do breakpoint debugging.

Requirements

Authorization: Problem Program, PSW key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PTR,(Request,
Process,
Address,
Data,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
Request

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one of the integer values that indicates the
function requested. The functions are explained in the “Usage notes” on
page 535. The request integer values are defined in the BPXYPTRC macro.
See “BPXYPTRC — Map Parameters for ptrace” on page 1004.

Process
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the process identifier of the process that is
the target of the ptrace call, or 0 for the PT_TRACE_ME,
PT_EXTENDED_EVENT, and PT_RECOVER requests.

Address
Supplied parameter

Type: Address or Integer

ptrace (BPX1PTR)

530 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword that contains a value that is identified by the option
selected for the Request parameter. For a mapping of this parameter to the
Request parameter options, see Table 5 on page 537.

Data
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that is identified by the option
selected for the Request parameter. For a mapping of this parameter to the
Request parameter options, see Table 5 on page 537.

Buffer
Supplied parameter

Type: Address or Integer

Length: Fullword

The name of a fullword that contains a value that is identified by the option
selected for the Request parameter. For a mapping of this parameter to the
Request parameter options, see Table 5 on page 537.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ptrace service returns 0; the requested
value if the request is successful; or −1 if it is not successful. For more
information on values that are returned for specific requests, see Table 6 on
page 541. A value of −1 is sometimes returned when the request is successful.
For example, if a general-purpose register contains a value of −1, a
PT_READ_GPR request returns this value in the Return_value parameter.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ptrace service stores the return code. The
ptrace service always returns Return_code, even if Return_value is not −1. A
Return_code of 0 is returned for successful completion. For a complete list of
possible return code values, see z/OS UNIX System Services Messages and
Codes. For a mapping of these values to the various requests, see Table 6 on
page 541. The ptrace service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN One or more resources are temporarily unavailable. Reissue the

request at a later time.
ECHILD The debugged process ended while a ptrace service request was

running.

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 531

Return_code Explanation
EFAULT An address in the caller’s process is incorrect. The following

reason codes can accompany the return code: JRBadAddress,
JRPtInvDbrAddress.

EINTR The ptrace service request was interrupted by a signal for the
caller.

EINVAL The request was not accepted, for one of the following reasons:

v The length is larger than the maximum defined length. The
maximum defined length is defined in the BPXYPTRC macro.

v The length of the area that is to contain the results of a
PT_LDINFO, PT_EXPLAIN, or PT_THREAD_INFO request
(the return information buffer) is too small to contain all the
required information. For PT_LDINFO and PT_EXPLAIN,
increase the length up to the maximum defined length and
reissue the request. For PT_THREAD_INFO, the required
buffer length is returned. Reissue the request, using this
returned buffer length. See Table 5 on page 537 for more
information (the required length is returned to the Destination
Address).

v For the PT_CAPTURE request, the input address that is to be
captured is not on a page boundary (4K).

v For the PT_UNCAPTURE request, the input captured buffer
address is not an address that was previously returned from a
successful PT_CAPTURE request.

v For the PT_BLOCKEDREQ request, some of the requests may
not have completed successfully. The Reason_code is set to
JRPtSomeBlkedFailed. Check the PtBRStatus field of the
PtBRInfo block for each blocked request to determine which
have failed.

The following reason codes can accompany the return code:
JRPtLDBufferTooSmall, JRBuffTooSmall, JRNotPage,
JRPtBufNotFound, JRPtInvLength.

ptrace (BPX1PTR)

532 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EIO The request was not accepted for one of the following reasons:

v The caller is not running with PSW key 8.
v An incorrect Request was specified.
v For a PT_TRACE_ME or PT_ATTACH request, the target

process is already being debugged. For a PT_REATTACH or
PT_REATTACH2 request, the target process is not already
being debugged.

v For a PT_DETACH, PT_CONTINUE or PT_THREAD_SIGNAL
request, the signal number that was supplied in the Data
parameter is not a valid signal number.

v An address in the target process is not valid.
v A register number for a PT_READ_GPR, PT_WRITE_GPR,

PT_READ_FPR, or PT_WRITE_FPR request is not defined.
The register numbers are defined in the BPXYPTRC macro.

v An attempt was made to store into a control register using the
PT_WRITE_GPR request.

v An attempt was made to store into the left half of the PSW
using the PT_WRITE_GPR request.

v The user area offset that was supplied with the PT_READ_U
request is incorrect.

v For the PT_TRACE_ME request, the parent of the debugged
process (that is, the debugger) has ended.

v For the PT_REATTACH or PT_REATTACH2 request, the
original debugger has ended.

v For the PT_THREAD_WRITE_FOCUS, PT_THREAD_HOLD,
PT_THREAD_MODIFY and PT_THREAD_SIGNAL requests,
the thread ID that was supplied is not valid.

v For the PT_EXPLAIN request, an extended ptrace event is not
in progress.

v For the PT_EVENTS request, an attempt was made to add
more extended events than the maximum number of events
that was specified on the PT_EVENTS request.

v The request is not supported while it is stopped for a local fork
child, or for an extended event.

v For the PT_CAPTURE request, the target process is running
in a TSO address space.

The following reason codes can accompany the return code:
JRPtAttemptedCRStore, JRPtAttemptedPSW0Store,
JRPtDbdParentTerm, JRPtDbrPidNotFound, JRPtDbrZombie,
JRPtInvCallingMode, JRPtInvDbdAddress, JRPtInvFPRNumber,
JRPtInvGPRNumber, JRPtInvNumberThreads,
JRPtInvPtraceState, JRPtInvRequest, JRPtInvSignalNumber,
JRPtInvUAreaOffset, JRPtOldDbrPidNotFound, JRPtThreadTerm,
JRPtLightWeightTHID, JRPtThreadNotFound, JRPtTSO,
JRPtRequestDenied, JRPtAsyncThread, JRPtNotXtdEvent,
JRPtTooManyEvents.

EMVSSAF2ERR For the PT_ATTACH, PT_REATTACH, and PT_REATTACH2
requests, the caller does not have the appropriate privileges to
debug the target process. For information on appropriate
privileges, see “Authorization” on page 8.

ENOMEM There is not enough storage available to satisfy a PT_CAPTURE
request.

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 533

Return_code Explanation
EPERM Permission to issue the request is denied for one of the following

reasons:

v For the PT_ATTACH, PT_REATTACH, and PT_REATTACH2
requests, the target process is restricted from being debugged.
Note: For PT_REATTACH or PT_REATTACH2, it is more
likely that EIO will be returned, because the target process is
not already being debugged. However, in the unlikely event
that a restricted process successfully issues a PT_TRACE_ME
request, a PT_REATTACH or PT_REATTACH2 could return
EPERM.

If either of the following is true, the target process is restricted:

– The target process is a system address space. For more
information on system address spaces, see “MVS-related
information” on page 557.

– The target process is the INIT process, indicated by a
process ID (PID) value of 1.

v For the PT_READ_xxx, PT_WRITE_xxx, PT_CONTINUE (to
continue at another address), PT_REGSET and PT_LDINFO
requests, the target process is currently running in supervisor
state.

The following reason codes can accompany the return code:
JRPtRestrictedProcess, JRPtEdIsAuthorized.

ESRCH The request was not accepted, for one of the following reasons:

v For all requests other than PT_TRACE_ME, PT_ATTACH,
PT_REATTACH, PT_REATTACH2, PT_EXTENDED_EVENT,
and PT_RECOVER, the target process is not being debugged.

v For all requests other than PT_TRACE_ME, PT_ATTACH,
PT_REATTACH, PT_REATTACH2, PT_EXTENDED_EVENT,
and PT_RECOVER, the target process is not stopped for a
ptrace service event.

v For all requests other than PT_TRACE_ME,
PT_EXTENDED_EVENT, and PT_RECOVER, the target
process ID is incorrect.

v For the PT_ATTACH, PT_REATTACH, and PT_REATTACH2
requests, the target debugged process is the same as the
debugger process.

v For the PT_ATTACH, PT_REATTACH, and PT_REATTACH2
requests, the target debugged process is the parent of the
debugger process.

The following reason codes can accompany the return code:
JRPtDbdEqualsDbr, JRPtDbdPidNotFound,
JRPtProcessNotPtraced, JRPtProcessNotStopped,
JRPtDbrParentEqualsDbd.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ptrace service stores the reason code. The
ptrace service always returns Reason_code, even if Return_value is not −1. A
Reason_code of 0 is returned for successful completion. The reason code for
EMVSSAF2ERR contains the RACF return and reason codes, respectively, in

ptrace (BPX1PTR)

534 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

the two low-order bytes. For a more detailed description of the RACF ptrace
Authority Check service return and reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 The caller is not authorized to attach to the target
process

8 12 Internal error during RACF processing

Usage notes
This table shows the constant options you can select for the Request parameter.
See “BPXYPTRC — Map Parameters for ptrace” on page 1004 for the constant
definitions.

Constant Explanation

PT_ATTACH Enable a target process to be debugged with
the ptrace service.

PT_CAPTURE Capture one or more pages of storage in the
target debugged process into a buffer in the
caller’s address space. The section
“Capturing Storage in a Debugged Process”
explains the concept of captured storage.

PT_CONTINUE Continue running the debugged process.

PT_DETACH Disable debugging for the target process.

PT_EVENTS Enable or disable reporting for an extended
event.

PT_EXPLAIN Return additional information about an
extended event.

PT_EXTENDED_EVENT Notify the debugger of an extended event.
For more information, see the section
“Handling Extended Events in a Debugged
Process”.

PT_KILL End the debugged process.

PT_LDINFO Return information about modules that were
loaded by the debugged process.

PT_MULTI Turn multiprocess debugging mode on or off.
For information on multiprocess debugging,
see the section “Multiprocess Debugging
Mode”.

PT_BLOCKREQ Several Ptrace request types are blocked
together into a single Ptrace call.

PT_READ_BLOCK Read a block of storage.

PT_READ_D Return a fullword of data from a specified
address in the debugged process. This
request reads program data.

PT_READ_FPR Return the value of a floating-point register.

PT_READ_GPR Return the value of a general-purpose or
machine-control register.
Note: This includes the PSW and control
registers, as well as general-purpose
registers.

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 535

Constant Explanation

PT_READ_GPRH Read a specific general-purpose high
register.

PT_READ_I Return a fullword of data from a specified
address in the debugged process. This
request reads program instructions.

PT_READ_U Return the value of a fullword of control
information from the user area in the
debugged process. See “User Area
Description”.

PT_REATTACH Enable a target process to be debugged with
the ptrace service by a new debugger. The
relationship between the target process and
its original debugger is removed.

PT_REATTACH2 Enable a target process to be debugged with
the ptrace service by a new debugger. The
relationship between the target process and
its original debugger is removed. This
request is an extension of the
PT_REATTACH request, and must be used
by a debugger to deal with the local fork
child environment. For details, see the
section “Attaching to a Process for
Debugging”.

PT_RECOVER Notify the debugger of a program check
interrupt or abnormal end. For more
information, see the section “Handling a
Program Check or Abend in a Debugged
Process”.

PT_REGHSET Read all of the general-purpose high
registers.

PT_REGSET Return the values of all general-purpose
registers.

PT_THREAD_HOLD Hold or unhold a thread in the debugged
process.

PT_THREAD_INFO Return kernel information on all threads in
the debugged process.

PT_THREAD_INFO_EXTENDED Return thread information, such as
information about pending and blocked
signals, for a process specified on the input
parameters.

PT_THREAD_MODIFY Modify a thread’s kernel information.

PT_THREAD_READ_FOCUS Return the current focus thread ID.

PT_THREAD_SIGNAL Queue a signal to a thread in the debugged
process.

PT_THREAD_WRITE_FOCUS Change the current focus thread ID.

PT_TRACE_ME Enable the calling process to be debugged
with the ptrace service.

PT_UNCAPTURE Free one or all buffers that contain captured
storage from previous PT_CAPTURE
requests. The section “Capturing Storage in
a Debugged Process” explains the concept
of captured storage.

ptrace (BPX1PTR)

536 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Constant Explanation

PT_WRITE_BLOCK Change the contents of a block of storage.

PT_WRITE_D Change a fullword of data at a specified
address in the debugged process. This
request changes program data.

PT_WRITE_FPR Change the value of a floating-point register.

PT_WRITE_GPR Change the value of a general-purpose or
machine-control register.
Note: This includes the PSW and control
registers, as well as general-purpose
registers.

PT_WRITE_GPRH Write to a specific general-purpose high
register.

PT_WRITE_I Change a fullword of data at a specified
address in the debugged process. This
request changes program instructions.

Parameter attributes for request options

This table shows the ptrace service options for the Request parameter. For each
option, the meanings of the Address, Data, and Buffer parameters are shown.
Explanations of the terms in the table follow the table:

Table 5. Parameter attributes for request options

Request Options Address Data Buffer

PT_ATTACH 0 0 0

PT_CAPTURE Capture Address Capture Length 0

PT_CONTINUE 1 = Continue
from where
process stopped

Not 1 = Continue
Address

0 = No signal

Not 0 = Signal
Number

0

PT_DETACH 0 0 = No signal

Not 0 = Signal
Number

0

PT_EVENTS Extended Event Id 0 = Disable re-
porting this
event

Not 0 = Enable
reporting this
event

Maximum
Events

PT_EXPLAIN Buffer Address
(destination)

Length 0

PT_EXTENDED_EVENT GIParm Address Extended Event Id Destination
Address (4
bytes)

PT_KILL 0 0 0

PT_LDINFO Buffer Address
(Destination)

Length 0

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 537

Table 5. Parameter attributes for request options (continued)

Request Options Address Data Buffer

PT_MULTI 0 0 = Reset multi-
process mode

Not 0 = Set
multiprocess
mode

0

PT_BLOCKREQ Buffer Address
(source/
destination)

Length Buffer
Address
(destination)

PT_READ_BLOCK Debugged
Address

Length Buffer
Address

PT_READ_D Debugged
Address

0 0

PT_READ_FPR Destination
Address

Register Number 0

PT_READ_GPR Register Number 0 0

PT_READ_GPRH Register Number 0 0

PT_READ_I Debugged
Address

0 0

PT_READ_U Target Offset 0 0

PT_REATTACH 0 0 0

PT_REATTACH2 0 0 Destination
Address

PT_RECOVER PCParm Address 0 0

PT_REGHSET Destination
Address

0 0

PT_REGSET Destination
Address

0 0

PT_THREAD_HOLD Thread ID
Address

0 = Unhold
thread

Not 0 = Hold
thread

0

PT_THREAD_INFO Buffer Address Length Destination
Address

PT_THREAD_INFO_EXTENDED Buffer Address Length Destination
Address

PT_THREAD_MODIFY Thread ID
Address

0 Source
Address

PT_THREAD_READ_FOCUS Thread ID
Address

0 0

PT_THREAD_SIGNAL Thread ID
Address

Signal Number 0

PT_THREAD_WRITE_FOCUS Thread ID
Address

0 0

PT_TRACE_ME 0 0 0

ptrace (BPX1PTR)

538 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 5. Parameter attributes for request options (continued)

Request Options Address Data Buffer

PT_UNCAPTURE 0 = Free all
buffers

Not 0 = Capture
Buffer

0 0

PT_WRITE_BLOCK Debugged
Address

Length Buffer
Address

PT_WRITE_D Debugged
Address

Integer Value 0

PT_WRITE_FPR Source Address Register Number 0

PT_WRITE_GPR Register Number Register Value 0

PT_WRITE_GPRH Register Number Register Value 0

PT_WRITE_I Debugged
Address

Integer Value 0

Buffer Address The name of a fullword that contains an address in
the caller’s process where either:

v The results of the request are to be placed

v The source information for the request is to be
obtained

The size of the buffer is specified with the Length
parameter.

Capture Address The name of a fullword that contains an address in
the target process that is to be captured into a
buffer in the caller’s address space. This address
must be on a page boundary (4K).

Capture Buffer The name of a fullword that contains an address in
the caller’s process that represents a captured
storage buffer. This address must have been
previously returned to the caller on a
PT_CAPTURE request.

Capture Length The name of a fullword that contains the length of
the storage that is to be captured. There is no need
to round this length up to the size of a page.

Continue Address The name of a fullword that contains an address in
the target process from which the debugged
program is to continue running. The address must
include the addressing mode (AMODE) as the
high-order bit. A high-order bit of 0 indicates a 24-bit
AMODE; a high-order bit of 1 indicates a 31-bit
AMODE.

Note: The PT_CONTINUE request can indicate a
value of 1 instead of an address that
indicates where continuation should begin.
This value, which is defined in the

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 539

BPXYPTRC macro, indicates that the
program should continue from where it
stopped.

Debugged Address The name of a fullword that contains an address in
the target process.

Destination Address The name of a fullword that contains an address in
the caller’s process at which the results of the
request are to be placed. The size of the
destination area is defined by the request type.

Extended Event ID The name of a fullword that contains an extended
event ID.

Integer Value The name of a fullword that contains the value that
is to be placed at the Debugged Address location.

GIParm Address The name of a fullword that contains the address of
the generic interface parameters. For more details,
see the section “Handling Extended Events in a
Debugged Process”.

Length The name of a fullword that contains the length that
is associated with the Buffer Address. The
maximum length value is defined in the BPXYPTRC
macro, except for the PT_THREAD_INFO request.

Maximum Events The name of a fullword that contains the maximum
number of extended events that will be added using
the PT_EVENTS request. This is required only for
the first issuance of PT_EVENTS, but it can be
specified on all issuances.

PCParm Address The name of a fullword that contains the address of
the program check parameters. For more details,
see the section “Handling a Program Check or
Abend in a Debugged Process”.

Register Number The name of a fullword that contains a defined
register number. The register numbers are defined
in the BPXYPTRC macro.

Register Value The name of a fullword that contains the register
value that is to be placed in the Register Number in
the target process.

Signal Number The name of a fullword that contains the signal
number that is to be sent to the target debugged
process or thread. The signal numbers are defined
in the BPXYSIGH macro.

Source Address The name of a fullword that contains an address in
the caller’s process where the source information
for the request is to be obtained. The size of the
source area is defined by the request type.

Target Offset The name of a fullword that contains an offset into
the user area in the target process. The user area
contains control information. See “User Area
Description” for a description of the user area.

ptrace (BPX1PTR)

540 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Thread ID Address The name of a fullword that contains an address in
the caller’s process where either:
v The target thread ID is to be placed
v The target thread ID is to be obtained

The length of the thread ID is 8 bytes.

Return values and return codes for request options

This table shows the ptrace service requests. For each request, the value that is
returned in the Return_value parameter is shown. Possible values returned in the
Return_code parameter are also shown.

Table 6. Return values and return codes for request options

Request Return_value Return_code

(General) 0 EFAULT, EIO,
EMVSERR

PT_ATTACH 0 EAGAIN, ECHILD,
EIO, EMVSSAF2ERR,
EPERM, ESRCH

PT_CAPTURE Capture buffer
address

EINVAL, EIO,
ENOMEM

PT_CONTINUE Value of Data
parameter

EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_DETACH 0 EAGAIN, ECHILD,
EINTR, EIO, ESRCH

PT_EVENTS 0 ESRCH

PT_EXPLAIN 0 EFAULT, EIO, ESRCH

PT_EXTENDED_EVENT 0 EFAULT

PT_KILL 0 EAGAIN, ECHILD,
EINTR, ESRCH

PT_LDINFO 0 EAGAIN, ECHILD,
EFAULT, EINTR,
EINVAL, EPERM,
ESRCH

PT_MULTI 0 ESRCH

PT_BLOCKREQ 0 EAGAIN, ECHILD,
EFAULT, EINTR, EIO,
EINVAL, EPERM,
ESRCH

PT_READ_BLOCK Value of Data
parameter

EAGAIN, ECHILD,
EFAULT, EINTR, EIO,
EINVAL, EPERM,
ESRCH

PT_READ_D Fullword value EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_READ_FPR 0 EAGAIN, ECHILD,
EFAULT, EINTR, EIO,
EPERM, ESRCH

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 541

Table 6. Return values and return codes for request options (continued)

Request Return_value Return_code

PT_READ_GPR Register contents EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_READ_GPRH Register contents EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_READ_I Fullword value EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_READ_U Fullword value EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_REATTACH 0 EAGAIN, ECHILD,
EIO, EMVSSAF2ERR,
EPERM, ESRCH

PT_REATTACH2 0 EAGAIN, ECHILD,
EIO, EMVSSAF2ERR,
EPERM, ESRCH

PT_RECOVER 0 EFAULT

PT_REGHSET 0 EAGAIN, ECHILD,
EFAULT, EINTR,
EPERM, ESRCH

PT_REGSET 0 EAGAIN, ECHILD,
EFAULT, EINTR,
EPERM, ESRCH

PT_THREAD_HOLD 0 EFAULT, EIO, ESRCH

PT_THREAD_INFO 0 EFAULT, EINVAL,
ESRCH

PT_THREAD_INFO_EXTENDED 0 EFAULT, EINVAL,
ESRCH

PT_THREAD_MODIFY 0 EFAULT, EINVAL,
EIO, ESRCH

PT_THREAD_READ_FOCUS 0 EFAULT, ESRCH

PT_THREAD_SIGNAL 0 EFAULT, EIO, ESRCH

PT_THREAD_WRITE_FOCUS 0 EFAULT, EIO, ESRCH

PT_TRACE_ME 0 EAGAIN, EIO

PT_UNCAPTURE 0 EINVAL

PT_WRITE_BLOCK Value of Data
parameter

EAGAIN, ECHILD,
EFAULT, EINTR, EIO,
EINVAL, EPERM,
ESRCH

PT_WRITE_D 0 EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_WRITE_FPR 0 EAGAIN, ECHILD,
EFAULT, EINTR, EIO,
EPERM, ESRCH

ptrace (BPX1PTR)

542 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 6. Return values and return codes for request options (continued)

Request Return_value Return_code

PT_WRITE_GPR Value of Data
parameter

EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_WRITE_GPRH Value of Data
parameter

EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

PT_WRITE_I 0 EAGAIN, ECHILD,
EINTR, EIO, EPERM,
ESRCH

Debugging tasks

This section discusses the following debugging tasks:
v Starting a process in debugging mode
v Attaching to a process for debugging
v Receiving notification of events in a debugged process
v Working with threads in a debugged process
v Determining modules loaded in a debugged process
v Handling a program check or abend in a debugged process
v Handling extended events in a debugged process
v Manipulating data in a debugged process
v Setting a breakpoint in a debugged process
v Capturing storage in a debugged process
v Resuming or detaching from a debugged process
v Ending a debugged process

Starting a process in debugging mode

Normally, a debugger program starts a process to be debugged by calling the fork
service to create a child copy of the debugger program. The child then calls the
ptrace service with a PT_TRACE_ME request. This puts the child process into
debugging mode. Next, the child calls the exec service to run the program to be
debugged.

Note: The PT_TRACE_ME request, along with PT_EXTENDED_EVENT and
PT_RECOVER, is issued from the process to be debugged. All other ptrace
service requests are issued from the debugger. It is also assumed that the
parent of the process issuing a PT_TRACE_ME request is the debugger.

Attaching to a process for debugging

The ptrace service also provides a means for a debugger program to debug an
already running, possibly unrelated, process. To do this, the debugger calls ptrace
with a PT_ATTACH service request. There are certain restrictions on which
processes can be attached (see “Characteristics and restrictions” on page 555). The
caller must have the appropriate privileges to attach to a running process.

The PT_REATTACH request performs a similar function, but is intended to be used
in a situation where another debugger process is already attached to the target
process. The PT_REATTACH request causes the relationship between the other
debugger and the target process to be severed. The caller of PT_REATTACH
becomes the new debugger associated with the target process. The

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 543

PT_REATTACH2 request is identical to PT_REATTACH except in one respect.
PT_REATTACH2 provides the address of an area in which return information
concerning the reattach can be placed. If the PT_REATTACH2 request is issued
against the child process that was created with an attach_exec or attach_execmvs
service (a local fork child), the return information is nonzero, indicating to the
debugger that alternate reattach processing is required. Otherwise, the return
information is zero, telling the debugger that reattach processing should be the
same as for PT_REATTACH.

This is required because of the restricted nature of the local fork child environment.
Normally, after a reattach to a fork child, the debugger can continue issuing ptrace
requests, because the child is a copy of the parent and is already stopped for a
ptrace event. However, a local fork child is not a copy of the parent, and in fact
most ptrace requests fail if issued to a local fork child, because the target program
that is specified on the attach_exec or attach_execmvs service has not yet been
loaded for execution. The alternate processing required by the debugger for this
environment is to issue a PT_CONTINUE request, followed by a wait(). This causes
the local fork child to continue until the next ptrace event, which will be an exec
event for the attach_exec service. At this point, the target program is loaded, and
the debugger can continue issuing ptrace requests in this valid environment.

Note: ptrace has no way to know whether the target of the PT_REATTACH2 is the
local fork parent or the local fork child. It is the debugger’s responsibility to
issue the request for the local fork child only. The result of issuing this
request for the local fork parent is that control of the parent is lost; it will
continue running until the next ptrace event.

Here is an example of using the PT_REATTACH or PT_REATTACH2 request:
Debugger 1 is currently debugging program A in multiprocess mode (see the
section “Multiprocess Debugging Mode”). Program A uses the fork service to create
a child process, which becomes program B. Debugger 1 is informed of the fork from
both the parent (program A) and child (program B) processes. Debugger 1 uses the
fork service to create a new debugger, which becomes debugger 2. Debugger 2
then uses the PT_REATTACH request to associate itself with program B. At this
point, debugger 1 is debugging program A, and debugger 2 is debugging program
B.

The PT_ATTACH, PT_REATTACH, and PT_REATTACH2 requests cause a
SIGTRAP signal to be sent to the target process. This causes a ptrace service
signal event to occur if no other event occurs naturally. The following section,
“Receiving Notification of Events in a Debugged Process”, describes the various
ptrace service events.

Receiving notification of events in a debugged process

When a process has been placed into debugging mode by the PT_TRACE_ME,
PT_ATTACH, PT_REATTACH, or PT_REATTACH2 request, certain events in the
debugged process cause the process to be placed into a stopped state and the
debugger to be notified. The debugger must wait for these events by using the wait
service. The following are the events of interest:

v A signal is received. The Status_field parameter on the wait service issued by the
debugger contains the signal number.

v An exec service is issued. The Status_field parameter on the wait service issued
by the debugger either contains the SIGTRAP signal number, if multiprocess
debugging is not in effect; or indicates that the process stopped for an exec

ptrace (BPX1PTR)

544 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

(WastStopFlagExec), if multiprocess debugging is in effect. See the section
“Multiprocess Debugging Mode”. See “BPXYWAST — Map the Wait Status
Word” on page 1053 for a description of the Wast values.

v A fork service is issued and multiprocess debugging mode is in effect. The
Status_field parameter on the wait service issued by the debugger indicates that
the process stopped for a fork (WastStopFlagFork).

v An attach_exec or attach_execmvs service call is issued and multiprocess
debugging mode is in effect. The Status_field parameter on the wait service
issued by the debugger indicates that the process stopped for a local fork
(WastStopFlagLocalFork).

v A spawn service call is issued and multiprocess debugging mode is in effect. The
Status_field parameter on the wait service issued by the debugger indicates that
the process stopped for a fork (WastStopFlagFork) for the spawn parent, and for
a local fork (WastStopFlagLocalFork) for the spawn child.

v An SVC 144 instruction is run. SVC 144 is used as a breakpoint by debugger
programs. The debugger uses the ptrace service to store the SVC 144
instructions into the program at the appropriate breakpoints. The Status_field
parameter on the wait service issued by the debugger contains the SIGTRAP
signal number.

v A program check or abnormal end is encountered. The debugger is notified only
if the program check or abnormal end causes the ptrace service to be called with
a PT_RECOVER request. This is normally true for programs that detect the error,
and that can provide the proper interface to the PT_RECOVER request. An
ESPIE routine is an example of this. The Status_field parameter on the wait
service issued by the debugger contains the appropriate signal number. For more
information, see the section “Handling a Program Check or Abend in a Debugged
Process”.

v An extended event occurs and a generic debugger interface module issues the
ptrace PT_EXTENDED_EVENT request. Extended events are enabled by using
the PT_EVENTS service request. Only those events thus enabled cause a ptrace
extended event to occur. The section “Handling Extended Events in a Debugged
Process” provides more information about the generic debugger interface. The
debugger must use the PT_EXPLAIN request to obtain additional information
concerning the extended event. The Status_field parameter on the wait service
issued by the debugger indicates that the process stopped for an extended event
(WastStopFlagExtended).

v A loadhfs service is issued. The Status_field parameter on the wait service
issued by the debugger indicates that the process stopped because of a file
system module load (WastStopFlagLoad).

v A deletehfs service is issued. The Status_field parameter on the wait service
issued by the debugger indicates that the process stopped because of a file
system module delete (WastStopFlagDelete).

The following summarizes the events and the corresponding status reported to the
debugger from the wait call:

ptrace Event Debugger wait Service Status_field Parameter

Signal received Signal number

exec service issued SIGTRAP signal number or WastStopFlagExec

fork service issued WastStopFlagFork

attach_exec or
attach_execmvs
service issued

WastStopFlagLocalFork

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 545

ptrace Event Debugger wait Service Status_field Parameter

spawn service issued WastStopFlagFork (parent), WastStopFlagLocalFork (child)

SVC 144 instruction
performed

SIGTRAP signal number

Program check or
abend encountered

SIGILL , SIGSEGV, SIGFPE, or SIGABND signal number

Extended event
encountered

WastStopFlagExtended

When a process has multiple threads, any thread that encounters one of the ptrace
service events causes the process to enter a stopped state. This is accomplished
by synchronously suspending all other threads in the process. The thread on which
the event occurred is known as the focus thread. Because delays could occur
between the time the focus thread encounters the ptrace event and the time all the
nonfocus threads are suspended, one or more of these other threads could
encounter the same or other ptrace events. For instance, several threads could
reach a breakpoint in a routine that is common to them all. This creates a situation
in which the focus thread is “in control” of ptrace processing, but other ptrace
service events are pending. See the section “Working with Threads in a Debugged
Process” for more detailed information on handling threads in a debugged process.

While the debugged process is stopped for one of the foregoing events, the
debugger can issue ptrace service requests to examine or modify registers, storage,
and so on. Most ptrace service requests are issued while the debugged process is
stopped for the ptrace service event. Examples are: PT_LDINFO and PT_READ_U.
An event ends when a PT_CONTINUE, PT_DETACH, or PT_KILL request is
issued. One exception to this is a PT_CONTINUE request with a signal that stops
the debugged process (for instance, SIGSTOP). In this case the original event does
not end until a PT_CONTINUE is issued with either no signal or a SIGCONT. This
is because of the ambiguous nature of a “continue and stop” request. The
debugged process does not actually continue running until it is taken out of the
stopped state, either explicitly by a PT_CONTINUE with SIGCONT request, or
implicitly by a PT_CONTINUE with no signal.

Working with threads in a debugged process

Several ptrace service requests can assist debuggers in handling multiple threads.
The PT_THREAD_INFO service request returns a list of threads and kernel
information about each thread, such as its state (active, dead, and so on) and
kernel attributes. The PT_THREAD_READ_FOCUS service request returns the
current focus thread ID. These ptrace service requests allow the debugger to gather
various thread-related information whenever the debugger is awoken for a ptrace
service event.

Certain debugger objectives require exact control over which thread or threads are
running at any given time. For example, if the debugger wants to single-step the
focus thread, the focus thread must be the only thread in the target process that is
running. If this is not so, unpredictable results could occur. The
PT_THREAD_HOLD service request allows the debugger to selectively place any
threads that are not in a dead state into a held state. When a thread is held, it does
not run until it is released. The debugger could therefore use this request to hold all
but the focus thread, and then single-step the focus thread by inserting breakpoints
after each program statement. The PT_THREAD_HOLD service request can also
be used to release threads.

ptrace (BPX1PTR)

546 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The debugger might also want to work with threads other than the current focus
thread. An example might be if the current focus thread manipulates data in shared
storage that is then acted upon by a different thread. In order to work with this other
thread, the debugger must release the thread, and then shift focus to it by using the
PT_THREAD_WRITE_FOCUS service request. This request causes the specified
thread to become the new focus thread if it is in an active, non-asynchronous state.
Other ptrace service requests that read or write storage, registers, and other data
always act against the current focus thread, so this is the means by which the
debugger specifies which thread is the target of these other requests.

Signals may be sent to the debugged process using the PT_CONTINUE and
PT_DETACH requests, as explained in the section “Resuming or Detaching from a
Debugged Process”. These signals are always directed at the current focus thread.
The PT_THREAD_SIGNAL service request provides a means to send signals to
individual threads that are not in a dead state. The signal that is specified on this
request is generated for the target thread, but it is not delivered until the process is
continued. A debugger can use this request to requeue signals that were pending
on a thread when a ptrace event occurred. Normally, all signals (except those
specified on PT_CONTINUE or PT_DETACH) that are pending on the focus thread
are discarded when the process is continued. Using the signal information that is
returned on the PT_THREAD_INFO request, the debugger could regenerate all
pending signals by using the PT_THREAD_SIGNAL request. This is useful when
changing thread focus; otherwise, any signals that were pending on nonfocus
threads when the original ptrace event occurred could be lost.

Note: To ensure that pending signal information for the focus thread is not lost
(because the signals were discarded), the PT_THREAD_INFO request
should be the first ptrace request that is issued when the debugger gets
notified of a ptrace service event.

Finally, the PT_THREAD_MODIFY service request allows the debugger to modify
individual thread kernel information for a thread that is in a dead state. The input to
this request is a single thread info array entry, as returned by the
PT_THREAD_INFO request, modified as necessary with the required changes. The
following information is allowed to be changed:

v Thread exit status for threads in a dead state (PtPtExitStatus)

Determining modules loaded in a debugged process

If the debugger needs to determine the names and entry points of modules that are
loaded into the debugged process, it uses the ptrace PT_LDINFO service request.
A structure is returned to the debugger that contains information about loaded
modules, including the name of the directory that contains the load module for each
module loaded from the file system. (The directory name is not returned for
modules loaded from MVS data sets.) One use for this information is to read the
load module library file to obtain symbolic debugging information. The returned
structure is defined in the BPXYPTRC macro. For more information on PT_LDINFO,
see “MVS-related information” on page 557.

Handling a program check or abend in a debugged process

When program checks or abnormal ends occur in a debugged process and are
captured by the program’s recovery routine (such as an ESPIE or ESTAE exit), the
PT_RECOVER request can be issued. This request allows the ptrace service to
stop the process and notify the debugger that a program check or abnormal end
has just occurred. The caller does not need to determine if the process is being

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 547

debugged; it can issue the PT_RECOVER request unconditionally. If the process is
not being debugged, the returned information indicates to the caller that it can
continue as it normally would. The returned information contains PtPICFlags, which
are all zeros on return if the process is not being debugged.

However, if the process is being debugged, the ptrace service stops the process by
sending an appropriate signal to the focus thread. The debugger (not the
application) sets this signal with the Status_field parameter on the wait call. These
are the possible signals that are used for program checks:

SIGILL Unpermitted operation, defined as one of the following:
v Operation exception
v Privileged operation exception
v Execute exception
v Specification exception

SIGSEGV Addressing error, defined as one of the following:
v Protection exception
v Addressing exception

SIGFPE Arithmetic error, defined as one of the following:
v Data exception
v Fixed-point overflow exception
v Fixed-point divide exception
v Decimal overflow exception
v Decimal divide exception
v Exponent overflow exception
v Exponent underflow exception
v Significance exception
v Floating-point divide exception

For any program check that is not specified in the foregoing list, SIGFPE is used.
For abnormal ends (abends) SIGABND is used.

The interface to the PT_RECOVER request is the program check parameters
structure, which is pointed to from the Address parameter. This structure contains
pointers to environment information from the time of the program check or abnormal
end. It also contains flags and information that is returned from the ptrace service.
The program check parameters structure is defined in the BPXYPTRC macro. The
ptrace service distinguishes between program checks and other abnormal ends.
The presence of an abend code causes the interrupt to be interpreted as a
SIGABND signal. The presence of an interrupt code without an abend code causes
it to be interpreted as SIGILL , SIGSEGV, or SIGFPE, as appropriate. The following
shows the information that must be present in the program check parameters
structure on input to PT_RECOVER:

1. In all cases the following must be set:
v PtPICRegisters = address of regs at time of error (0 through 15)
v PtPICPSW = address of PSW at time of error
v PtPICFlags = 0 (except PtPICILCExists if PtPICILC is set)

2. For program checks, the following must be set:
v PtPICIntCode = program interrupt code
v PtPICAbendCode = 0

3. For program checks, the following are optional:
v PtPICILC = instruction length code
v PtPICILCExists = flag set to 1 to indicate PtPICILC is valid

4. For non-program check abnormal ends, the following must be set:

ptrace (BPX1PTR)

548 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v PtPICAbendCode = abend code
v PtPICAbendReason = reason code
v PtPICILCExists = flag set to 0 to indicate PtPICILC is not used

The environment information (registers and PSW) can be modified by the debugger
by using appropriate ptrace service requests while the debugged process is
stopped for the ptrace service event. When the program is continued with the
PT_CONTINUE or PT_DETACH request, you need to ensure that any modifications
are reflected in the operating environment when the program resumes control.

When the registers or the PSW are changed by the debugger, the appropriate flag
in the program check parameters, as defined in the BPXYPTRC macro, is set to
indicate this. Conversely, if the registers or PSW are not changed, the flag is not
set. Thus the caller can test these flags to determine if changes have been made to
the registers or the PSW, and therefore need to be reflected in the program
environment before the program resumes running. See “MVS-related information”
on page 557.

Note: The PT_RECOVER request, along with PT_TRACE_ME and
PT_EXTENDED_EVENT, is issued from the process that is to be debugged.
All other ptrace service requests are issued from the debugger.

Handling extended events in a debugged process

Language Environment supports a generic debugger interface for the high-level
languages it supports, such as C. This interface requires that a module named
CEEEVDBG be available for Language Environment to load and call when certain
events occur in a high-level language program that has had this interface enabled
via a TEST run time option. The input to CEEEVDBG is a parameter list that
contains an event code and information associated with that code.

To allow events that are invoked in this manner to be used by a debugger using
ptrace, z/OS UNIX ships a sample CEEEVDBG module. This module “glues” the
Language Environment Interactive Debug Event Handler interface to the debugger,
using the ptrace PT_EXTENDED_EVENT request to create an extended event.
However, any product may choose to use the PT_EXTENDED_EVENT request to
create extended events in this manner; CEEEVDBG is just an example of the
proper usage. The relationship between the PT_EXTENDED_EVENT, PT_EVENTS
and PT_EXPLAIN requests can best be illustrated with a usage scenario:

1. The Language Environment Interactive Debug Event Handler interface is
enabled for the program to be debugged. Refer to z/OS Language Environment
Debugging Guide for the steps that are required to accomplish this, as this is
outside the scope of ptrace.

2. The sample CEEEVDBG module is installed so that Language Environment can
load it. More information is provided in “MVS-related information” on page 557.

3. The debugger issues one or more PT_EVENTS requests to establish the set of
extended events for which it has an interest. This should normally be done just
after the target program has been placed into debugging mode, during
debugger initialization regarding the debugged program. There are, however, no
restrictions on modifying the list of extended events any time the debugged
program is stopped for an event.

4. The program is allowed to run. When Language Environment encounters certain
events (for example, a mutex initialization, lock, or unlock), it invokes
CEEEVDBG with the appropriate event code.

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 549

5. CEEEVDBG collects certain information about the event and issues the
PT_EXTENDED_EVENT request to invoke ptrace. The information that is
collected consists of the event code and registers 1, 12 and 13 at input to
CEEEVDBG. Register 1 contains the address of the parameter list that contains
the event code and associated information. Registers 12 and 13 contain the
addresses of Language Environment control blocks that the debugger can use
to gather additional information. The extended event information structure is
defined in the BPXYPTRC macro.

6. The PT_EXTENDED_EVENT request filters the input event code with the set of
events established with the PT_EVENTS requests. If the input event code is
found in the list, an Extended Event is initiated. This causes the debugged
program to stop and the debugger to be notified. The corresponding wait()
status reported to the debugger is WastStopFlagExtended.

7. The debugger reacts to the unique wait() status by issuing the PT_EXPLAIN
request. This request returns the information collected by the
PT_EXTENDED_EVENT request to the debugger.

8. Because the information is in the form of addresses, the debugger must issue
PT_READ_D or PT_READ_BLOCK requests to obtain the associated extended
event information.

Some ptrace requests are restricted while a process is stopped for an extended
event (see “Characteristics and restrictions” on page 555).

Manipulating data in a debugged process

You can use the ptrace service to look at the following types of data in the
debugged process; some may be altered:

v General or machine control registers. This includes general-purpose registers
(GPRs), floating-point registers (FPRs), control registers (CRs), and the program
status word (PSW). Control registers can only be looked at, never modified. Note
that control registers contain system information, and their content is not
necessarily related to the debugged process. The value of some of the control
registers may change from one call of PTRACE to the next, even when the
debugged process is stopped across both calls. The entire PSW can be looked
at, but only the rightmost 4 bytes (the instruction counter and addressing mode)
can be changed. The PT_READ_GPR and PT_WRITE_GPR requests are used
for all registers except the FPRs, and the interface supports 4 bytes only. As a
result, the PSW must be accessed with two ptrace service requests, each
specifying the register number for the appropriate half of the PSW.

Note: Only the second fullword of the PSW may be written into.

The PT_READ_FPR and PT_WRITE_FPR requests are used for the FPRs, and
this interface supports 8 bytes. In addition to reading and writing the floating point
registers, you can also read and write the floating point control register. All the
register numbers are defined in the BPXYPTRC macro.

Two special cases exist. One is the PT_REGSET request, which returns all the
general purpose registers. The second is the PT_CONTINUE request, which can
indicate that the program should continue at a specified address—in other words,
that the instruction counter should be modified.

v User program storage. This takes two forms. The first is for fullword requests,
which look at or modify a fullword of storage only. The PT_READ_I,
PT_READ_D, PT_READ_U, PT_WRITE_I, and PT_WRITE_D requests are used

ptrace (BPX1PTR)

550 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

to accomplish this. For MVS considerations, see “MVS-related information” on
page 557. The user area request (PT_READ_U) operates on the user area (see
“User Area Description”).

The second form is for blocks of storage, up to a defined maximum length. For
this, the PT_READ_BLOCK and PT_WRITE_BLOCK requests are used. The
maximum defined length is defined in the BPXYPTRC macro.

v Blocking requests. Most of the requests described here can be blocked into a
single ptrace call by using the PT_BLOCKREQ request. This saves system
resources when a large amount of information must be read or written. The
PT_BLOCKREQ request can be used, for example, to read or write all the GPRs,
all the FPRs, and several areas of user program storage on a single request.
The PtBRInfo structure, defined in macro BPXYPTRC, defines the mechanism for
blocking several requests into a single request.

Setting a breakpoint in a debugged process

You can use the PT_WRITE_I (or PT_WRITE_D or PT_WRITE_BLOCK) request to
store SVC 144 instructions into a debugged program. The SVC 144 instruction
causes an SVC 144 event to be recognized by the debugger. See “MVS-related
information” on page 557 for MVS considerations regarding the use of SVC 144.

Note: It is the responsibility of the caller to save and restore the actual program
instructions that are overlaid by inserted breakpoint SVCs. You can use
ptrace services to accomplish this, but no implicit understanding or
management of program instructions is done by the ptrace service.

Capturing storage in a debugged process

When you use the standard ptrace requests previously discussed, you pay a
performance penalty when you perform certain operations. For example, stepping
over a breakpoint instruction while leaving the breakpoint in the program requires
several ptrace requests, as in the following scenario:

v PT_WRITE_I to restore the original instruction over the SVC 144

v PT_READ_I to get the fullword following the restored instruction

v PT_WRITE_I to insert a temporary SVC 144 after the restored instruction

v PT_WRITE_GPR to back up the PSW to point to the restored instruction

v PT_CONTINUE to execute the restored instruction and hit the temporary
breakpoint

v PT_WRITE_I to restore the temporarily overlaid instruction

v PT_WRITE_I to reinsert the SVC 144 at its original location

v PT_WRITE_GPR to back up the PSW to point to the restored temporary
instruction

v PT_CONTINUE to resume running until the next event

Each of these ptrace requests consumes system resources and requires some
amount of time to complete. The cumulative effect may be performance that is
slower than expected.

The PT_CAPTURE request allows you to capture one or more virtual pages of
storage in the debugged process into a buffer in your address space. After
capturing storage in this manner, you have shared write access to the storage, and
can access it directly by accessing the returned buffer. This allows you to bypass
those ptrace requests that would normally be used to read or write storage in the

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 551

debugged process. One use for the PT_CAPTURE request could be to capture the
entire debugged program load module. Then, using the same example of stepping
over a breakpoint instruction, you could eliminate all but the PT_WRITE_GPR and
PT_CONTINUE requests by directly placing SVC 144 instructions and restoring
program instructions in the captured buffer. Any storage that is accessible by the
debugged program can be captured in this manner.

Storage that is captured using the PT_CAPTURE request is always on a 4K page
boundary, and the minimum amount of storage captured is one 4K page. You are
responsible for determining the correct offset of the desired storage in the captured
buffer. For example, if the address you want to capture is 3A094BE8, the
PT_CAPTURE request captures the entire page starting at 3A094000. If the service
returns a capture buffer address of 35081000, the start of the desired storage in
this buffer is 35081BE8.

The PT_UNCAPTURE request is used to free a specific buffer or all captured
buffers. Freeing the buffer by using this request severs the capture relationship
between the captured storage and the local buffer. To free a specific buffer, pass
the buffer address on the ptrace request. To free all buffers, pass a 0 buffer
address.

Resuming or detaching from a debugged process

To cause a stopped, debugged process to resume running, you use the ptrace
PT_CONTINUE service request. The request specifies whether running is to
continue from where it was stopped, or at another instruction counter address. It
also specifies whether the process is to continue as though no signal, or a specified
signal, had just been received.

These two functions of the PT_CONTINUE request can be used to accomplish
several debugging objectives. For instance, if the debugged program was stopped
by a particular signal (for instance, SIGINT), the debugger can indicate that the
program can continue normally, and can continue as though a SIGINT had just
arrived. In effect, this allows the program to continue as though it had not been
interrupted by the ptrace service. The debugger could also choose to ignore the
signal that stopped the process (again assume a SIGINT), by specifying
PT_CONTINUE without a signal. This allows the program to resume running, but
the original SIGINT is discarded before it is delivered to the debugged program.

When a debugger has finished debugging a program, it uses the PT_DETACH
request to take the process out of debugging mode and allow it to continue. A
signal can be supplied on this request, as it is with the PT_CONTINUE request.

When a process is continued using these ptrace service requests, all signals that
are pending on the focus thread, as well as all signals that are pending on the
process (other than the ones supplied on the PT_CONTINUE or PT_DETACH
service request, or SIGKILL), are discarded.

When a debugged process is stopped because of a signal, or is waiting for a signal
to arrive when the PT_CONTINUE or PT_DETACH request is issued, there are
special considerations:

v If no signal is supplied on the ptrace service request, the process continues
running immediately. If it was in a stopped state, it behaves as if a SIGCONT
had just arrived. If it was waiting for a signal, it behaves as if a signal had just
arrived.

ptrace (BPX1PTR)

552 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v If a signal is supplied on the ptrace service request, that signal takes whatever
action it normally would with respect to the state of the debugged process.

For example, if the process was in a stopped state, and a SIGCONT is supplied on
the request, the process is taken out of the stopped state. However, if it was also
waiting for the arrival of a signal, it still waits after the ptrace service request.
Likewise, a signal whose action is to wake up processes that are waiting for a
signal does so if the debugged process was waiting for a signal. If the process was
in a stopped state, however, it remains in a stopped state after the ptrace service
request has been processed. For more information on signal processing, see z/OS
UNIX System Services Messages and Codes.

Ending a debugged process

To end a stopped, debugged process, you can use the ptrace PT_KILL service
request. This causes the process to end as though it had received a SIGKILL
signal. You can also use the PT_CONTINUE request to continue with a signal
whose action is to end the process, although this has the effect of ending the
process with the specified signal instead of with a SIGKILL .

Multiprocess debugging mode

Multiprocess debugging mode allows a debugger to control more than one process.
The debugger uses the ptrace PT_MULTI service request to turn multiprocess
mode on or off for a target process.

When multiprocess mode is in effect, the behavior of the exec, fork, attach_exec,
attach_execmvs, and spawn services is modified. For the exec service, the only
change is that the Status_field parameter on the wait service issued by the
debugger indicates that the process stopped for the exec service, instead of that it
was stopped by the SIGTRAP signal.

For the fork service, the Status_field parameter on the debugger wait service
indicates that the process stopped for the fork call. In addition, the fork service
causes both the parent and the new child process to stop, and the debugger gets
status for both processes with the wait service. The debugger should issue the wait
service until it receives status for both the parent and child processes. This is
different from multiprocess mode’s not being in effect; in this case neither the parent
nor child process stops because of the fork service, and the debugger is not made
aware of the fork event at all.

For the attach_exec and attach_execmvs services, the Status_field parameter on
the debugger wait service indicates that the process stopped for a local fork. In
addition, these services cause both the parent and the new child process to stop,
and the debugger gets status for both processes with the wait service. The
debugger should issue the wait service until it receives status for both the parent
and child processes. This is different from multiprocess mode’s not being in effect;
in this case, neither the parent nor child process stops because of these services,
and the debugger is not made aware of the local fork event at all. After the
notification of the local fork event, the attach_exec service loads the executable
program into storage and causes the Status_field parameter on the wait service
issued by the debugger to indicate that the process stopped for the exec service,
instead of that it was stopped by the SIGTRAP signal.

For the spawn service, the effects are a combination of those described for fork and
attach_exec. The parent presents status like that for a fork call (the debugger wait

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 553

Status_field indicates that the process stopped for a fork). The child presents status
like that for attach_exec (the debugger wait Status_field indicates that the process
stopped for a local fork).

User area description

The PT_READ_U request is used with the user area for a target process. The user
area is a collection of control information. It is not necessarily a contiguous storage
area, and it is not readily accessible by an end user except via the PT_READ_U
request.

To access the user area, an offset, as opposed to an absolute address, must be
supplied on the PT_READ_U request. Each unit of control information is a fullword,
and the offsets represent each multiple of 4 bytes. The offsets begin with 1 and
progress by 1. The following shows the offsets and the associated control
information that are defined in the BPXYPTRC macro (see “BPXYPTRC — Map
Parameters for ptrace” on page 1004):

Constant Control Information

PtUArea#MinSig–PtUArea#MaxSig Signal catcher information for signal numbers 1
through 64 (the rest of the range is reserved). Not all
potential signal numbers are valid; the valid signal
numbers are defined in the BPXYSIGH macro. Signal
catcher information is one of the following (the
constants for signal default and ignore actions are
defined in the BPXYSIGH macro):

v SIG_DFL#: Take default action for this signal

v SIG_IGN#: Ignore this signal

v Address: Address of the signal catcher function

PtUArea#IntCode Program interrupt code, in the following format:

v Bytes 0 and 1: unused

v Bytes 2 and 3: program interrupt code in
hexadecimal

PtUArea#AbendCC Abend completion code, in the following format:

v Byte 0: flags

v Bytes 1–3: system completion code (first 12 bits)
and user completion code (second 12 bits)

PtUArea#AbendRC Abend reason code

PtUArea#SigCode Signal code, in the following format:

v Bytes 0 and 1: unused

v Bytes 2 and 3: signal code in hex

PtUArea#ILC Instruction length code, in the following format:

v Bytes 0–2: unused

v Byte 3: instruction length code

The PT_READ_U request can therefore be used to obtain additional information
about signals; or when a debugger is notified that a debugged process stopped with
a SIGILL , SIGSEGV, SIGFPE, or SIGABND signal.

Related services
v “attach_exec (BPX1ATX) — Attach a z/OS UNIX Program” on page 45
v “attach_execmvs (BPX1ATM) — Attach an MVS Program” on page 54

ptrace (BPX1PTR)

554 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v “exec (BPX1EXC) — Run a Program” on page 133
v “fork (BPX1FRK) — Create a New Process” on page 184
v “loadhfs (BPX1LOD) — Load a Program into Storage by HFS Pathname” on

page 326
v “spawn (BPX1SPN) — Spawn a Process” on page 784
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Characteristics and restrictions
The following restrictions apply to the use of the ptrace service:

1. The ptrace service is supported from programs that are running in PSW key 8
mode only. Calls to the ptrace service that are made from debugger programs
(authorized or problem state) with other than key 8 are rejected with an error
code.

2. A process that is being debugged must not be running if any of the following
environmental conditions are true:

v It is running in access register (AR) mode

v It is running in supervisor PSW state

v It is running with a PSW key not equal to 8

v It is running with APF authorization, and the debugger process does not
have read permission to the BPX.DEBUG FACILITY class profile.

v It is running with the security product function called Program Access to
Data Support (PADS) activated.

A process that is running with any of these conditions ends abnormally if it
attempts to use the ptrace service to notify the debugger of a ptrace service
event.

3. A SIGKILL signal that is sent to a process that is being debugged by the
ptrace service cannot be trapped. When a SIGKILL signal ends a process, the
ptrace service is not given a chance to intervene.

Note: SIGKILL is delivered to the target process according to normal signal
delivery rules. If the target process is stopped, but is not waiting for
signals (for example, if it is stopped for a ptrace service event), the
SIGKILL remains pending until the process resumes (using the same
example, when a PT_CONTINUE, PT_DETACH, or PT_KILL ends the
ptrace service event).

4. The PT_ATTACH, PT_REATTACH, and PT_REATTACH2 requests cannot be
issued with a target process that is a system address space (see “MVS-related
information” on page 557). If this attempt is made, the EPERM error is returned
in the Return_code parameter.

5. The PT_ATTACH, PT_REATTACH, and PT_REATTACH2 requests cannot be
issued with a target process that is the INIT process (with a process identifier
equal to 1). If this attempt is made, the EPERM error is returned in the
Return_code parameter.

6. The PT_ATTACH, PT_REATTACH, and PT_REATTACH2 requests cannot be
issued with a target process that is the parent of the calling process. If this
attempt is made, the ESRCH error is returned in the Return_code parameter.

7. The PT_ATTACH, PT_REATTACH, and PT_REATTACH2 requests cannot be
issued with a target process that uses the setuid service to set the uid to 0,
unless the process is also running with superuser equal to daemon authority

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 555

(in other words, is running without an active BPX.DAEMON FACILITY class
profile). If this attempt is made, the EPERM error is returned in the
Return_code parameter.

8. The debugger cannot use multiple threads within a single process to debug
multiple target processes. If multiprocess debugging is desired, either a single
thread debugger process must be associated with all debugged processes, or
the debugger must use multiple processes, where the association with
debugged processes is on a one-to-one basis.

9. The debugger should not have a signal catcher for the SIGCHLD signal. The
ptrace service uses the SIGCHLD signal for internal communication, and the
use of a catcher by the debugger would interfere with this communication. The
most visible result of using a SIGCHLD catcher would be EINTR errors
returned for most ptrace service requests, although other unpredictable results
could also occur.

10. To ensure that pending signal information for the focus thread is not lost
(because the signals were discarded), the PT_THREAD_INFO request should
be the first ptrace request that is issued when the debugger gets notified of a
ptrace service event.

11. The following requests are not supported while a debugged process is stopped
for a local fork child event:
v PT_READ_I
v PT_READ_D
v PT_READ_BLOCK
v PT_READ_GPR
v PT_READ_GPRH
v PT_READ_FPR
v PT_WRITE_I
v PT_WRITE_D
v PT_WRITE_BLOCK
v PT_WRITE_GPR
v PT_WRITE_GPRH
v PT_WRITE_FPR
v PT_REGHSET
v PT_REGSET
v PT_CONTINUE to continue at a specified address

12. The following requests are not supported while a debugged process is stopped
for an extended event:
v PT_READ_GPR
v PT_READ_GPRH
v PT_READ_FPR
v PT_WRITE_GPR
v PT_WRITE_GPRH
v PT_WRITE_FPR
v PT_REGHSET
v PT_REGSET
v PT_CONTINUE to continue at a specified address

13. When data is collected using the PT_THREAD_INFO_EXTENDED request, the
caller must stop all threads in the process before making the call.

Examples
For an example using this callable service, see “BPX1PTR (ptrace) Example” on
page 1202.

ptrace (BPX1PTR)

556 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

MVS-related information
1. As a result of the PT_LDINFO request, the ptrace service invokes the Contents

Supervisor CSVINFO service. CSVINFO returns information on load modules in
the debugged process based on CSV control blocks. This information is then
returned to the caller of the PT_LDINFO request. CSVINFO uses the MVS
macros ATTACH, LINK or XCTL; or the exec or loadhfs service to return
information on all modules brought into storage by any task in the process.

2. PT_READ_GPR requests that read the machine control registers (CRs) can
return CR information that is not consistent with the user program that is being
debugged. This is because the ptrace service reads the actual hardware
registers that probably have changed because of internal PC invocations.

3. No distinction is made between the instruction area (_I) or data area (_D) for
the PT_READ_I, PT_READ_D, PT_WRITE_I, and PT_WRITE_D requests.
These are all treated as user storage requests.

4. A debugger cannot set breakpoints in programs that are loaded into read-only
storage (for example subpool 252 or LPA). Users of debugger programs that
use ptrace must be aware of the storage location of their programs, and, if
necessary, take appropriate steps to ensure that the programs are loaded into
read/write storage (for example, subpool 251).

5. The PT_RECOVER request can be issued by ESPIE and ESTAE routines that
capture program checks in user programs. The main requirement is that any
registers or PSW values that are changed by the debugger after it recognizes
the program check event be restored before the user program resumes running.
Also, if a signal is sent to the debugged program by the user recovery routine, it
must be sent outside of the user recovery routine (ESPIE or ESTAE). This
ensures that signal delivery operates in the correct environment.

6. SVC 144 instructions can be inserted only into storage key 8 user programs.
You cannot use SVC 144 instructions to do breakpoint debugging of system
(key 0) routines.

The SVC 144 routine has the following characteristics:

v SVC 144 is a type-3 SVC.

v The user program registers and PSW that are saved by the SVC 144 routine
are changed if requested by PT_WRITE_GPR requests.

v Any modification that is made to register 14 with a PT_WRITE_GPR request
is lost. This is because the SVC 144 routine uses register 14 to exit.

v If the process under which the SVC 144 routine runs is not in ptrace mode
(started with a PT_TRACE_ME, PT_ATTACH, PT_REATTACH or
PT_REATTACH2 request), the routine abends the caller.

v If the SVC 144 routine is called while the process is in access register mode,
supervisor state, or any key other than 8, the routine abends the caller. In
addition, APF—authorized invocation is not allowed unless the debugger has
read permission to the BPX.DEBUG FACILITY class profile.

7. MVS system address spaces cannot be debugged with the ptrace service. A
system address space is identified by one of the following:

v A command scheduling control block (CSCB) does not exist. The master
address space is an example of an address space with no CSCB.

v The CSCB identifies the address space as a system address space.

8. The sample CEEEVDBG module must be installed as follows:

v The sample CEEEVDBG module is in the form of source code written in
basic assembler language. This module must be assembled with the

ptrace (BPX1PTR)

Chapter 2. Callable services descriptions 557

following Language Environment macros made available to the assembler:
CEECAA, CEEDSA, CEEENTRY, CEEPPA.

v The object deck must be link-edited with the object deck for the BPX1PTR
system call stub.

v The load module must be placed into a load library that is accessible by
Language Environment.

ptrace (BPX1PTR)

558 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

querydub (BPX1QDB) — Obtain the Dub Status of the Current Task

Function
The querydub callable service obtains the dub status information for the current
task. The status information indicates whether the current task has already been
dubbed, is ready to be dubbed, or cannot be dubbed as a process (or thread).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QDB,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the querydub service returns −1 if the request
is unsuccessful. Otherwise it contains the returned status, which can have one
of the following values:

Value Description
QDB_DUBBED_FIRST The task has already been dubbed. This task and

this RB caused the dub.
QDB_DUBBED The task has already been dubbed. Another task or

another RB caused the dub.
QDB_DUB_MAY_FAIL The task has not been dubbed; an attempt to dub

the task may fail. The most likely reason for failure
may be a missing or incomplete user security
profile; or the lack of an OMVS segment.

QDB_DUB_OKAY The task has not been dubbed; an attempt to dub
the task will probably succeed. The service has
determined that an OMVS segment exists for the
task. However, it has not checked for other potential
errors. It is possible that the task may not have the
proper UID and GID set up in the security profile,
causing a subsequent dub failure.

querydub (BPX1QDB)

Chapter 2. Callable services descriptions 559

Value Description
QDB_DUB_AS_PROCESS The task has not been dubbed, but its address

space has. An attempt to dub the task will cause the
task to be dubbed as another process within the
address space.

QDB_DUB_AS_THREAD The task has not been dubbed, but its address
space has. An attempt to dub the task will cause the
task to be dubbed as a thread within the process
(address space).

The above constant values are defined in “BPXYCONS — Constants Used by
Services” on page 956.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the querydub service stores the return code.
The querydub service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the querydub service stores the reason code.
The querydub service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
None.

Characteristics and restrictions
There are no restrictions on the use of the querydub service.

Examples
For an example using this callable service, see “BPX1QDB (querydub) Example” on
page 1208.

querydub (BPX1QDB)

560 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered

Function
The queue_interrupt callable service returns to the kernel the last interrupt that was
delivered to the signal interface routine (SIR). The interrupt can be a signal, a
cancelation request, or a quiesce request.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPB,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which the queue_interrupt service returns 0 if it has
permission to return the specified interrupt for delivery at the next kernel call. If
no interrupt is returned, −1 is returned.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the queue_interrupt service stores the return
code. The queue_interrupt service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The queue_interrupt service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EINVAL The value of Signal in the PPSD at the time this service was invoked

was an unsupported signal. Either there was a storage overlay in the
PPSD, or no signal was ever delivered to this task.

queue_interrupt (BPX1SPB)

Chapter 2. Callable services descriptions 561

Return_code Explanation
EPERM The caller does not have permission to return the interrupt now. All

signals must be blocked, and the task must invoke mvssigsetup
(BPX1MSS) before the queue_interrupt service is invoked. The
following reason codes can accompany the return code:
JRSignalsNotBlocked and JRNotSigsetup.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the queue_interrupt service stores the reason
code. The queue_interrupt service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The data that is mapped by the BPXYPPSD control block is used by the

queue_interrupt service, and therefore should not be modified by the invoker,
because this may result in an EINVAL return code.

2. The queue_interrupt returns the interrupt to the kernel and restores the signal
blocking mask to its preinterrupt state. The signal is acted on at the end of the
next service.

3. When the PPSDJUMPBACK flag is set on in the BPXYPPSD (see “BPXYPPSD
— Map Signal Delivery Data” on page 1001) and the BPX1SPB call is valid,
control is not returned to the instruction after the BPX1SPB invocation. Instead,
it is returned to the point of the signal interruption that was just queued back to
the kernel. General and access registers are restored to the values saved in the
PPSD at the time of the interrupt.

4. When the PPSDREDRIVE flag is set on in the BPXYPPSD, the kernel is
responsible for rescheduling the queued signal to interrupt the current thread at
a later time. The signal interface routine (SIR) is no longer responsible for
issuing another syscall to cause delivery of the signal. In fact, nonblocking
syscalls (syscalls that do not return EINTR) do not cause delivery of pending
deliverable signals when a redrive signal is in progress. Delivery of the signal
only occurs when the redrive time limit expires. This time limit is maintained by
the kernel and cannot be specified by the user.

5. When the PPSDMASKONLY flag is set on, the kernel does not requeue the
signal; it only resets the signal mask to the value in PPSDCURRENTMASK.

Related services
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process” on page 504
v “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484

Characteristics and restrictions
The intended use of the queue_interrupt service is from the signal interface routine
that is specified on “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411.
Although the queue_interrupt service can be used anywhere, all signals must be
blocked, and the task must set up signals by invoking the mvssigsetup service
before calling queue_interrupt. See Appendix E.

queue_interrupt (BPX1SPB)

562 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1SPB (queue_interrupt)
Example” on page 1252.

queue_interrupt (BPX1SPB)

Chapter 2. Callable services descriptions 563

quiesce (BPX1QSE) — Quiesce a File System

Function
The quiesce callable service quiesces a file system, making the files in it
unavailable for use. After the file system is quiesced, the system can back up the
data in it.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31
ASC mode: Primary mode
Serialization: Enabled for interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1QSE,(File_system_name,
Return_value,
Return_code,
Reason_code)

Parameters
File_system_name

Supplied parameter

Type: Character string

Character set: Printable characters

Length: 44 bytes

The name of a 44-character field that contains the file system name. The name
must be left-justified and padded with blanks.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the quiesce service returns one of two values:

v 0, if the request is successful and the file system was mounted at the time of
the request.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

quiesce (BPX1QSE)

564 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the quiesce service stores the return code. The
quiesce service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The quiesce service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The resource was temporarily unavailable. The following reason

code can accompany the return code: JRLockErr.
EBUSY The file system that was specified is being unmounted or has

already been quiesced; or there are no more locks available. The
following reason codes can accompany the return code:
JROutOfLocks, JRQuiesced, and JRUnmountInProgress.

EINVAL The file system that was specified cannot be quiesced. The
following reason code can accompany the return code:
JRInvalidParms.

ENODEV The file system that was specified is not mounted. The following
reason code can accompany the return code: JrFileSysNotThere.

EPERM The user cannot request this service because it lacks the
required permission. The following reason code can accompany
the return code: JRUserNotPrivileged.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the quiesce service stores the reason code.
The quiesce service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. After a quiesce service request, the file system is unavailable for use until a

subsequent unquiesce service request is received.

2. Users accessing files in a quiesced file system are suspended until an
unquiesce request for the file system is processed.

Related services
v “unquiesce (BPX1UQS) — Unquiesce a File System” on page 887

Characteristics and restrictions
To quiesce a file system, the requester must be a superuser or at least have READ
access to the SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV
FACILITY class profile. This is the same authority that is required for mounting or
unmounting a file system.

When a system joins the sysplex and processes mounts during initialization, any file
system mounted in the sysplex that is in a quiesced state will not be mounted on
that system at that time. When the quiesced file system is unquiesced, that file
system will be mounted on any systems in the sysplex that do not have it already
mounted.

quiesce (BPX1QSE)

Chapter 2. Callable services descriptions 565

Examples
For an example using this callable service, see “BPX1QSE (quiesce) Example” on
page 1211.

quiesce (BPX1QSE)

566 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

read (BPX1RED) — Read from a File or Socket

Function
The read callable service reads the number of bytes that you specify from a file or
socket into a buffer that you provide.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RED,(File_descriptor,
Buffer_address,
Buffer_ALET,
Read_count,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of an open file or socket.

Buffer_address
Parameter supplied and returned

Type: Address

Length: Fullword

The name of a fullword that contains the address of the buffer into which data is
to be read.

Buffer_ALET
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the ALET for the Buffer_address that
identifies the address space or data space where the buffer resides.

read (BPX1RED)

Chapter 2. Callable services descriptions 567

You should specify a Buffer_ALET of 0 for the normal case of a buffer in the
user’s address space (current primary address space). If a value other than 0 is
specified for the Buffer_ALET, the value must represent a valid entry in the
dispatchable unit access list (DUAL).

Read_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of bytes that you want to read
from the file. This number must be less than or equal to the length of the buffer
that you provide for data to be read into.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read service returns the number of bytes
that were actually read (this may be 0) if the request is successful, or −1 if it is
not successful.

For more information on the return value, refer to 569.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read service stores the return code. The
read service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The read service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The file was opened with the nonblock option, and data is not

available to be read.
EBADF The File_descriptor parameter does not contain the descriptor of

an open file; or the file is not opened for read. The following
reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

EINTR The service was interrupted by a signal before it could read any
data.

EINVAL The Read_Count parameter contains a value that is less than
zero; or the socket is marked shutdown for read. The following
reason codes can accompany the return code: JRSocketClosed,
JRSocketCallParmError.

EIO The process is in a background process group, and is attempting
to read from its controlling terminal. Either the process is ignoring
or blocking the SIGTTIN signal, or the process group is
orphaned.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

read (BPX1RED)

568 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read service stores the reason code. The
read service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
v Read_count : The value of Read_count is not checked against any system limit.

A limit can be imposed by a high-level-language POSIX implementation.

v Access time : A successful read updates the access time of the file read.

v Origin of bytes read : If the file that is specified by File_descriptor is a regular
file, or any other type of file where a seek operation is possible, bytes are read
from the file offset that is associated with the file descriptor. A successful read
increments the file offset by the number of bytes that are read. For files for which
no seek operation is possible, there is no file offset associated with the file
descriptor. Reading begins at the current position in the file.

v Number of bytes read : When a read request completes, the Return_value field
shows the number of bytes that were actually read—a number less than or equal
to the number that was specified as Read_count. The following are some
reasons why the number of bytes read might be less than the number of bytes
requested:

– Fewer than the requested number of bytes remained in the file; the end of file
was reached before Read_count bytes were read.

– The service was interrupted by a signal after some, but not all, of the
requested bytes were read. (If no bytes were read, the return value is set to
—1 and an error is reported.)

– The file is a pipe, FIFO, or special file, and fewer bytes than Read_count
specified were available for reading.

There are several reasons why a read request might complete successfully
with no bytes read —that is, with Return_value set to 0. For example, zero
bytes are read in these cases:

- The service specified a Read_count of zero.

- The starting position for the read was at or beyond the end of the file.

- The file that is being read is a FIFO file or a pipe, and no process has the
pipe open for writing.

- The file that is being read is a slave pseudoterminal, and a zero-length
canonical line was written to the master.

v Nonblocking : If a process has a pipe open for reading with nonblocking
specified, a request to read from the file ends with a return value of —1 and a
“Resource temporarily unavailable” return code. But if nonblocking is not
specified, the read request is blocked (does not return) until some data is written,
or until the pipe is closed by all other processes that have the pipe open for
writing.

Master and slave pseudoterminals also operate this way, except that how they
act depends on how they were opened. If the master or the slave is opened
blocking, the reads are blocked if there is no data. If they are opened
nonblocking, EAGAIN is returned if there is no data.

read (BPX1RED)

Chapter 2. Callable services descriptions 569

v SIGTTIN processing : The read service causes signal SIGTTIN to be sent under
the following conditions:
– The process is attempting to read from its controlling terminal, and
– The process is running in a background process group, and
– The SIGTTIN signal is not blocked or ignored, and
– The process group of the process is not orphaned.

If these conditions are met, SIGTTIN is sent. If SIGTTIN has a handler, the
handler gets control, and the read ends with the return code set to EINTR. If
SIGTTIN is set to default, the process stops in the read and continues when the
process is moved to the foreground.

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “lseek (BPX1LSK) — Change a File’s Offset” on page 332
v “open (BPX1OPN) — Open a File” on page 434
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475

Note: The read service is not related to the read shell command.

Characteristics and restrictions
If the file was opened by an authorized program, all subsequent reads and writes
against the file must be issued from an authorized state.

BPX1RED and BPX1WRT do not support simultaneous reading or writing of the
same shared open file by different threads when both of the following are true:

1. Automatic conversion is enabled.

2. Each thread has set up conversion using a different character set (CCSID).

This restriction is not applicable if each thread opens the file independently, or if
each thread coordinates its reads and writes so that simultaneous I/O does not
occur.

Examples
For an example using this callable service, see “BPX1RED (read) Example” on
page 1219.

read (BPX1RED)

570 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

readdir (BPX1RDD) — Read an Entry from a Directory

Function
The readdir callable service reads multiple name entries from a directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RDD,(Directory_file_descriptor,
Buffer_address,
Buffer_ALET,
Buffer_length,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_file_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the directory file descriptor that was
returned when the directory was opened (see “opendir (BPX1OPD) — Open a
Directory” on page 439).

Buffer_address
Parameter supplied and returned

Type: Address

Length: Fullword

The name of a fullword that contains the address of the buffer in which readdir
is to write the directory entries. This address must be supplied to the readdir
call. The directory entries are mapped by the BPXYDIRE macro; see
“BPXYDIRE — Map Directory Entries for readdir” on page 961.

Buffer_ALET
Supplied parameter

Type: Integer

Length: Fullword

readdir (BPX1RDD)

Chapter 2. Callable services descriptions 571

The name of a fullword that contains the ALET for the Buffer_address that
identifies the address space or data space where the buffer resides.

You should specify a Buffer_ALET of 0 for the normal case of a buffer in the
user’s address space (current primary address space). If a value other than 0 is
specified for the Buffer_ALET, the value must represent a valid entry in the
dispatchable unit access list (DUAL).

Buffer_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length, in bytes, of the buffer that is
pointed to by Buffer_address.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readdir service returns the number of
directory entries that have been read into the buffer, or −1 if it is unsuccessful.
A value of 0 in Return_value indicates the end of the directory.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readdir service stores the return code. The
readdir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The readdir service can return one of the following values in the
Return_code parameter:

Return Code Explanation
EBADF The Directory_file_descriptor argument does not refer to an open

directory.
EINVAL The buffer is too small to contain any entries.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readdir service stores the reason code.
The readdir service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

readdir (BPX1RDD)

572 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. This interface differs from the POSIX C high-level-language interface in that it

returns more than one directory entry; it also returns the entries in the caller’s
buffer.

2. The buffer contains a variable number of variable-length directory entries. Only
full entries are placed in the buffer, up to the buffer size specified, and the
number of entries is returned.

3. Each directory entry that is returned has the following format (as shown on
“BPXYDIRE — Map Directory Entries for readdir” on page 961):

v 2-byte Entry_length. The total entry length, including itself.

v 2-byte Name_length. The length of the following Member_name subfield.

v Member_name. A character field of length Name_length. This name is not
null-terminated.

v File system specific data. If Name_length + 4 = Entry_length, this subfield is
not present.

The entries are packed together, and the length fields are not aligned on any
particular boundary.

4. The buffer that is returned by one call to the readdir service must be used again
on the next call to the readdir service, to continue reading entries from where
you left off. The buffer must not be altered between calls, unless the directory
has been rewound.

5. If the contents of the directory have changed (files have been added or
removed) since a previous call to the readdir service, a call should be made to
the rewinddir service so that the updated contents of the directory can be read.

6. The end of the directory is indicated in one of two ways:

v A Return_value of 0 entries is returned.

v Some physical file systems may return a null name entry as the last entry in
the caller’s buffer. A null name entry has an Entry_length of 4 and a
Name_length of 0.

The caller of the readdir service should check for both conditions.

Related services
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on

page 608

Characteristics and restrictions
There are no restrictions on the use of the readdir service.

Examples
For an example using this callable service, see “BPX1RDD (readdir) Example” on
page 1214.

readdir (BPX1RDD)

Chapter 2. Callable services descriptions 573

readdir2 (BPX1RD2) — Read an Entry from a Directory

Function
The readdir2 callable service reads multiple name entries from a directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RD2,(Directory_file_descriptor,
UIO,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_file_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the directory file descriptor that was
returned when the directory was opened (see “opendir (BPX1OPD) — Open a
Directory” on page 439).

UIO
Supplied and returned parameter

Type: Structure

Length: Fuio#Len (from the BPXYFUIO macro)

The name of an area that contains the user input and output block. This area is
mapped by the BPXYFUIO macro (see “BPXYFUIO — Map File System User
I/O Block” on page 970).

Return_value
Returned parameter

Type: Integer

Length: Fullword

readdir2 (BPX1RD2)

574 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the readdir2 service returns the number of
directory entries that have been read into the buffer that is pointed to by the
UIO, or −1 if the request is unsuccessful. A value of 0 in Return_value indicates
the end of the directory.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readdir2 service stores the return code.
The readdir2 service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The readdir2 service can return one of the following values
in the Return_code parameter:

Return Code Explanation
EACCES The FuioChkAcc bit was set to request that an access check be

performed, but the calling process does not have permission to
read the specified directory.

EBADF The Directory_file_descriptor argument does not refer to an open
directory.

EINVAL There was a parameter error; for example, a supplied area was
too small. The following reason codes can accompany the return
code: JRInvalidFuio, JrBytes2RWZero.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readdir2 service stores the reason code.
The readdir2 service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. This interface differs from the POSIX C high-level-language interface in that it

returns more than one directory entry, and it also returns the entries in the
caller’s buffer.

2. The buffer contains a variable number of variable-length directory entries. Only
full entries are placed in the buffer, up to the buffer size specified, and the
number of entries is returned.

3. Each directory entry that is returned has the following format, which is mapped
by BPXYDIRE (see “BPXYDIRE — Map Directory Entries for readdir” on
page 961):

v 2-byte Entry_length. The total entry length, including itself.

v 2-byte Name_length. The length of the following Member_name subfield.

v Member_name. A character field of length Name_length. This name is not
null-terminated.

v File system specific data. If Name_length + 4 = Entry_length, this subfield is
not present.

readdir2 (BPX1RD2)

Chapter 2. Callable services descriptions 575

The entries are packed together, and the length fields are not aligned on any
particular boundary.

4. The end of the directory is indicated when a Return_value of 0 entries is
returned.

In addition, some physical file systems may return a null name entry as the last
entry in the caller’s buffer. A null name entry has an Entry_length of 4 and a
Name_length of 0. The caller of the readdir2 service should check for both
conditions.

5. Two protocols are supported for reading through large directories with
successive calls:

v Cursor protocol. The cursor, or offset, that is returned in the UIO by the
readdir2 service contains file-system-specific information that locates the
next directory entry. The cursor and buffer must be preserved by the caller
from one readdir2 call to the next, and reading proceeds based on the
cursor. The buffer must not be altered between calls, unless the directory
has been rewound.

v Index protocol. The index that is set in the UIO by the caller determines
which entry to start reading from. To read through the directory, the caller
increments the index by the number of entries that were returned on the
previous call.

Because this index represents the number of entries into the directory, the
caller should be aware that if entries are being added or deleted in the
directory while the call is being done, duplicate or missing entries could
result.

The cursor protocol is preferred for better performance.

6. The cursor information that is returned from a call to readdir2() can be used on
successive calls to readdir().

7. If the contents of the directory have changed (files have been added or
removed) since a previous call to the readdir2 service, a call should be made
to the rewinddir service so that the updated contents of the directory can be
read.

8. The following UIO fields should be set to specify the details of the read
directory request:

FuioID Contains Fuio#ID (from the BPXYFUIO
macro).

FuioLen Contains the length of the UIO structure.

FuioChkAcc Requests that the PFS perform required
access checking before performing the
requested readdir2 operation.

FuioBufferAddr Contains the address of a buffer where the
directory entries are to be returned.

FuioBufferAlet Contains the ALET of the buffer where the
directory entries are to be returned.

FuioIBytesRW Specifies the maximum number of bytes that
can be written to the output buffer.

FuioRDIndex Specifies the first directory entry that is to be
returned when the index protocol is used. The
directory can be thought of as a 0–based

readdir2 (BPX1RD2)

576 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

array, and the index specifies which entry in
the directory to begin reading from. When the
FuioRDIndex is set to any nonzero value it will
override any value in the FuioCursor field. To
begin reading at the first directory entry, both
the FuioRDIndex and the FuioCursor should
be set to 0.

FuioCursor When the cursor protocol is used, this
specifies a value, returned on the previous
readdir2 call, that indicates the next entry to be
read; or 0 on the first call. The FuioRDIndex
must be set to 0 when the cursor protocol is
being used. To begin reading at the first
directory entry, both the FuioRDIndex and the
FuioCursor should be set to 0.

FuioRddPlus Indicates that the request is for the
ReaddirPlus function. The attributes for each
entry should be included in the output.

9. The following UIO fields are returned by the readdir2 service:

FuioPSWKey This field is set to the caller’s key.

FuioCursor This field is set to the current cursor position after the readdir2
has occurred.

FuioAsid This field is set to the caller’s ASID.

FuioCVerRet This field indicates that the Cookie Verifier (FuioCVer) is being
returned.

FuioCVer When FuioCVerRet is on, this field is set to the Cookie Verifier
for the directory that is being read. When a directory is being
read with multiple reads, you can use the FuioCVer that is
returned to compare each Cookie Verifier with the previous
one. If the directory has been modified between reads, you
can reject the request, because the results will not be valid.

10. The buffer contents that are returned by the readdir2 service are mapped by
the BPXYDIRE macro (see “BPXYDIRE — Map Directory Entries for readdir”
on page 961).

Related services
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571
v “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on

page 608

Characteristics and restrictions
There are no restrictions on the use of the readdir2 service.

Examples
For an example using this callable service, see “BPX1RD2 (readdir2) Example” on
page 1218.

readdir2 (BPX1RD2)

Chapter 2. Callable services descriptions 577

read_extlink (BPX1RDX) — Read an External Symbolic Link

Function
The read_extlink callable service reads the contents of an external symbolic link
into a buffer that you provide. The external symbolic link contains the external name
that was specified when the symbolic link was defined (see “extlink_np (BPX1EXT)
— Create an External Symbolic Link” on page 153).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RDX,(Link_name_length,
Link_name,
Buffer_length,
Buffer_address,
Return_value,
Return_code,
Reason_code)

Parameters
Link_name_length,

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Link_name.

Link_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Link_name_length parameter

The name of a field that contains the link name of the external symbolic link
that is to be read. The length of this field is specified in Link_name_length.

Buffer_length
Supplied parameter

Type: Integer

read_extlink (BPX1RDX)

578 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword that contains the length, in bytes, of the buffer that is
pointed to by Buffer_address.

Buffer_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the buffer that is supplied
to the read_extlink service, into which the value of the external symbolic link is
to be written. The value of the external symbolic link is actually the external
name that was specified when the symbolic link was created. The buffer must
reside in the process’s address space.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read_extlink service returns a count of the
number of characters placed in the buffer, if the request is successful; or −1, if it
is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read_extlink service stores the return code.
The read_extlink service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The read_extlink service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EACCESS Search permission is denied for a component of the path prefix.
EINVAL The file that is named by Link_name is not a symbolic link; or

there was a problem with the supplied buffer. The following
reason codes can accompany the return code:
JRFileNotSymLink, and JRRdlBuffLenInvalid.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Link_name argument. This error is issued if
more than 24 symbolic links are detected in the resolution of
Link_name.

ENAMETOOLONG Link_name is longer than 1023 characters; or some component
of the link name is longer than 255 characters. Name truncation
is not supported.

ENOENT No file with the name specified by Link_name was found. The
following reason code can accompany the return code:
JRFileNotThere.

ENOTDIR A component of the path prefix is not a directory.

read_extlink (BPX1RDX)

Chapter 2. Callable services descriptions 579

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the read_extlink service stores the reason
code. The read_extlink service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the buffer that is supplied to the read_extlink service is too small to contain

the value of the external symbolic link, the value is truncated to the length of the
buffer (Buffer_length). If the value that is returned is the length of the buffer, you
can use the lstat service (see “lstat (BPX1LST) — Get Status Information about
a File or Symbolic Link by Pathname” on page 335) to determine the actual
length of the external symbolic link.

2. If the Buffer_length is 0, the value that is returned is the number of bytes in the
external symbolic link. The buffer remains unchanged.

3. It is recommended that this function, rather than the readlink function (see
“readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 581), be
used for reading an external link with a symbolic link ending its pathname.

Related services
v “extlink_np (BPX1EXT) — Create an External Symbolic Link” on page 153
v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname” on page 335
v “readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 581
v “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the read_extlink service.

Examples
For an example using this callable service, see “BPX1RDX (read extlink) Example”
on page 1217.

read_extlink (BPX1RDX)

580 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

readlink (BPX1RDL) — Read the Value of a Symbolic Link

Function
The readlink callable service reads the contents of a symbolic link into a buffer that
you provide. The symbolic link contains the pathname that was specified when the
symbolic link was defined (see “symlink (BPX1SYM) — Create a Symbolic Link to a
Pathname” on page 817).

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RDL,(Link_name_length,
Link_name,
Buffer_length,
Buffer_address,
Return_value,
Return_code,
Reason_code)

Parameters
Link_name_length,

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Link_name.

Link_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Link_name_length parameter

The name of a field that contains the link name of the symbolic link that is to be
read. The length of this field is specified in Link_name_length.

Buffer_length
Supplied parameter

Type: Integer

readlink (BPX1RDL)

Chapter 2. Callable services descriptions 581

Length: Fullword

The name of a fullword that contains the length, in bytes, of the buffer that is
pointed to by Buffer_address.

Buffer_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the buffer that is supplied
to readlink, into which the value of the symbolic link is to be written. The value
of the symbolic link is actually the pathname that was specified when the
symbolic link was created. The buffer must reside in the process’s address
space.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readlink service returns a count of the
number of characters placed in the buffer, if the request is successful; or −1, if it
is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readlink service stores the return code. The
readlink service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The readlink service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCESS Search permission is denied for a component of the path prefix.
EINVAL The file named by Link_name is not a symbolic link; or there was

a problem with the supplied buffer. The following reason codes
can accompany the return code: JRFileNotSymLink,
JRRdlBuffLenInvalid.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Link_name argument. This error is issued if
more than 24 symbolic links are detected in the resolution of
Link_name.

ENAMETOOLONG Link_name is longer than 1023 characters; or some component
of the link name is longer than 255 characters. Name truncation
is not supported.

ENOENT No file with the name specified by Link_name was found. The
following reason code can accompany the return code:
JRFileNotThere.

ENOTDIR A component of the path prefix is not a directory.

readlink (BPX1RDL)

582 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readlink service stores the reason code.
The readlink service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the buffer that is supplied to the readlink service is too small to contain the

value of the symbolic link, the value is truncated to the length of the buffer
(Buffer_length). If the value that is returned is the length of the buffer, you can
use the lstat service (see “lstat (BPX1LST) — Get Status Information about a
File or Symbolic Link by Pathname” on page 335) to determine the actual length
of the symbolic link.

2. If the Buffer_length is 0, the value that is returned is the number of bytes in the
symbolic link. The buffer remains unchanged.

Related services
v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by

Pathname” on page 335
v “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the readlink service.

Examples
For an example using this callable service, see “BPX1RDL (readlink) Example” on
page 1215.

readlink (BPX1RDL)

Chapter 2. Callable services descriptions 583

readv (BPX1RDV) — Read Data and Store It in a Set of Buffers

Function
The readv callable service reads data and stores it in a set of buffers.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RDV,(File_descriptor,
Iov_count,
Iov_struct,
Iov_alet,
Iov_buffer_alet,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for which the readv
request is to be done.

Iov_count
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the number of buffers that are pointed to by
Iov_struct.

Iov_struct
Supplied parameter

Type: Structure

Length: Iov_count times length(iov)

readv (BPX1RDV)

584 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field that contains pointers to buffers and their lengths, in which
data is to be stored. See “BPXYIOV — Map the I/O Vector Structure” on
page 978 for more information.

Iov_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Iov_struct.

Iov_buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for buffers that are pointed to by
Iov_struct.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readv service returns one of the following:

v The number of bytes that were read into the buffers, if the request is
successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readv service stores the return code. The
readv service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The readv service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN The file was opened with the nonblock option, and data is not

available to be read.
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINTR A signal interrupted the readv function before any data was
available. The following reason code can accompany the return
code: JRSockRdwrSignal.

EINVAL The socket is marked shutdown for read; or an incorrect length
was specified in the iov. The following reason codes can
accompany the return code: JRSocketClosed,
JRSocketCallParmError.

readv (BPX1RDV)

Chapter 2. Callable services descriptions 585

Return_code Explanation
EIO The process is in a background process group, and is attempting

to read from its controlling terminal. However, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU signals, and
the process group of the process is orphaned. This can happen,
for example, if a background job tries to write to the terminal after
the user has logged off.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be
read.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the readv service stores the reason code. The
readv service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
v Socket files : When this callable service is used for datagram sockets, the readv

service returns the entire datagram that was sent, providing that the datagram fits
into the specified buffers. The excess is discarded. For stream sockets, data is
not discarded. Multiple invocations of readv may be needed to return all the data.

v Bytes read : The number of bytes that were requested for reading is not checked
against any system limit. A limit can be imposed by a high-level-language POSIX
implementation.

v Access time : A successful read updates the access time of the file read.

v Origin of bytes read : If the file that was specified by File_descriptor is a regular
file, or any other type of file where a seek operation is possible, bytes are read
from the file offset that is associated with the file descriptor. A successful read
increments the file offset by the number of bytes that are read.

For files where no seek operation is possible, there is no file offset associated
with the file descriptor. Reading begins at the current position in the file.

v Number of bytes read : When a read request completes, the Return_value field
shows the number of bytes that were actually read — a number less than or
equal to the number of bytes that were requested. Following are some reasons
why the number of bytes that are read might be less than the number of bytes
that were requested:

– Fewer than the requested number of bytes remained in the file; the end of file
was reached before all requested bytes were read.

– The service was interrupted by a signal after some, but not all, of the
requested bytes were read. (If no bytes were read, the return value is set to
−1 and an error is reported.)

– The file is a pipe, FIFO, or special file, and fewer bytes than requested were
available for reading.

readv (BPX1RDV)

586 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

There are several reasons why a read request might complete successfully with
no bytes read — that is, with Return_value set to 0. For example, zero bytes are
read in these cases:

– The service specified that zero bytes were to be read.

– The starting position for the read was at or beyond the end of the file.

– The file that is being read is a FIFO file or a pipe, and no process has the
pipe open for writing.

– The file that is being read is a slave pseudoterminal, and a zero-length
canonical line was written to the master.

v Nonblocking : If a process has a pipe open for reading with nonblocking
specified, a request to read from the file ends with a return value of —1 and a
“Resource temporarily unavailable” return code. But if nonblocking is not
specified, the read request is blocked (does not return) until some data is written,
or until the pipe is closed by all other processes that have the pipe open for
writing.

Master and slave pseudoterminals also operate this way, except that how they
act depends on how they were opened. If the master or the slave is opened
blocking, the reads are blocked if there is no data. If they are opened
nonblocking, EAGAIN is returned if there is no data.

v SIGTTIN processing : The readv service causes signal SIGTTIN to be sent
under the following conditions:
– The process is attempting to read from its controlling terminal, and
– The process is running in a background process group, and
– The SIGTTIN signal is not blocked or ignored, and
– The process group of the process is not orphaned.

If these conditions are met, SIGTTIN is sent. If SIGTTIN has a handler, the
handler gets control and the read ends with a return code of EINTR. If SIGTTIN
is set to default, the process stops in the read and continues when the process is
moved to the foreground.

Related services
v “writev (BPX1WRV) — Write Data from a Set of Buffers” on page 939

Characteristics and restrictions
There are no restrictions on the use of the readv service.

Examples
For an example using this callable service, see “BPX1RDV (readv) Example” on
page 1216.

readv (BPX1RDV)

Chapter 2. Callable services descriptions 587

realpath (BPX1RPH) — Resolve a Pathname

Function
The realpath service derives, from the pathname that is pointed to by Pathname, an
absolute pathname that names the same file, whose resolution does not involve dot
(.), dot-dot (..), or symbolic links.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RPH,(Pathname_length,
Pathname,
Resolved_name_length,
Resolved_name,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname that is to be
resolved.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname that is to be resolved. The
length of this field is specified in Pathname_length.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

realpath (BPX1RPH)

588 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Resolved_name_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the buffer to which the
realpath service returns an absolute pathname without dot (.), dot-dot (..), or
symbolic links. Resolved_name_length must be large enough to accommodate
the actual length of an absolute pathname, plus one (for the terminating null). A
length of zero has special meaning; see “Usage notes”.

Resolved_name
Parameter supplied and returned

Type: Character string

Character set: No restriction

Length: Specified by the Resolved_name_length
parameter

The name of the buffer that is to hold the absolute pathname that is to be
generated for the input Pathname. The length of this field is specified in
Resolved_name_length.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the realpath service returns the length of the
pathname that is in the buffer, if the request is successful; or −1, if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the realpath service stores the return code.
The realpath service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The realpath service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search one of

the components of Pathname.
EINVAL There was a parameter error; for example,

Resolved_name_length is not valid. The following reason codes
can accompany the return code: JRBuffLenInvalid and
JRBadAddress.

EIO An input/output error occurred.

realpath (BPX1RPH)

Chapter 2. Callable services descriptions 589

Return_code Explanation
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or a component of
Pathname is longer than 255 characters. Name truncation is not
supported.

ENOENT No file named Pathname was found; or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of Pathname is not a directory.
ENOMEM Insufficient storage space is available. The following reason code

can accompany the return code: JRNoStorage.
ERANGE The specified Resolved_name_length is less than the length of

the pathname that was generated for the input Pathname. The
specified Resolved_name_length is zero, and the length of the
pathname that was generated for the input Pathname is larger
than PATH_MAX bytes. The following reason code can
accompany the return code: JrBuffTooSmall.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the realpath service stores the reason code.
The realpath service returns a Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. PATH_MAX plus 1 for the terminating null is a reasonable value for

Resolved_name_length and for the size of Resolved_name.

2. If a Resolved_name_length value of zero is passed to this service, the
generated pathname is stored, up to a maximum of PATH_MAX bytes, in the
buffer that is pointed to by Resolved_name. Resolved_name is assumed to be
of sufficient size to contain the pathname that is derived by the realpath service.
If the generated pathname is larger than PATH_MAX, the return value is -1 and
Return_code is ERANGE.

Related services
v “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on

page 216
v “pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a

Pathname” on page 459
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824

Characteristics and restrictions
There are no restrictions on the use of the realpath service.

realpath (BPX1RPH)

590 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1RPH (realpath) Example” on
page 1225.

realpath (BPX1RPH)

Chapter 2. Callable services descriptions 591

recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer

Function
The recv callable service receives data on a socket and stores it in a buffer. If no
messages are available at the socket, the service either waits for a message to
arrive, or fails with EWOULDBLOCK, depending on whether the socket has been
defined as blocking or nonblocking.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RCV,(Socket_descriptor,
Buffer_length,
Buffer,
Buffer_alet,
Flags,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
receive is to be done.

Buffer_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Buffer.

Buffer
Supplied parameter

Type: Character

Length: Length specified by Buffer_length.

recv (BPX1RCV)

592 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field into which the data is received.

Buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Buffer. You should specify a
Buffer_alet of 0 for the normal case of a buffer in the user’s address space
(current primary address space). If a value other than 0 is specified for the
Buffer_alet, the value must represent a valid entry in the dispatchable unit
access list (DUAL).

Flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains information about how the data is to be
received. See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recv service returns one of the following:

v The number of bytes received into the buffer, if the request is successful. A
value of 0 indicates that the connection is closed.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recv service stores the return code. The
recv service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The recv service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINTR A signal interrupted the recv() function before any data was
available. The following reason code can accompany the return
code: JRSockRdwrSignal.

EINVAL The socket is marked shutdown for read. The following reason
code can accompany the return code: JRSocketClosed.

EIO There has been a network or transport failure. The following
reason code can accompany the return code: JRPrevSockError.

recv (BPX1RCV)

Chapter 2. Callable services descriptions 593

Return_code Explanation
ENOBUFS A buffer could not be obtained. The following reason code can

accompany the return code: JROutofSocketCells.
ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The

following reason code can accompany the return code:
JRMustBeSocket.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be
received. The following reason code can accompany the return
code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recv service stores the reason code. The
recv service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
The recv callable service applies only to connected sockets. It can be used with
datagram or stream sockets. For datagram sockets, the recv service returns the
entire datagram that was sent, providing that the datagram fits into the specified
buffers. The excess is discarded. For stream sockets, data is not discarded. Multiple
invocations of the recv service may be needed to return all the data.

Related services
“send (BPX1SND) — Send Data on a Socket” on page 642

Characteristics and restrictions
There are no restrictions on the use of the recv service.

Examples
For an example using this callable service, see “BPX1RCV (recv) Example” on
page 1213.

recv (BPX1RCV)

594 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in
a Buffer

Function
The recvfrom callable service receives data on a socket and stores it in a buffer. It
can be used by an application program to receive data from sockets. When no data
is available at the socket, the service either waits for data to arrive, or returns an
EWOULDBLOCK, depending on whether the socket is defined as blocking or
nonblocking.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RFM,(Socket_descriptor,
Buffer_length,
Buffer,
Buffer_alet,
Flags,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
recvfrom is to be done.

Buffer_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Buffer.

recvfrom (BPX1RFM)

Chapter 2. Callable services descriptions 595

Buffer
Supplied parameter

Type: Character

Length: Length specified by Buffer_length

The name of a field into which the data is to be received.

Buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Buffer. You should specify a
Buffer_alet of 0 for the normal case of a buffer in the user’s address space
(current primary address space). If a value other than 0 is specified for the
Buffer_alet, the value must represent a valid entry in the dispatchable unit
access list (DUAL).

Flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains information about how the data is to be
received. See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Sockaddr_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that, on input, contains the length of the Sockaddr buffer.
On return, this field specifies the size required to represent the address of the
connecting socket. If this value is larger than the size supplied on input, the
information contained in Sockaddr is truncated to the length supplied on input.
The value in this field should be less than 4096 bytes (4KB) in length, and
should represent the maximum possible length of the Sockaddr on output.

Sockaddr
Supplied and returned parameter

Type: Structure

Length: Length specified by Sockaddr_length

The name of a buffer area that, on return, contains the socket address of the
sender of the data. See “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 for more information about the format of this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

recvfrom (BPX1RFM)

596 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the recvfrom service returns one of the
following:

v The number of bytes received into the buffer, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recvfrom service stores the return code.
The recvfrom service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The recvfrom service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINTR A signal interrupted the recvfrom function before any data was
available. The following reason code can accompany the return
code: JRSockRdwrSignal.

EINVAL The socket is marked shutdown for read. The following reason
codes can accompany the return code: JRSocketCallParmError,
JRSocketClosed.

EIO There has been a network or transport failure. The following
reason codes can accompany the return code: JRInetRecycled,
JRPrevSockError.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be
read. The following reason code can accompany the return code:
JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recvfrom service stores the reason code.
The recvfrom service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
The recvfrom callable service can be used with datagram or stream sockets. For
datagram sockets, it returns the entire datagram that was sent, providing that the
datagram fits into the specified buffer. The excess is discarded. For stream sockets,
data is not discarded. Multiple invocations of recvfrom may be needed to return all
the data.

recvfrom (BPX1RFM)

Chapter 2. Callable services descriptions 597

Related services
“sendto (BPX1STO) — Send Data on a Socket” on page 654

Characteristics and restrictions
There are no restrictions on the use of the recvfrom service.

Examples
For an example using this callable service, see “BPX1RFM (recvfrom) Example” on
page 1221.

recvfrom (BPX1RFM)

598 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

recvmsg (BPX2RMS) — Receive Messages on a Socket and Store
Them in Message Buffers

Function
The recvmsg callable service receives messages on a socket and stores them in a
set of buffers. The socket can be either connected or unconnected. If no messages
are available at the socket, the service either waits for a message to arrive, or
returns an EWOULDBLOCK, depending on whether the socket has been defined as
blocking or nonblocking.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX2RMS,(Socket_descriptor,
Message_hdr,
Flags,
Iov_alet,
Iov_buffer_alet,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
recvmsg is to be done.

Message_hdr
Supplied parameter

Type: Structure

Length: The length of BPXYMSGH

The name of a field that contains the message headers into which the
messages are to be received. See “BPXYMSGH — Map the Message Header”
on page 987 for more information about the format of this field.

recvmsg (BPX2RMS)

Chapter 2. Callable services descriptions 599

Flags
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains information about how the data is to be
received. See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Iov_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for the iov structure that is specified
in Message_hdr.

Iov_buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for the buffers that are pointed to by
the iov structure that is specified in Message_hdr.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recvmsg service returns one of the
following:

v The number of bytes that were read into the buffers, if the request is
successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recvmsg service stores the return code.
The recvmsg service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The recvmsg service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

recvmsg (BPX2RMS)

600 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINTR A signal interrupted the recvmsg service before any data was

available. The following reason code can accompany the return
code: JRSockRdwrSignal.

EINVAL The socket is marked shutdown for read; or incorrect data was
received as a parameter. The following reason codes can
accompany the return code: JRInvalidMsgh, JRSocketClosed,
JRSocketCallParmError.

EIO There has been a network or transport failure. The following
reason codes can accompany the return code: JRInetRecycled,
JRPrevSockError.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be
read. The following reason code can accompany the return code:
JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the recvmsg service stores the reason code.
The recvmsg service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
The BPX2RMS call supersedes the BPX1RMS call, which is still available for
migration purposes only.

Related services
“sendmsg (BPX2SMS) — Send Messages on a Socket” on page 650

Characteristics and restrictions
There are no restrictions on the use of the recvmsg service.

Examples
For an example using this callable service, see “BPX2RMS (recvmsg) Example” on
page 1224.

recvmsg (BPX2RMS)

Chapter 2. Callable services descriptions 601

rename (BPX1REN) — Rename a File or Directory

Function
The rename callable service changes the name of a file or a directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1REN,(Old_name_length,
Old_name,
New_name_length,
New_name,
Return_value,
Return_code,
Reason_code)

Parameters
Old_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file or
directory that is to be renamed.

Old_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Old_name_length parameter

The name of a field, of length Old_name_length, that contains the name of the
existing file or directory.

New_name_length
Supplied parameter

Type: Integer

Length: Fullword

rename (BPX1REN)

602 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword that contains the length of the pathname that is to be
given to the existing file or directory.

New_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the New_name_length parameter

The name of a field, of length New_name_length, that contains the new
pathname of the file or directory.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rename service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rename service stores the return code. The
rename service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The rename service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES One of the following conditions occurred:

v The process did not have search permission on some
component of the old or new pathname; or did not have write
permission on the parent directory of the file or directory that is
to be renamed.

v The S_ISVTX flag is set for the directory that contains
Old_name. The caller is neither the owner of Old_name nor
the owner of the parent directory, nor does the caller have
appropriate privileges.

v New_name refers to an existing file. The S_ISVTX flag is set
for the directory containing New_name, and the caller is
neither the owner of New_name nor the owner of the parent
directory, nor does the caller have appropriate privileges.

EAGAIN One of the files or directories was temporarily unavailable. The
following reason code can accompany the return code:
JRInvalidVnode.

EBUSY Old_name and New_name specify directories, but one of them
cannot be renamed, because it is in use as a root or a mount
point. The following reason code can accompany the return code:
JRIsFSRoot.

rename (BPX1REN)

Chapter 2. Callable services descriptions 603

Return_code Explanation
EINVAL This error is returned for one of the following reasons:

v Old_name is part of the pathname prefix of New_name.
v Old_name refers to either . (dot) or .. (dot-dot).
v New_name refers to either . (dot) or .. (dot-dot).

The following reason codes can accompany the return code:
JRDotOrDotDot and JROldPartOfNew.

EISDIR New_name identifies a directory, but Old_name is not a directory.
The following reason code can accompany the return code:
JRNewIsDir.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Old_name or New_name argument. This error is
issued if more than 24 symbolic links are detected in the
resolution of Old_name or New_name.

ENAMETOOLONG Old_name or New_name is longer than 1023 bytes; or a
component of one of those names is longer than 255 bytes.
Name truncation is not supported.

ENOENT No file or directory name Old_name was found; or either
Old_name or New_name was not specified. The following reason
code can accompany the return code: JROldNoExist.

ENOSPC The directory that is intended to contain New_name cannot be
extended.

ENOTDIR A component of either pathname prefix is not a directory; or
Old_name is a directory and New_name is a file that is not a
directory. The following reason code can accompany the return
code: JRNewNotDir.

ENOTEMPTY New_name specifies a directory, but the directory is not empty. It
contains files or subdirectories.

EROFS Performing the requested service would make it necessary to
write on a read-only file system. The following reason code can
accompany the return code: JRReadOnlyFS.

EXDEV Old_name and New_name identify files or directories on different
file systems. Renaming across file systems is not supported. The
following reason code can accompany the return code:
JRDiffFileSets.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rename service stores the reason code.
The rename service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The rename service changes the name of a file or directory from Old_name to

New_name. When the renaming request completes successfully, the change
and modification times for the parent directories of Old_name and New_name
are updated.

For renaming to succeed, the calling process needs write permission for the
directory that contains Old_name and the directory that contains New_name. If
Old_name and New_name are the names of directories, the caller does not
need write permission for the directories themselves.

rename (BPX1REN)

604 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

2. If the S_ISVTX flag is set for the directory that contains Old_name, one of the
following conditions must be true, or the request will fail with EACCES:
v The caller is the owner of the file named Old_name
v The caller is the owner of the parent directory that contains Old_name
v The caller has appropriate privileges

If the S_ISVTX flag is set for the directory that contains New_name, where
New_name refers to an existing file, one of the following conditions must be
true, or the request will fail with EACCES:
v The caller is the owner of the file named New_name
v The caller is the owner of the parent directory containing New_name
v The caller has appropriate privileges

3. Renaming files :

v If Old_name and New_name are links that refer to the same file, the rename
service simply returns successfully.

v If Old_name is the name of a file, New_name must also name a file, not a
directory. If New_name is an existing file, it is unlinked, and then the file that
is specified as Old_name is given New_name. The pathname New_name
always stays in existence. At the beginning of the operation, New_name
refers to its original file, and at the end, it refers to the file that used to be
Old_name.

4. Renaming directories :

v If Old_name is the name of a directory, New_name must also name a
directory, not a file. If New_name is an existing directory, it must be empty,
containing no files or subdirectories. If it is empty, it is removed, as described
in “rmdir (BPX1RMD) — Remove a Directory” on page 610.

v New_name cannot be a directory under Old_name; that is, the old directory
cannot be part of the pathname prefix of the new one.

Related services
v “link (BPX1LNK) — Create a Link to a File” on page 319
v “rmdir (BPX1RMD) — Remove a Directory” on page 610
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the rename service.

Examples
For an example using this callable service, see “BPX1REN (rename) Example” on
page 1220.

rename (BPX1REN)

Chapter 2. Callable services descriptions 605

resource (BPX1RMG) — Measure Resources

Function
The resource callable service gets system-wide resource measurement data from
the kernel address space.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RMG,(Data_area_length,
Data_area,
Return_value,
Return_code,
Reason_code)

Parameters
Data_area_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Data_area, which the
resource service is to fill with resource measurement information.

Data_area
Supplied parameter

Type: Structure

Length: Specified by the Data_area_length parameter

The name of a field of length Data_area_length, which the resource service is
to fill with resource measurement information. This field is mapped by the
macro BPXYRMON. For the structure of Data_area, see “BPXYRMON — Map
Resource Monitor Data” on page 1019.

Return_value
Returned parameter

Type: Integer

Length: Fullword

resource (BPX1RMG)

606 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the resource service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the resource service stores the return code.
The resource service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The resource service can return the following value in the
Return_code parameter:

Return_code Explanation
EINVAL Incorrect argument.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the resource service stores the reason code.
The resource service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Some values that are returned by the resource service are continually wrapping

counters. At the first call to the resource service, these values should be stored.
At subsequent calls, the growth in these values should be calculated by the
caller. The following list describes the normal use of wrapping counters that are
returned by the resource service:

a. A first call to the resource service returns the current value. (For example,
X'FFFFFFD0' is returned for a system call count.)

b. After some time interval expires, a second call to the resource service
returns the new value. (For example, X'00000028' is returned for a system
call count.)

c. At this point, the increase in the counter can be calculated by the calling
application. (In this case, we can calculate that X'58', or 88, system calls
have been processed between the first resource service request and the
second.)

Characteristics and restrictions
There are no restrictions on the use of the resource service.

Examples
For an example using this callable service, see “BPX1RMG (resource) Example” on
page 1223.

resource (BPX1RMG)

Chapter 2. Callable services descriptions 607

rewinddir (BPX1RWD) — Reposition a Directory Stream to the
Beginning

Function
The rewinddir callable service “rewinds,” or resets to the beginning of, an open
directory. The next call to the readdir service reads the first entry in the directory.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RWD (Directory_file_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_file_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the directory file descriptor that was
returned when the directory was opened (see “opendir (BPX1OPD) — Open a
Directory” on page 439).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rewinddir service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

rewinddir (BPX1RWD)

608 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the rewinddir service stores the return code.
The rewinddir service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The rewinddir service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF The Directory_file_descriptor parameter does not represent an

open directory. The following reason code can accompany the
return code: JRRwdFileNotDir.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rewinddir service stores the reason code.
The rewinddir service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
If the contents of the directory that you specify have changed since the directory
was opened, a call to the rewinddir service resets the pointer into the directory to
the beginning. A subsequent call to the readdir service reads from the start of the
directory and obtains the new contents.

Related services
v “closedir (BPX1CLD) — Close a Directory” on page 100
v “opendir (BPX1OPD) — Open a Directory” on page 439
v “readdir (BPX1RDD) — Read an Entry from a Directory” on page 571

Characteristics and restrictions
There are no restrictions on the use of the rewinddir service.

Examples
For an example using this callable service, see “BPX1RWD (rewinddir) Example” on
page 1227.

rewinddir (BPX1RWD)

Chapter 2. Callable services descriptions 609

rmdir (BPX1RMD) — Remove a Directory

Function
The rmdir callable service removes a directory. The directory must be empty.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1RMD,(Directory_name_length,
Directory_name,
Return_value,
Return_code,
Reason_code)

Parameters
Directory_name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Directory_name.

Directory_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Directory_name_length
parameter

The name of a field that contains the pathname of the directory to be removed.
The length of this field is specified in Directory_name_length.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rmdir service returns 0 if the request is
successful, or −1 if it is not successful.

rmdir (BPX1RMD)

610 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the rmdir service stores the return code. The
rmdir service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The rmdir service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES One of the following conditions occurred:

v The process did not have search permission for some
component of Directory_name, or did not have write
permission for the directory that contains the directory that is
to be removed.

v The S_ISVTX flag is set for the parent directory of the
directory that is to be removed, and the caller is not the owner
of that directory or the owner of the parent directory, nor does
the caller have appropriate privileges.

EBUSY The directory cannot be removed, because it is being used by a
process. The following reason code can accompany the return
code: JRRootNode.

EINVAL The argument that was supplied was incorrect. Examples of
incorrect arguments are dot and dot-dot. The following reason
code can accompany the return code: JRDotOrDotDot.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Directory_name argument. This error is issued if
more than 24 symbolic links are detected in the resolution of
Directory_name.

ENAMETOOLONG The name of the directory is longer than 1023 characters; or
some component of the pathname is longer than 255 characters.
This could be as a result of encountering a symbolic link during
resolution of Directory_name, where the substituted string is
longer than 1023 characters.

ENOENT The directory that was specified by Directory_name was not
found; or no Directory_name parameter was specified. The
following reason code can accompany the return code:
JRFileNotThere.

ENOTDIR Some component of Directory_name is not a directory. The
following reason code can accompany the return code:
JRPathNotDir.

ENOTEMPTY The directory contains files or subdirectories.
EROFS The directory that is to be removed is on a read-only file system.

The following reason code can accompany the return code:
JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

rmdir (BPX1RMD)

Chapter 2. Callable services descriptions 611

The name of a fullword in which the rmdir service stores the reason code. The
rmdir service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The directory must be empty.

2. If the directory is successfully removed, the change and modification times for
the parent directory are updated.

3. If the link count of the directory becomes zero and no process has the directory
open, the directory itself is deleted. The space that is occupied by the directory
is freed for new use, and the contents of the file are lost.

4. If any process has the directory open when the last link is removed, the
directory itself is not removed until the last process closes the directory. New
files cannot be created under a directory after the last link is removed, even if
the directory is still open.

5. If the S_ISVTX flag is set for the parent directory of the directory that is to be
removed, one of the following conditions must be true, or the request will fail
with EACCES:
v The caller is the owner of the directory to be removed
v The caller is the owner of the parent directory
v The caller has appropriate privileges

Related services
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the rmdir service.

Examples
For an example using this callable service, see “BPX1RMD (rmdir) Example” on
page 1222.

rmdir (BPX1RMD)

612 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SEC — Create a New Security Environment for a Process

Function
The BPX1SEC callable service provides an interface to the security product to allow
the calling process to obtain security-related services. To use this service, the caller
must have one of the following authorizations:

v UPDATE access to the BPX.DAEMON FACILITY class profile

v Superuser status (UID of 0), if the BPX.DAEMON FACILITY class profile is not
defined

No special authority is required to use this service to register or deregister a
certificate that has the current identity of the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SEC,(Function_code,
Identity_type,
Identity_length,
Identity,
Pass_length,
Pass,
Certificate_length,
Certificate,
Option_flags,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies a numeric value identifying the function
that is to be performed. The following Function_code constants are defined by
the BPXYCONS macro. See “BPXYCONS — Constants Used by Services” on
page 956.

BPX1SEC

Chapter 2. Callable services descriptions 613

Constant Description
SECURITY_CREATE# Create the security environment for the caller’s

process.
SECURITY_CERTREG# Register the passed certificate with the user ID that

is associated with the current security environment.
SECURITY_CERTDEREG# Deregister the passed certificate from the user ID

that is associated with the current security
environment.

SECURITY_CERTAUTH# Authenticate the passed certificate for the caller.
The certificate must have been registered.

Identity_type
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that identifies the format of the Identity parameter and
the Pass parameter. Constants are defined by the BPXYCONS macro. See
“BPXYCONS — Constants Used by Services” on page 956.

Constant Description
SECURITY_USERID# The user identity is in the format of a 1-to

8-character user ID that is passed as input.

The Pass parameter can also be specified. It is in
the format of a 1-to 8-character PassWord or an
8-character PassTicket (a DCE token). This
information is passed to the security product.

Identity_length
Supplied parameter for SECURITY_USERID#

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Identity parameter. The
specified length must be consistent with the allowable Identity types: USERID
— 1 to 8.

Identity
Supplied parameter for SECURITY_USERID#

Type: Character string

Character set: For SECURITY_USERID#, the identity is a
USERID that follows the XPG4 naming
convention portable character set. This includes
upper and lower-case letters (A-Z, a-z),
numerics (0–9), period (.), dash (-), and
underbar (_).

Length: Specified by the Identity_length parameter

The name of a field that contains the user identity in the specified format.

Pass_length
Supplied parameter

BPX1SEC

614 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||
|

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pass parameter that is to
validate the caller:

v For SECURITY_USERID#

The length can be 0-8 bytes long. If a password or PassTicket is not
required, specify the name of a fullword that contains 0.

Pass
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Password_length parameter

v For SECURITY_USERID#

The name of a field that contains a password
or PassTicket. If the value that is specified by
Pass_length is 0, the Pass parameter is
ignored.

Certificate_length
Supplied parameter

Type: Integer

Length: Fullword

For SECURITY_CERTREG#, SECURITY_CERTDEREG#, and
SECURITY_CERTAUTH#, the name of a fullword that contains the length of a
certificate structure as defined by the Certificate parameter. This parameter is
ignored for all other function codes.

Certificate
Supplied parameter

Type: Character string

Character set: No restriction

Length: Variable

For SECURITY_CERTREG#, SECURITY_CERTDEREG#, and
SECURITY_CERTAUTH#, the name of an area that consists of a 4-byte-length
field followed by a digital certificate. See the documentation for the initACEE
callable service in z/OS Security Server RACF Callable Services for a
description of the formats for a digital certificate. This parameter is ignored for
all other function codes.

Option_flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword binary field that contains the BPX1SEC options. If no
options are required, specify the name of a fullword field that contains 0. No
options are currently defined.

BPX1SEC

Chapter 2. Callable services descriptions 615

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1SEC service returns 0 if the request
is successful, or −1 if it is not successful.

For SECURITY_CERTAUTH#, this field returns an address to read-only storage
that contains the 8-character user ID. If the request is not successful, the
service returns −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPX1SEC service stores the return code.
The BPX1SEC service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The BPX1SEC service can return one of the following
values in the Return_code parameter:

Return_Code Explanation
EINVAL A parameter is not valid. The following reason codes can

accompany the return code: JrFunctionCode, JrIdentityType,
JrBadOptions, JrUserNameLenError, JrPasswordLenError,
JrNewPasswordLenError, JrCertificate.

EPERM The operation is not permitted. The following reason codes can
accompany the return code: JrNotServerAuthorized,
JrSecurityEnv, JrEnvDirty, JrMultiThreaded.

ESRCH The USERID cannot become an OMVS process. The following
reason codes can accompany the return code: JrOK,
JrNoCertforUser.

EMVSSAF2ERR An error occurred in the security product. The following reason
codes can accompany the return code: Jrxx, JrCertInvalid,
JrSafInternal, JrSafParmListErr, JrCertInvalid,
JrCertDoesNotMeetReq, JrCertAlreadyDefined.

ENOSYS The function is not implemented. The following reason codes can
accompany the return code: JrNoSecurityProduct, JrNoInitACEE.

EACCESS Permission is denied. The following reason codes can
accompany the return code: JrOK, JrNoResourceAccess.

EMVSEXPIRE The password for the resource that was specified has expired.
The following reason code can accompany the return code:
JrOK.

EMVSPASSWORD The new password that was specified is not valid. The following
reason code can accompany the return code: JrOK.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __security service stores the reason code.
The BPX1SEC service returns Reason_code only if Return_value is −1.

BPX1SEC

616 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|

Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Table 7 shows the Return_code and Reason_code values that are returned
when the BPX1SEC service is called to register or deregister a certificate and
initACEE has a return code of 8.

Table 7. BPX1SEC return values for certificate registration/deregistration with initACEE return code 8

initACEE
Reason Code

BPX1SEC Return
Code

BPX1SEC Reason Code Explanation

4 EMVSSAF2ERR JrSafParmListErr There was a parameter list error.

8 EMVSSAF2ERR JrSafInternal There was an internal RACF error.

12 EMVSSAF2ERR JrSafInternal RACF recovery environment could not
be established.

16 EACCES JrNoResourceAccess The user is not authorized.

20 EMVSSAF2ERR JrCertDoesNotMeetReq The certificate does not meet RACF
requirements.

24 EMVSSAF2ERR JrCertAlreadyDefined The certificate is already defined for
another user.

36 EMVSSAF2ERR JrCertInvalid The certificate is not valid.

Usage notes
1. Table 8 shows the BPX1SEC parameters that are used with each function.

Table 8. BPX1SEC parameter usage based on function requested

Parameter Login as a New User Register a Certificate Deregister a
Certificate

Authenticate a
Certificate

Function_Code _CREATE# _CERTREG# _CERTDEREG# _CERTAUTH#

Identity_Type SECURITY_USERID# Not applicable Not applicable Not applicable

Identity_Length Input Not applicable Not applicable Not applicable

Pass_Length Input (optional) Not applicable Not applicable Not applicable

Pass Input (optional) Not applicable Not applicable Not applicable

Cert_Length Not applicable Input Input Input

Certificate Not applicable Input Input Input

Option_Byte Not applicable Not applicable Not applicable Not applicable

Return_value Output Output Output Output

Return_code Output Output Output Output

Reason_code Output Output Output Output

For the SECURITY_CERTREG# and SECURITY_CERTDEREG# functions, the
certificate is passed in the Certificate parameter, and not the Identity parameter.
The certificate does not necessarily define the identify of the caller; these
functions could be called with a user ID and password.

For the SECURITY_CERTAUTH# function, the certificate is passed in the
Certificate parameter. The certificate contains the identity of the caller, and can
be used instead of a user ID/password combination.

BPX1SEC

Chapter 2. Callable services descriptions 617

||

||||
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|
|
|

2. The BPX1SEC service allows a process to assume an identity that is different
from that of the address space. It is assumed that the process will either
terminate or select a new user ID, but not try to revert back to the original
address space identity. The user could issue the BPX1SEC request again with
the original user identity; however, at this point the user has its own security
environment, at the task level, rather than the address space level.

3. The ability to create or change the security environment (ACEE) for a process is
a privileged operation.

For the highest level of security, an installation defines the BPX.DAEMON
FACILITY class profile. For an application to use the BPX1SEC service, it must
be given UPDATE access to this profile. In addition, all load modules that are
executing in the application’s address space must be defined to RACF as
controlled. For more information on setting up this security, see z/OS UNIX
System Services Planning.

4. The purpose of the BPX1SEC register/deregister service is to provide a way for
the caller to associate or disassociate its user ID with a certificate. No new
security environment is created, and no authentication of the user is done.

5. The ability to call the BPX1SEC service to register or deregister a certificate
with a user ID is not a privileged operation. The user does not need any special
authority above that required by RACF to register or deregister certificates. The
caller does not, for example, have to be a DAEMON or a SUPERUSER. RACF
requires that the caller have access to the RACDCERT FACILITY class
definitions (IRR.DIGTCERT.ADD and IRR.DIGTCERT.DELETE) for registration
and deregistration.

6. Only a single-threaded process can call the BPX1SEC service with function
code SECURITY_CREATE#.

7. The BPX1SEC authenticate service provides the caller with a way to
authenticate a security environment using a certificate and user ID. The
certificate must already be registered. If the certificate is not registered, an error
is returned.

8. When you use the BPX1SEC authenticate service, you must retrieve the user
ID after the BPX1SEC call. If another BPX1SEC authenticate service is
requested, the value of this user ID field will be updated, and possibly changed.
Calls to getpwnam and pwdname will also update this field.

9. No additional authority is necessary to use the BPX1SEC authenticate service.
To run program-controlled for the authenticate service, the BPX.DAEMON
FACILITY class profile must be defined, or the environment will be marked dirty
and an error returned.

Related services
v “w_getpsent (BPX1GPS) — Get Process Data” on page 908

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1SEC Example” on page 1231.

BPX1SEC

618 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

select/selectex (BPX1SEL) — Select on File Descriptors and Message
Queues

Function
The select/selectex callable service checks the I/O status of multiple open file
descriptors and message queues. The file descriptors can be for character special
files, pipes, sockets, or files.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SEL,(Number_msgsfds,
Read_list_length,
Read_list,
Write_list_length,
Write_list,
Exception_list_length,
Exception_list,
Timeout_pointer,
Ecb_pointer,
User_option_field,
Return_value,
Return_code,
Reason_code)

Parameters
Number_msgsfds

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword of which the first halfword (the high-order 16 bits)
contains the number of message queues and the second halfword (the
low-order 16 bits) contains the number of file descriptors.

The number of file descriptors should be the highest file descriptor that is being
checked for status, plus 1.

For example, if you are interested in the I/O status of file descriptors 5 and 9,
the second halfword of Number_msgsfds would be 10. 10 is the number of file
descriptors that are contained in each of the bit sets (fd 0 through 9 equals 10

select/selectex (BPX1SEL)

Chapter 2. Callable services descriptions 619

fds), and 10 is the highest file descriptor that is being checked, plus 1 (9 plus 1
equals 10). If you want to check file descriptors for status along with message
queues, the highest file descriptor you can specify is 2046.

The number of message queues indicates the number of elements (queue IDs)
in each of the arrays contained in Read_list, Write_list, and Exception_list. For
example, if you specify a value of 10 in the first halfword of Number-msgsfds, it
is expected that arrays of 10 elements each are given in Read_list, Write_list,
and Exception_list. If you specify a value of 0, it is assumed that no arrays are
given and that no message queues are to be checked. The maximum number
of message queues that you can specify is 32 767.

Read_list_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the length, in bytes, of the Read_list. The
length is actually the sum of the length (rounded up to a multiple of 4 bytes) of
the bit set specifying file descriptors and the length of the array of message
queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is
specified, the Read_list is not checked by the select service. The value can be
in the range from 0 to 5000.

Read_list
Supplied and returned parameter

Type: Structure

Length: Length specified by Read_list_length

The name of a structure that contains the bit set for the specified file descriptors
and/or the array of message queue identifiers. Note that the bit set must be
padded with extra bytes, if necessary, to round up its length to the next multiple
of 4 bytes. The bits in the bit set should be turned on for the corresponding
descriptors to be checked for reading. The format of the bits can be specified
with the User_option field. On return, the bits that are set indicate the
descriptors that are ready for reading.

If Read_list contains both a bit set and an array of message queue identifiers,
the bit set must be 256 bytes in length. If only file descriptors are to be
checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length.
Elements with a value of -1 are acceptable and are ignored. On return, the
array is altered such that message queue identifiers that do not meet the
criterion are replaced with a value of -1.

Write_list_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the length, in bytes, of the Write_list. The
length is actually the sum of the length (rounded up to a multiple of 4 bytes) of

select/selectex (BPX1SEL)

620 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

the bit set specifying file descriptors and the length of the array of message
queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is
specified, the Write_list is not checked by the select service. The value can be
in the range from 0 to 5000.

Write_list
Supplied and returned parameter

Type: Structure

Length: Length specified by Write_list_length

The name of a structure that contains the bit set for the specified file descriptors
and/or the array of message queue identifiers. Note that the bit set must be
padded with extra bytes, if necessary, to round up its length to the next multiple
of 4 bytes. The bits in the bit set should be turned on for the corresponding
descriptors to be checked for writing. The format of the bits can be specified
with the User_option field. On return, the bits that are set indicate the
descriptors that are ready for writing.

If Write_list contains both a bit set and an array of message queue identifiers,
the bit set must be 256 bytes in length. If only file descriptors are to be
checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length.
Elements with a value of -1 are acceptable and are ignored. On return, the
array is altered such that message queue identifiers that do not meet the
criterion are replaced with a value of -1.

Exception_list_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the length in bytes of the Exception_list. The
length is actually the sum of the length (rounded up to a multiple of 4 bytes) of
the bit set specifying file descriptors and the length of the array of message
queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is
specified, the Exception_list is not checked by select. The value can be in the
range from 0 to 5000.

Exception_list
Supplied and returned parameter

Type: Structure

Length: Length specified by Exception_list_length

The name of a structure that contains the bit set for the specified file descriptors
and/or the array of message queue identifiers. Note that the bit set must be
padded with extra bytes, if necessary, to round up its length to the next multiple
of 4 bytes. The bits in the bit set should be turned on for the corresponding
descriptors to be checked for exceptions. The format of the bits can be
specified with the User_option field. On return, the bits that are set indicate the
descriptors that have had exceptions.

select/selectex (BPX1SEL)

Chapter 2. Callable services descriptions 621

If Exception_list contains both a bit set and an array of message queue
identifiers, the bit set must be 256 bytes in length. If only file descriptors are to
be checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length.
Elements with a value of -1 are acceptable and will be ignored. On return, the
array is altered such that message queue identifiers that do not meet the
criterion are replaced with a value of -1.

Timeout_pointer
Supplied parameter

Type: Pointer

Length: Fullword

The name of a field that contains a pointer to a timeout value that controls how
the file descriptors are checked:

1. Wait indefinitely :

If the timeout_pointer is zero, the select system call waits (indefinitely) until
one of the selected descriptors is ready.

2. Wait for a specified period of time :

If the timeout_pointer is nonzero, it points to a timeout value mapped by the
BPXYSELT macro, which contains the number of microseconds and/or
seconds to wait for one of the conditions to occur before returning to the
caller. The maximum time that can be specified is 31 days. See “BPXYSELT
— Map the Timeout Value for the select Syscall” on page 1022 for more
information.

v Microseconds can be a value in the range from 0 to 1 000 000.
(1 000 000 microseconds equal 1 second).

v Seconds can be a value in the range from 0 to 2 678 400. (2 678 400
seconds equal 31 days).

Note: Microseconds and seconds are added together to determine the
timeout value. If the timeout value is more than 0 and less than 300
microseconds, the value is rounded up to 300 microseconds.

3. No Waiting :

If the timeout value is 0, select returns immediately after checking the
selected descriptors; no waiting is done.

Ecb_pointer
Supplied parameter

Type: Pointer

Length: Fullword

This can be any of the following values:

1. The name of a field that contains a pointer to a user event control block. To
specify this usage of Ecb_pointer, the high-order bit in Ecb_pointer must be
set to B'0'.

2. The name of a field that contains a pointer to a list of ECBs. To specify this
usage of Ecb_pointer, the high-order bit in Ecb_pointer must be set to B'1'.

The list can contain the pointers for up to 1013 ECBs. The high-order bit of
the last pointer in the list must be set to B'1'.

select/selectex (BPX1SEL)

622 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

3. The name of a field that contains 0. This indicates that no ECBs are
specified.

User_option_field
Supplied and returned parameter

Type: Integer

Length: Fullword

A dual-purpose field that is used as input to specify the format of the read,
write, and exception bit lists, and as output to contain the first selected file
descriptor that was not supported by the select service.

On input, specify one of the following (the values are defined in “BPXYSEL —
Map the select Options” on page 1021):

v SEL#BITSBACKWARD – Bit-backward order by word:

Bits are read from right to left within each word, with the low-order bit on the
right and the high-order bit on the left. For example:
Word 1 Word 2 Word 3

------------------- ----------------------- ----------------------
31 30 29...3 2 1 0 63 62 61...35 34 33 32 95 94 93...67 66 65 64
------------------- ----------------------- ----------------------

Note: In this example, file descriptor 0 is represented by the last bit on the
right in Word 1.

v SEL#BITSFORWARD – Bit-forward order by word:

Bits are read from left to right within each word, with the low-order bit on the
left and the high-order bit on the right. For example:
Word 1 Word 2 Word 3

------------------- ----------------------- ----------------------
0 1 2 3...29 30 31 32 33 34 35...61 62 63 64 65 66.67...93 94 95
------------------- ----------------------- ----------------------

Note: In this example, file descriptor 0 is represented by the first bit on the
left in Word 1.

On output, the select service returns one of the following:

v −1, if all the selected file descriptors supported the select callable service.

v The first selected file descriptor that did not support the select callable
service.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the select service returns one of the following:

v The number of read, write, and exceptional conditions that were found
among the given message queues; and the number of read, write, and
exceptional conditions that were found among the specified file descriptors.
These two values are returned, respectively, in the first halfword and the
second halfword of Return_value. Should the return value for message
queues exceed 32 767, only 32 767 is reported. This is to ensure that
Return_value does not appear to be negative. Should the return value for file
descriptors be greater than 65 535, only 65 535 is reported.

select/selectex (BPX1SEL)

Chapter 2. Callable services descriptions 623

v 0, if the timeout value expired before any of the conditions were met.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the select service stores the return code. The
select service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The select service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINTR The select service request was interrupted by a signal for the

caller.
EINVAL One of the parameters contains a value that is not correct. The

following reason codes can accompany this return code:
JRNoLists, JRListTooShort, JRMsOutOfRange, JRInvUserOp,
JRSecOutOfRange, JRNoFds,
JRTooManyMsgQIds,JRTooManyFds, JRListLenBad.

EIO One of the descriptors in the select mask has become
inoperative, and it is being included repeatedly in a select, even
though other operations against this descriptor have been failing
with EIO. A socket descriptor can become inoperative, for
example, if TCP/IP is shut down. When a descriptor fails, a
failure from select does not tell you which descriptor has failed.
The select call usually succeeds, and the descriptors are
reported to you as being ready for whatever events were
specified on the select call. When the descriptor is subsequently
used on a receive or other operation, you will receive the EIO
failure and can then react to the problem with that individual
descriptor. In general, you would close() the descriptor and
remove it from the next select mask. If the individual descriptor’s
failing return code is ignored, however, and an inoperative
descriptor is repeatedly selected on and used (even though each
time it is used the call fails with EIO), the select call itself will
eventually fail with EIO.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the select service stores the reason code. The
select service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The bit set for the read_list, write_list, and exception_list is a string of bits such

that if X is an element of the set, the bit that represents X is set to 1. For
example, if descriptor 1 is to be checked, bit 1 should be turned on in the bit
set. Here is how that byte would look:

select/selectex (BPX1SEL)

624 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Bit-forward order: B'01000000'.

v Bit-backward order: B'00000010'.

2. When a positive value is specified for the number of file descriptors:

v At least one bit set (read, write, or exception) must be specified, and its
length must be large enough (rounded up to the next multiple of 4) to contain
the bit that represents the largest descriptor you specified.

v If more than one bit set is specified, each bit set must be the same length.

For example, if you want to check the read status for file descriptor 59 and
the write status for file descriptor 6:

Number of fds = 60

Read_list_length = 8
Read_list = the bit representing fd 59 is set on (see User_option_field
to determine which bit that would be)

Write_list_length = 8
Write_list = the bit representing fd 6 is set on (see User_option_field
to determine which bit that would be)

Exception_list_length = 0

3. When both the first and second halfwords of Number_msgsfds contain a
positive value, the Read_list, Write_list, and Exception_list must each contain
both a bit set and an array of message queue identifiers, unless a value of 0 is
specified for its length. The following example illustrates what you must do.

Suppose you want to check the read status for file descriptors 3 and 5 and the
write status for message queues whose identifiers are 7 and 8.

Number of fds = 6 (the largest fd plus 1)
Number of message queues = 2

Read_list_length = 264 (256 byte bit set length + 8 byte array length) Read_list
= the 256-byte bit set with appropriate bits set on for fds 3 and 5, followed by a
two-element array that contains the value of -1 in both elements.

Write_list_length = 264 (same length as for read) Write_list = the 256-byte bit
set with all its bits set off followed by the two-element array that contains the
numbers 7 and 8.

Exception_list_length = 0

4. You can use the select service as a timer-only function by specifying zero for
the Read_list_length, Write_list_length, and Exception_list_length, and by
specifying timeout_pointer and timeout_value. If you specify zero for
timeout_pointer, the select service blocks forever. If you specify zero for
timeout_value, no blocking is done, and the select service returns immediately
to the caller.

5. You can also specify an Ecb_pointer with the timer only function.

6. Regular files are always ready for reading and writing.

Characteristics and restrictions
There are no restrictions on the use of the select service.

select/selectex (BPX1SEL)

Chapter 2. Callable services descriptions 625

Examples
For an example using this callable service, see “BPX1SEL (select)Example” on
page 1233.

select/selectex (BPX1SEL)

626 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

semctl (BPX1SCT) — Perform Semaphore Control Operations

Function
The semctl service provides semaphore control operations. These functions include
reading and changing the values of semaphores and removing a set of semaphores
from the system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SCT,(Semaphore_ID,
Semaphore_Number
Command,
SValue | Argument_address (Buffer | Array),
Return_value,
Return_code,
Reason_code)

Parameters
Semaphore_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the semaphore identifier.

Semaphore_Number
Supplied parameter

Type: Integer

Length: Fullword

Specifies the semaphore number. Semaphore_Number ranges from 0 to
Number_of_Semaphores - 1. Use with Sem_GETVAL, Sem_SETVAL,
Sem_GETNCNT and Sem_GETZCNT. This argument is ignored for all other
commands.

Command
Supplied parameter

Type: Integer

Length: Fullword

semctl (BPX1SCT)

Chapter 2. Callable services descriptions 627

The name of a fullword field that indicates the semaphore command that is to
be executed. For the structure that contains these constants, see “BPXYSEM
— Map InterProcess Communication Semaphores” on page 1022 and
“BPXYIPCP — Map InterProcess Communication Permissions” on page 978.
The values for Command are:

Sem_GETVAL Returns the value of semval for the requested
Semaphore_Number, if the current process has
read permission.

Sem_SETVAL Sets the semval for the requested
Semaphore_Number to the contents of SValue,
if the current process has alter permission.
When this Command is successfully executed,
the semadj values that correspond to this
semaphore for all processes are cleared.

Sem_GETPID Returns the ID of the most recent process to
update the semaphore, if the current process
has read permission.

Sem_GETNCNT Returns the number of threads waiting on the
semaphore to become greater than the current
value, if the current process has read
permission. See “semop (BPX1SOP) —
Perform Semaphore Serialization Operations”
on page 638.

Sem_GETZCNT Returns the number of threads waiting on the
semaphore to become zero, if the current
process has read permission. See “semop
(BPX1SOP) — Perform Semaphore
Serialization Operations” on page 638.

Sem_GETALL Stores all semaphore semvals into the array of
halfwords that is pointed to by the
Argument_address parameter, if the current
process has read permission. It is the caller’s
responsibility to ensure that the storage that is
allocated for the array is large enough to hold
all semaphore elements. The number of
semaphore values stored is SEM_NSEMS,
which may be obtained using the Ipc_STAT
command.

Sem_SETALL Sets semvals according to the array that is
pointed to by the Argument_address parameter,
if the current process has alter permission.
Each value must be zero or positive. When this
Command is successfully executed, the semadj
values that correspond to each specified
semaphore in all processes are cleared. It is
the caller’s responsibility to ensure that the
storage that is allocated for the array is large
enough for all semaphore elements. The
number of semaphore values read is
SEM_NSEMS, which may be obtained using
the Ipc_STAT command.

semctl (BPX1SCT)

628 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If IPC_BINSEM is specified on the semget call,
this option should not be used when there is a
possibility that other threads could be
performing semaphore operations on this
semaphore, as there may be no serialization
while the semaphore values are being updated.

Ipc_STAT Obtains status information about the
semaphore that is identified by the
Semaphore_ID parameter, if the current
process has read permission. This information
is stored in the buffer that is pointed to by the
Argument_address parameter.

Ipc_SET Sets the value of the IPC_UID, IPC_GID and
IPC_MODE from the SEMID_DS data structure
that is associated with Semaphore_ID into the
SEMID_DS structure that is pointed to by
Argument_address. Any value for IPC_UID and
IPC_GID may be specified. Only the mode bits
that are documented for semget (BPX1SGT)
argument Semaphore_Flags may be set. This
Command can only be executed by a process
that has an effective user ID equal either to that
of a process with appropriate privileges or to
the value of IPC_CUID or IPC_UID in the
SEMID_DS data structure that is associated
with Semaphore_ID. This information is taken
from the buffer that is pointed to by the
Argument_address parameter. For the data
structure, see “BPXYSEM — Map InterProcess
Communication Semaphores” on page 1022,
SEMID_DS DSECT.

Ipc_RMID Removes the semaphore identifier that is
specified by Semaphore_ID from the system
and destroys the set of semaphores and the
SEMID_DS data structure that are associated
with it. This Command can only be executed by
a process that has an effective user ID equal to
either that of a process with appropriate
privileges or to the value of IPC_CUID or
IPC_UID in the SEMID_DS data structure that
is associated with Semaphore_ID.

SValue
Supplied parameter

Type: Integer

Length: Fullword

Specifies the value to be set for the semaphore that is identified by the
Semaphore_Number.

Argument_address (Buffer | Array)
Supplied parameter

Type: Address

semctl (BPX1SCT)

Chapter 2. Callable services descriptions 629

Length: Fullword

The name of a field that contains the address of the Buffer, Array or a null.

Table 9. Calling parameters and commands

Number Command Buffer | Array Return Value

Sem No. GETVAL NA SemVal, -1

Sem No. SETVAL SValue 0, -1

Sem No. GETPID NA Pid, -1

Sem No. GETNCNT NA Count, -1

Sem No. GETZCNT NA Count, -1

NA GETALL Array, output 0, -1

NA SETALL Array, input 0, -1

NA STAT Buffer, output 0, -1

NA SET Buffer, input 0, -1

NA RMID NA 0, -1

Buffer
Supplied and returned parameter

Type: Structure

Length: Length of SEMID_DS.

The name of a field that contains the address of a data area that is mapped by
SEMID_DS. This field is used for stat and set.

Array
Supplied and returned parameter

Type: Structure

Length: GETALL - An array of 2-byte integers for each
semaphore in the set equal to (SEM_NSEMS *
2).

SETALL - A 2-byte integer for each semaphore
in the set equal to (SEM_NSEMS * 2).

SETVAL - A 4-byte integer for the specified
semaphore. The valid range is 0 through the
system limit.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semctl service returns −1, if not successful,
or the following when successful:

GETVAL The value of semval is returned

GETPID The value of sempid is returned

GETNCNT The value of semncnt is returned

semctl (BPX1SCT)

630 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

GETZCNT The value of semzcnt is returned

All others A value of zero is returned

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semctl service stores the return code. The
semctl service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The semctl service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES Operation permission (read or alter) is denied to the calling

process. The following reason code can accompany the return
code: JRIpcDenied.

EFAULT The Buffer or ARRAY parameter specified an address that
caused the callable service to program check. The following
reason code can accompany the return code: JRBadAddress.

EINVAL One of the following errors occurred:

v Semaphore_ID is not a valid semaphore identifier.

v Semaphore_Number is less than zero or greater than or equal
to the number of semaphores in this set.

v The Command parameter is not a valid command.

v The mode bits were not valid (ipc_SET).

The following reason codes can accompany the return code:
JRIpcBadFlags, JRIpcBadID, JRSema4BadSemN and
JRBadEntryCode.

EPERM The Command was IPC_RMID or IPC_SET, and the effective
user ID of the caller is not that of a process with appropriate
privileges and is not the value of IPC_CUID or IPC_UID in the
SEMID_DS data structure that is associated with Semaphore_ID.
The following reason code can accompany the return code:
JRIpcDenied.

ERANGE The SETVAL or SETALL value exceeds the system-imposed
maximum that is defined by SEM#MAX_VAL in BPXYSEM. The
following reason code can accompany the return code:
JRSema4BadValue.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semctl service stores the reason code. The
semctl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

semctl (BPX1SCT)

Chapter 2. Callable services descriptions 631

Usage notes
1. Each semaphore in the semaphore set is represented by a data structure that is

defined as follows:

semval Unsigned halfword semaphore value

sempid Process ID of the last operation

semncnt Unsigned halfword number of processes waiting
for semval to become greater than the current
value

semzcnt Unsigned halfword number of processes waiting
for semval to become zero

2. The Semaphore_ID was obtained from semget (BPX1SGT).

3. A semadj variable is maintained by the process for all of its threads. This
adjustment value allows the kernel to restore semaphore values if a process
terminates before it can issue a semop. It is the application’s responsibility to
maintain semadj values for process termination.

4. Ipc_SET can change permissions, and may affect a thread’s ability to use the
semaphore functions.

5. When a semaphore ID is removed (Ipc_RMID) from the system, all waiting
threads regain control with RV=-1, RC=EIDRM, and RC=JRIpcRemoved.

6. The remove is complete by the time control is returned to the caller.

Related services
v “mvsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 408
v “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 633
v “semop (BPX1SOP) — Perform Semaphore Serialization Operations” on

page 638

Characteristics and restrictions
The invoker is restricted by ownership and read and read-write permissions that are
defined by semget and semctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1SCT (semctl) Example” on
page 1229.

semctl (BPX1SCT)

632 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

semget (BPX1SGT) — Create or Find a Set of Semaphores

Function
The semget function creates a new semaphore set or finds an existing semaphore
set. The semaphore set ID is returned.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SGT,(Key,
Number_of_Semaphores,
Semaphore_Flags,
Return_value,
Return_code,
Reason_code)

Parameters
Key

Supplied parameter

Type: Integer

Length: Fullword

Identification for this semaphore set. This is either a user-defined value that
serves as a lookup value to determine if the semaphore set already exists, or
the reserved value Ipc_PRIVATE. (See “BPXYIPCP — Map InterProcess
Communication Permissions” on page 978. Ipc_PRIVATE is sometimes used
when a process does not want to share a semaphore set, or when it wants to
privately control access to it by other processes.)

Number_of_Semaphores
Supplied parameter

Type: Integer

Length: Fullword

The number of semaphores that are to be allocated to this set. This value may
be zero if the application knows that the semaphore set should already be
created for the specified key parameter. A zero value is not allowed with
Ipc_CREAT or Ipc_PRIVATE. The maximum for this variable is controlled by the
installation. For an existing semaphore identifier, this variable must not be
greater than the number of semaphores in that set.

semget (BPX1SGT)

Chapter 2. Callable services descriptions 633

Semaphore_Flags
Supplied parameter

Type: Structure

Length: Fullword

Valid values for this field include any combination of the following (additional
bits cause an EINVAL):

Ipc_CREAT Creates a message queue if the key specified
does not already have an associated ID.
Ipc_CREAT is ignored when Ipc_PRIVATE is
specified.

Ipc_EXCL Causes the semget function to fail if the key
specified has an associated ID. Ipc_EXCL is
ignored when Ipc_CREAT is not specified, or
when Ipc_PRIVATE is specified.

Ipc_BINSEM Binary semaphore. The semaphore must
behave in a binary manner: the number of
semaphore operations must be 1, and the
semop must be either 1 with a semval of 1, or
−1 with a semval of 0 or 1. Specifying the
SEM_UNDO flag in the SEM_FLGS field of
BPXYSEM on a semop() request against a
binary semaphore allows the semaphore to be
released when a process exits without releasing
it. The use of this flag improves performance if
the PLO instruction is available on the
hardware.

Ipc_SHORTHOLD Indicates that the application will hold the
resource that is being serialized for extremely
short intervals of time. When the IPC_BINSEM
flag is also specified, the default first-in-first-out
ordering of semaphore obtain requesters is
bypassed, allowing short duration requesters to
cut to the front of the wait chain.

S_IRUSR Permits the process that owns the semaphore
set to read it.

S_IWUSR Permits the process that owns the semaphore
set to alter it.

S_IRGRP Permits the group that is associated with the
semaphore set to read it.

S_IWGRP Permits the group that is associated with the
semaphore set to alter it.

S_IROTH Permits others to read the semaphore set.

S_IWOTH Permits others to alter the semaphore set.

The values that begin with the ″Ipc_″ prefix are defined in BPXYIPCP and are
mapped onto S_TYPE, which is in BPXYMODE. (See “BPXYIPCP — Map
InterProcess Communication Permissions” on page 978 and “BPXYMODE —
Map the Mode Constants of the File Services” on page 986.)

semget (BPX1SGT)

634 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The values that begin with the ″S_I″ prefix are defined in BPXYMODE, and are
a subset of the access permissions that apply to files.

This operand is ignored if the semaphore set is already defined to the system.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semget service returns the semaphore
identifier or, if unsuccessful, −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semget service stores the return code. The
semget service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The semget service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCESS A semaphore identifier exists for the Key parameter, but access

permission, as specified by the low-order 9 bits of the
Semaphore_Flags parameter, is not granted (the ″S_″ items).
The following reason code can accompany the return code:
JRIpcDenied.

EEXIST A semaphore identifier exists for the Key parameter, and both
Ipc_CREAT and Ipc_EXCL are specified. The following reason
code can accompany the return code: JRIpcExists.

EINVAL Number_of_Semaphores is not valid when:

v The semaphore identifier exists for the Key parameter and
Number_of_Semaphores exceeds the number of semaphores
previously defined.

v Number_of_Semaphores is zero.

v Number_of_Semaphores exceeds the system limit. This
system limit is set with the IPCSEMNSEMS parameter in a
BPXPRM parmlib member. You can use the ipcs -x shell
command to view this value.

The Semaphore_Flags parameter includes bits that are not
supported by this function. The following reason codes can
accompany the return code: JRSema4BadNSems,
JRSema4ZeroNSems, JRSema4BigNSems, and JRIpcBadFlags.

ENOENT A semaphore identifier does not exist for the Key parameter and
Ipc_CREAT was not set. The following reason code can
accompany the return code: JRIpcNoExists.

semget (BPX1SGT)

Chapter 2. Callable services descriptions 635

Return_code Explanation
ENOSPC A semaphore identifier is to be created, but the system-imposed

limit on the maximum number of allocated semaphore identifiers
system-wide would be exceeded. This system limit is set with the
IPCSEMNIDS parameter in the BPXPRM parmlib member. You
can use ipcs -x shell command to the view this value. You can
use the ipcrm shell command to remove unused semaphore
identifiers. The following reason code can accompany the return
code: JRIpcMaxIDs.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semget service stores the reason code.
The semget service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. Each semaphore in the semaphore set is represented by a data structure that

is defined as follows:

semval Unsigned halfword semaphore value

sempid Process ID of last operation

semncnt Unsigned halfword number of processes waiting for semval to
become greater than current value

semzcnt Unsigned halfword number of processes waiting for semval to
become zero

2. When a semaphore set is created, the value of semval for all semaphores is
set to zero.

3. As long as the semaphore ID is known and access is permitted, any thread
can invoke semctl or semop without invoking semget.

4. This function returns the semaphore identifier that is associated with the Key
parameter.

5. When it is successful, this function creates a data structure that is defined by
SEMID_DS and an array that contains the number of semaphores specified, if
one of the following is true:
v The Key parameter is equal to Ipc_PRIVATE.
v The Key parameter does not already have a semaphore identifier

associated with it, and Ipc_CREAT is set.

For the data structure, see “BPXYSEM — Map InterProcess Communication
Semaphores” on page 1022.

6. Upon creation, the data structure that is associated with the new semaphore
identifier is initialized as follows:
v Ipc_CUID and Ipc_UID are set to the effective user ID of the calling

process.
v Ipc_CGID and Ipc_GID are set to the effective group ID of the calling

process.

semget (BPX1SGT)

636 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The low-order 9 bits of Ipc_MODE are equal to the low-order 9 bits of the
Semaphore_Flags parameter.

v SEM_NSEMS is set equal to the value of the Number_of_Semaphores
parameter.

v SEM_OTIME is set to 0 and SEM_CTIME is set to the current time.

7. If the Key parameter is not Ipc_PRIVATE, Ipc_EXCL is not set, and a
semaphore identifier already exists for the specified Key parameter, the value
of the Number_of_Semaphores parameter that is specified may not exceed the
Number_of_Semaphores specified on the semget that created the semaphore
set.

8. The semaphore set is removed from the system as soon as BPX1SCT (semctl
RMID) is processed.

9. Users of Ipc_PRIVATE semaphore sets are responsible for removing them
when they are no longer needed. Failure to do so ties up resources.

10. Semaphores created with the Ipc_BINSEM attribute show this bit, and may
also show the Ipc_PLOinUse bit, in the S_MODE byte that is returned with the
w_getipc request.

Related services
v “w_getipc (BPX1GET) — Query Interprocess Communications” on page 901
v “semctl (BPX1SCT) — Perform Semaphore Control Operations” on page 627
v “semop (BPX1SOP) — Perform Semaphore Serialization Operations” on

page 638

Characteristics and restrictions
v There is a maximum number of semaphore sets and semaphores that are

allowed in the system.

v The invoker is restricted by ownership, read, and read-write permissions that are
defined by semget and semctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1SGT (semget) Example” on
page 1240.

semget (BPX1SGT)

Chapter 2. Callable services descriptions 637

semop (BPX1SOP) — Perform Semaphore Serialization Operations

Function
The semop service performs a group of semaphore operations atomically.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SOP,(Semaphore_ID,
Semaphore_Operations,
Number_of_Semaphore_Operations,
Return_value,
Return_code,
Reason_code)

Parameters
Semaphore_ID

Supplied parameter

Type: Integer

Length: Halfword

Specifies the semaphore identifier.

Semaphore_Operations
Supplied parameter

Type: Address

Length: Fullword

Points to an array of data structures mapped by SEM_BUF_ELE in “BPXYSEM
— Map InterProcess Communication Semaphores” on page 1022. The
SEM_OP operations modify the semval for a specific semaphore in the
semaphore set specified by SEM_NUM. All updates to the semaphores’ semval
are made atomically when this callable service returns successfully. Partial
updates to semval are not performed. Each SEM_BUF_ELE element contains
the following:

v SEM_NUM is a halfword semaphore number in the Semaphore_ID set.
References to semval, sempid, semncnt, semzcnt are to this element in the
semaphore set. SEM_NUM ranges from 0 to
Number_of_Semaphore_Operations - 1.

semop (BPX1SOP)

638 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v SEM_OP is a signed halfword with three different operations, described as
follows:

– SEM_OP < 0, evaluate semval + SEM_OP (remember that SEM_OP is
negative). If the operation yields a negative number, the operation either
returns to the caller (EAGAIN) or suspends execution of the calling thread
until the operation yields a non-negative number. Semncnt is incremented
for each thread that is waiting, and decremented when waiting is
complete. When waiting is complete, semval = semval + SEM_OP.

– SEM_OP > 0, set semval = semval + SEM_OP.

– SEM_OP = 0, test semval. If not zero, the operation either returns to the
caller (EAGAIN) or suspends execution of the calling thread until
semval=0. Semzcnt is incremented for each thread that is waiting, and
decremented when waiting is complete.

v SEM_FLGS – contains the Ipc_NOWAIT and Sem_UNDO bits. Ipc_NOWAIT
causes SEM_OP=0 and SEM_OP<0 to return immediately with a return code
of EAGAIN if the condition cannot be met. Otherwise, processing is
suspended. Sem_UNDO instructs the process to maintain an adjustment
value for SEM_OP ^= 0. For the data structure, see “BPXYSEM — Map
InterProcess Communication Semaphores” on page 1022.

Number_of_Semaphore_Operations
Supplied parameter

Type: Integer

Length: Fullword

Contains the number of operations in Semaphore_Operations. A value of zero
up to the maximum allowed by the system may be specified.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semop service returns 0 (all SEM_OP
operations were performed) or −1 (none of the SEM_OP operations were
performed).

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semop service stores the return code. The
semop service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The semop service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCESS Permission is denied. The following reason code can accompany

the return code: JRIpcDenied.
EAGAIN The operation would result in suspension of the calling process,

but NOWAIT (see SEM_FLGS) was specified. The following
reason code can accompany the return code: JRIpcRetry.

semop (BPX1SOP)

Chapter 2. Callable services descriptions 639

Return_code Explanation
EDEADLK The combination of operations can never be satisfied. This

condition is detected by analysis of the operations that were
requested and the system maximums, and does not include
interactions with other threads. For example, an operation could
add 1 to a semaphore, and a later operation in the same
SEM_BUF could test it for zero. The following reason code can
accompany the return code: JRDeadlock.

EFAULT The Semaphore_Operations parameter specified an address that
caused the service to program check. The following reason code
can accompany the return code: JRBadAddress.

EFBIG SEM_NUM exceeds Number_of_Semaphore_Operations - 1. The
following reason code can accompany the return code:
JRSema4BadSemN.

EIDRM Semaphore_ID was removed from the system while the caller
was waiting. The following reason code can accompany the
return code: JRIpcRemoved.

EINTR semop() was interrupted by a signal. The following reason code
can accompany the return code: JRIpcSignaled.

EINVAL The Semaphore_ID does not represent a semaphore set. The
following reason code can accompany the return code:
JRIpcBadID.

ENOSPC The space that is allotted for all semaphore data would be
exceeded by the addition of the UNDO structure for this request.
The following reason code can accompany the return code:
JRSemStorageLimit.

ERANGE An operation would cause sem_val or sem_adj to overflow the
system-imposed limit. These system limits are defined in
BPXYSEM fields SEM#MAX_VAL and SEM#MAX_ADJ. The
following reason codes can accompany the return code:
JRSema4BadValue and JRSema4BadAdj.

E2BIG Number_of_Semaphore_Operations exceeds the maximum
allowed by the system. This system limit is set with the
IPCSEMNOPS parameter in a BPXPRMxx parmlib member. You
can use the ipcs -x shell command to view this value. The
following reason code can accompany the return code:
JRSema4BadNOps.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the semop service stores the reason code. The
semop service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. Each semaphore in the semaphore set is represented by an anonymous data

structure, which is defined as follows:

semval Unsigned halfword semaphore value

sempid Process ID of last operation

semncnt Unsigned halfword number of processes waiting for semval to
become greater than current value

semop (BPX1SOP)

640 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

semzcnt Unsigned halfword number of processes waiting for semval to
become zero

2. A nonzero SEM_OP value requires write permission (else EACCES).

3. A zero SEM_OP value requires read permission (else EACCES).

4. Upon successful completion, sempid equals the process ID of the calling
process.

5. Wait queue service is unpredictable.

6. Waiting is done on a thread basis. Multiple threads (even within a single
process) could be waiting on the same semaphore.

7. Adjustments are maintained on a process basis, and can be changed by
threads outside or within the process.

8. Within an array of semaphore operations, either all operations or none of the
operations are performed.

9. Incorrect usage of semaphores may cause the application to become
deadlocked and wait forever. Designing the semaphore hierarchy so that the
semaphores are obtained in a specific order will avoid deadlocks.

10. If the Number_of_Semaphore_Operations is zero, the callable service returns
successfully with no semaphore operation being performed.

Related services
v “mvsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 408
v “semctl (BPX1SCT) — Perform Semaphore Control Operations” on page 627
v “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 633

Characteristics and restrictions
The invoker is restricted by ownership, read, and read-write permissions that are
defined by semget and semctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1SOP (semop) Example” on
page 1251.

semop (BPX1SOP)

Chapter 2. Callable services descriptions 641

send (BPX1SND) — Send Data on a Socket

Function
The send callable service sends data on a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SND,(Socket_descriptor,
Buffer_length,
Buffer,
Buffer_alet,
Flags,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
send is to be done.

Buffer_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Buffer.

Buffer
Supplied parameter

Type: Character

Length: Length specified by Buffer_length

The name of a field that contains the data that is to be transmitted.

send (BPX1SND)

642 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Buffer.

You should specify a Buffer_alet of 0 for the normal case of a buffer in the
user’s address space (current primary address space). If a value other than 0 is
specified for the Buffer_alet, the value must represent a valid entry in the
dispatchable unit access list (DUAL).

Flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a field that contains information about how the data is to be sent.
See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the send service returns one of the following:

v The number of bytes sent from the buffer, if the request is successful. A
value of 0 indicates that the connection is closed.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the send service stores the return code. The
send service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The send service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF Socket_descriptor does not refer to a valid descriptor. The

following reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer.
EINTR A signal interrupted the send before any data was written. The

following reason code can accompany the return code:
JRSockRdwrSignal.

EIO There has been a network or transport failure. The following
reason code can accompany the return code: JRPrevSockError.

send (BPX1SND)

Chapter 2. Callable services descriptions 643

Return_code Explanation
EMSGSIZE The message is too large to be sent all at once, as the socket

requires. The following reason code can accompany the return
code: JRSockBufMax.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN The socket is not connected. The following reason code can
accompany the return code: JRSocketNotCon.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPIPE An attempt was made to send to a socket that is shut down or
closed. The following reason code can accompany the return
code: JRSocketClosed. This error also generates a SIGPIPE
signal.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for
data to be written. The following reason code can accompany the
return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the send service stores the reason code. The
send service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The socket must be connected.

2. If there is not enough room to write the data to the output buffer, the service
either blocks waiting for room, or returns an EWOULDBLOCK, depending on
whether the socket is marked as blocking or nonblocking.

Related services
v “recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on

page 592

Characteristics and restrictions
There are no restrictions on the use of the send service.

Examples
For an example using this callable service, see “BPX1SND (send) Example” on
page 1249.

send (BPX1SND)

644 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

send_file (BPX1SF) — Send a File on a Socket

Function
The send_file callable service sends a file, with optional header and trailer data, as
a byte stream on a socket connection. The service also provides options to close
the socket connection after the data has been sent, and to prepare the socket for
reuse after it has been closed.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SF,(Sfpl_length,
Sfpl,
Return_value,
Return_code,
Reason_code)

Parameters
Sfpl_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Sfpl structure that is
being passed in the Sfpl parameter. To determine the value of Sfpl_length, use
the BPXYSFPL macro(“BPXYSFPL — Map the send_file parameter list” on
page 1023).

Sfpl
Supplied and returned parameter

Type: Structure

Length: Specified by the Sfpl_length parameter

The name of the Sfpl structure that is to be used to control this I/O operation.
See “Usage notes” for details on setting the fields of this structure.

The Sfpl is mapped by the BPXYSFPL macro (“BPXYSFPL — Map the
send_file parameter list” on page 1023).

Return_value
Returned parameter

send_file (BPX1SF)

Chapter 2. Callable services descriptions 645

Type: Integer

Length: Fullword

The name of a fullword in which the send_file service returns the following:

v 0, if the request is successful.

v −1, if the request is not successful.

v 1, if the request was interrupted by a signal, or if a nonblocking descriptor
would have blocked while sending the data. The Sfpl structure is updated by
the system to account for the data that was sent. You can continue the
operation from the point at which it was interrupted by reissuing the send_file
request with the same Sfpl structure.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the send_file service stores the return code.
The send_file service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The send_file service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF A descriptor that was not valid was supplied; the file was not

open for reading; or the socket was not open for writing. Consult
Reason_code to determine the exact reason the error occurred.
The following reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen, JRRFileWrOnly,
JRWFileRdOnly.

ECONNRESET The connection was reset by a peer.Consult Reason_code to
determine the exact reason the error occurred. The following
reason code can accompany the return code: JRSockNotCon.

ECONNABORTED A connection has been dropped.
EFAULT An address that was passed could not be referenced in the key

of the caller.
EIO An I/O error occurred.
ENOBUFS The service was unable to obtain a buffer. Consult Reason_code

to determine the exact reason the error occurred. The following
reason code can accompany the return code:
JROutofSocketCells.

ENOMEM The service was unable to obtain memory to complete the
operation.

EINTR A signal interrupted the send_file service before any data was
written. Consult Reason_code to determine the exact reason the
error occurred. The following reason code can accompany the
return code: JRSockRdwrSignal.

EINVAL Data that was not valid was sent to the request. Consult
Reason_code to determine the exact reason the error occurred.
The following reason code can accompany the return code:
JRSocketCallParmError.

ENOTCONN The socket was not connected. Consult Reason_code to
determine the exact reason the error occurred. The following
reason code can accompany the return code: JRSocketNotCon.

send_file (BPX1SF)

646 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EPIPE An attempt was made to send a message to a socket that is shut

down or closed. This error also generates a SIGPIPE signal.
Consult Reason_code to determine the exact reason the error
occurred. The following reason code can accompany the return
code: JRSocketClosed.

EWOULDBLOCK or
EAGAIN

A descriptor is marked nonblocking, and no data could be sent
without blocking.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the send_file service stores the reason code.
The send_file service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. Sfpl Structure (send_file parameter list)

The send_file operation is controlled by the values that are set into this
structure. Refer to the BPXYSFPL macro for the exact field names (“BPXYSFPL
— Map the send_file parameter list” on page 1023).

Notes:

a. The entire Sfpl structure should be zeroed out before its first use, to ensure
that undefined options, reserved space, and fields that might be used are
initialized properly.

b. All doubleword fields are treated as signed 63–bit arithmetic values. For
operations that are known to be under 4 gigabytes in size, you can refer to
the lower words of these fields (named in the BPXYSFPL macro) as
unsigned 32–bit arithmetic values.

Field Description

Socket_desc The descriptor on which to send the data.

File_desc The descriptor from which to read the data that is sent.

File_offset A doubleword field that contains the byte offset in the file from
which to start sending.

File_bytes A doubleword field that contains the number of bytes to be sent,
starting from the File_offset.

If this field is −1, the entire file, from File_offset, is sent. The
system updates the field with the number of file bytes that were
sent (File_size−File_offset).

If this field is 0, no file data is sent, and File_desc is ignored.

If File_desc is not a regular file, it may be necessary to supply a
specific value for File_bytes, unless a normal “end-of-file”
indication is expected from File_desc during this operation, or
you simply want the operation to run forever, transferring bytes
as they arrive.

send_file (BPX1SF)

Chapter 2. Callable services descriptions 647

File_size A doubleword field that is updated by the system after the
operation with the file’s size.

Header_len The length of the header data.

Header_ptr The address of the header data that is to be sent in front of the
file data.

Header_alet The ALET of the header data.

Trailer_len The length of the trailer data.

Trailer_ptr The address of the trailer data that is to be sent after the file
data.

Trailer_alet The ALET of the trailer data.

Bytes_sent A doubleword field that is filled in by the system with the total
number of bytes that are sent on this call. If the file must be
sent with multiple calls because of signal interruptions, this field
contains the value for the last call only; it is not a running total.

Options A field that contains the following bit flags, which have the
specified meaning when the bit is on:

v SF_CLOSE — Close the Socket_desc after the data has
been sent. If the operation completes successfully and
Socket_desc is closed, the system updates Socket_desc in
the Sfpl with −1.

v SF_REUSE — Prepare the Socket_desc to be reused after
the data has been successfully sent.

This option is intended for sockets, and for the subsequent
use of the descriptor on an accept_and_recv() call. To reuse
the socket descriptor, the Socket_desc value, as updated by
the system in the Sfpl after the call to send_file(), is specified
as the Accepted_socket parameter on the accept_and_recv()
call.

Between the send_file() and the accept_and_recv() calls, a
reused socket may only be used on accept_and_recv() or
close(). The socket descriptor should be closed if it is not to
be used again.

If reuse is not supported, the system closes Socket_desc,
and replaces its value in the Sfpl with −1. This ensures that
the output value of Socket_desc is always appropriate as an
input value for the Accepted_socket parameter of an
accept_and_recv() call.

2. The send_file() function attempts to send the header data, followed by the file
data from File_desc, followed by the trailer data, over socket_desc.

3. As data is sent, the system updates the Sfpl structure to account for the data
that has been sent. This facilitates continuation after a signal interruption, but it
also means that the Sfpl must be almost completely reset to start another new
operation.

4. If File_offset>File_size, or File_bytes>(File_size−File_offset), the operation fails
with an EINVAL error.

5. The SF_CLOSE and SF_REUSE flags are only effective when the operation
completes successfully.

6. The send_file service is not strictly limited to sending a file on a socket. Any two
stream-oriented descriptors may be used, although some of the parameters may

send_file (BPX1SF)

648 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

have to be interpreted differently. When File_desc is a pipe, for example, the
File_size and Offset parameters are meaningless.

7. The file cursor for the File_desc that is specified is updated with the results of
the send_file operation. This does not affect other send_file() calls, but it does
affect later read() and write() operations that use this File_desc.

8. Application Usage

The send_file service is designed to work with the accept_and_recv service to
provide an efficient file transfer capability for a connection-oriented server with
short connection times and high connection rates.

These functions are designed for a server process/thread model that is different
from the traditional one in which a parent thread accepts connections in a loop
and spins off child processes or threads to issue the receive and do work. In
this new server model, the parent is eliminated. Multiple worker processes or
threads are initially created, and each worker process or thread independently
executes the accept_and_recv() and send_file() functions in a loop.

The performance benefits of accept_and_recv() and send_file() include fewer
buffer copies, recycled sockets, and optimal thread scheduling.

Socket descriptors can be recycled in the following way:

a. On the first call to accept_and_recv(), the application sets the
Accepted_socket parameter to −1. This causes the system to assign a new
descriptor to the accepted socket.

b. On the following call to send_file(), the application requests SF_REUSE.
The socket session is closed, but the socket descriptor remains available for
reuse on the next accept_and_recv().

c. All later calls to accept_and_recv() specify as their Accepted_socket the
Socket_desc value that is left over from the previous call to send_file().

In cases in which the socket does not support reuse, the system sets
Socket_desc to −1 after the send_file(), so that the value is suitable for the
next accept_and_recv() call.

Related services
v “accept_and_recv (BPX1ANR) — Accept a Connection and Receive the First

Block of Data” on page 13
v “send (BPX1SND) — Send Data on a Socket” on page 642
v “read (BPX1RED) — Read from a File or Socket” on page 567

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1SF (send_file) Example” on
page 1235.

send_file (BPX1SF)

Chapter 2. Callable services descriptions 649

sendmsg (BPX2SMS) — Send Messages on a Socket

Function
The sendmsg callable service sends messages on a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX2SMS,(Socket_descriptor,
Message_hdr,
Flags,
Iov_alet,
Iov_buffer_alet,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
sendmsg is to be done.

Message_hdr
Supplied parameter

Type: Structure

Length: Length of BPXYMSGH

The name of a field that contains the message headers from which the
messages are sent. See “BPXYMSGH — Map the Message Header” on
page 987 for more information about the format of this field.

Flags
Supplied parameter

Type: Structure

Length: Fullword

sendmsg (BPX2SMS)

650 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field that contains information about how the data is to be sent.
See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Iov_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for the iov structure that is specified
in Message_hdr.

Iov_buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for the buffers that are pointed to by
the iov structure that is specified in Message_hdr.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sendmsg service returns one of the
following:

v The number of bytes sent from the buffers, if the request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sendmsg service stores the return code.
The sendmsg service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The sendmsg service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EAFNOSUPPORT The address family that was specified in the message header is

not the same as the address family that owns the socket.
EBADF A file descriptor that was not valid was supplied. The following

reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can
accompany the return code: JRSockNotCon.

EINTR A signal interrupted the sendmsg service before any data was
written. The following reason code can accompany the return
code: JRSockRdwrSignal.

sendmsg (BPX2SMS)

Chapter 2. Callable services descriptions 651

Return_code Explanation
EINVAL Data that was not valid was sent to the request.The following

reason codes can accompany the return code: JRInvalidMsgh,
JRSocketCallParmError, and JRSockNoName.

EIO There has been a network or transport failure. The following
reason codes can accompany the return code: JRInetRecycled,
JRPrevSockError.

EMSGSIZE The message is too large to be sent all at once, as the socket
requires. The following reason code can accompany the return
code: JRSockBufMax.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN The socket was not connected. The following reason code can
accompany the return code: JRSocketNotCon.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPIPE An attempt was made to send a message to a socket that is shut
down or closed. The following reason code can accompany the
return code: JRSocketClosed. This error also generates a
SIGPIPE signal.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for
data to be written. The following reason code can accompany the
return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sendmsg service stores the reason code.
The sendmsg service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The socket can be either connected or unconnected.

2. If there is not enough room to write the data to an output buffer, the service
either blocks waiting for an output buffer to become available, or returns an
EWOULDBLOCK, depending on whether the socket is marked as blocking or
nonblocking.

3. The BPX2SMS call supersedes the BPX1SMS call, which is still available for
migration purposes only.

Related services
“recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in
Message Buffers” on page 599

Characteristics and restrictions
There are no restrictions on the use of the sendmsg service.

sendmsg (BPX2SMS)

652 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX2SMS (sendmsg) Example” on
page 1248.

sendmsg (BPX2SMS)

Chapter 2. Callable services descriptions 653

sendto (BPX1STO) — Send Data on a Socket

Function
The sendto callable service sends data on a socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STO,(Socket_descriptor,
Buffer_length,
Buffer,
Buffer_alet,
Flags,
Sockaddr_length,
Sockaddr,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
sendto is to be done.

Buffer_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Buffer.

Buffer
Supplied parameter

Type: Character

Length: Length specified by Buffer_length

sendto (BPX1STO)

654 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field from which the data is to be sent.

Buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Buffer. You should specify a
Buffer_alet of 0 for the normal case of a buffer in the user’s address space
(current primary address space). If a value other than 0 is specified for the
Buffer_alet, the value must represent a valid entry in the dispatchable unit
access list (DUAL).

Flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a field that contains information about how the data is to be sent.
See “BPXYMSGF — Map the Message Flags” on page 987 for more
information about the format of this field.

Sockaddr_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Sockaddr. The size of this field
should be less than 4096 bytes (4KB) in length. The size of the buffer that is
specified should be the maximum length that the sockaddr could be on output.

Sockaddr
Supplied and returned parameter

Type: Structure

Length: Length specified by Sockaddr_length

The name of a socket address structure to which the data is to be sent. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
more information about the format of this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sendto service returns one of the following:

v The number of bytes that were sent on the socket, if the request is
successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

sendto (BPX1STO)

Chapter 2. Callable services descriptions 655

Length: Fullword

The name of a fullword in which the sendto service stores the return code. The
sendto service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The sendto service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAFNOSUPPORT The address family that was specified in the sockaddr is not the

same address family as the socket.
EBADF A file descriptor that was not valid was specified.The following

reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can
accompany the return code: JRSocketNotCon.

EINTR A signal interrupted the sendto service before any data was
written. The following reason code can accompany the return
code: JRSocketRdwrSignal.

EINVAL An input parameter was incorrect. The following reason codes
can accompany the return code: JRSocketCallParmError,
JRSockNoName.

EIO There has been a network or transport failure.The following
reason codes can accompany the return code: JRInetRecycled,
JrPrevSockError.

EMSGSIZE The message is too large to be sent all at once, as the socket
requires. The following reason code can accompany the return
code: JRSockBufMax.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN The socket was not connected. The following reason code can
accompany the return code: JRSocketNotCon.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPIPE An attempt was made to send to a socket that is shut down or
closed. The following reason code can accompany the return
code: JRSocketClosed. This error also generates a SIGPIPE
signal.

EPROTOTYPE The address specifies a socket that is not the correct type for this
request.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for
data to be written. The following reason code can accompany the
return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sendto service stores the reason code. The
sendto service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

sendto (BPX1STO)

656 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. A datagram socket can be unconnected.

2. If the sending socket has no space to hold the message that is to be
transmitted, the sendto service either blocks waiting for an output buffer to
become available, or returns an EWOULDBLOCK, depending on whether the
socket is marked blocking or nonblocking.

Related services
v “recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer” on

page 595

Characteristics and restrictions
There are no restrictions on the use of the sendto service.

Examples
See “BPX1STO (sendto) Example” on page 1270 for an example using this callable
service.

sendto (BPX1STO)

Chapter 2. Callable services descriptions 657

server_init (BPX1SIN) — Server Initialization

Function
The server_init callable service allows a server address space to connect to Work
Load Manager (WLM) for the purpose of queueing and servicing work requests.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SIN,(ManagerType,
SubSystemType,
SubSystemName,
ApplEnv,
ParallelEu,
Return_value,
Return_code,
Reason_code)

Parameters
ManagerType

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one or more of the following values that
indicate the type of WLM manager the caller is requesting to become. The
following are the supported values:

SRV_WORKMGR WLM work management services are to be
made available to the calling address space.
This value can be combined with the
SRV_QUEUEMGR and SRV_SERVERMGR
values.

SRV_QUEUEMGR WLM queue management services are to be
made available to the calling address space.
This value can be combined with the
SRV_WORKMGR and SRV_SERVERMGR
values.

SRV_SERVERMGR WLM server management services that are
associated with a queue manager are to be
made available to the calling address space.

server_init (BPX1SIN)

658 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

This value can be combined with the
SRV_QUEUEMGR and SRV_WORKMGR
values.

These constants are defined in the BPXYCONS macro; see “BPXYCONS —
Constants Used by Services” on page 956.

SubSystemType
Supplied parameter

Type: Character string

Length: 4 bytes

The name of a 4-byte field that contains the generic subsystem type (such as
CICS®, IMS™, and WEB). When SRV_WORKMGR is specified for the
ManagerType parameter, this is the primary category under which WLM
classification rules are grouped. This parameter must be padded with blanks if
the name is less than 4 bytes. When SRV_QUEUEMGR is specified for the
ManagerType parameter, the combination of the SubSystemType and
SubSystemName parameter values must be unique to a single MVS system.

SubSystemName
Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte field that contains the subsystem name to be used for
classifying work requests when SRV_WORKMGR is specified for the
ManagerType parameter. This parameter must be padded with blanks if the
name is less than 8 bytes. When SRV_SERVERMGR is specified for the
ManagerType parameter, the subsystem name must match the subsystem
name that is specified on the corresponding call to server_init for a work
manager (ManagerType = SRV_WORKMGR).

ApplEnv
Supplied parameter

Type: Character string

Length: 32 bytes

The name of a 32-byte area that contains the name of the application
environment under which work requests are served. The character string must
be padded with blanks if the name is less than 32 characters. This parameter is
only valid when SRV_SERVERMGR is specified for the ManagerType
parameter. It is ignored for all other ManagerType values.

ParallelEu
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the maximum number of tasks within the
address space that will be created to process concurrent work requests. This
parameter is only valid when SRV_SERVERMGR is specified for the
ManagerType parameter. It is ignored for all other ManagerType values.

server_init (BPX1SIN)

Chapter 2. Callable services descriptions 659

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the server_init service returns 0 if the request
is successful, or −1 if it is not successful.

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the server_init service stores the return code.
The server_init service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The server_init service can return one of the following
values in the Return_code parameter:

Return Code Explanation
EFAULT An argument of this service contained an address that was not

accessible to the caller.
EINVAL The ManagerType parameter contains a value that is not correct.
EMVSWLMERROR A WLM service failed. Consult Reason_code to determine the

WLM service that failed and the reason the error occurred. See
z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO for a list of WLM services (IWM*) error
reason codes.

EPERM The calling thread’s address space is not permitted to the
BPX.WLMSERVER FACILITY class profile. The caller’s address
space must be permitted to the BPX.WLMSERVER FACILITY
class profile. If BPX.WLMSERVER is not defined, the calling
process is not defined as a superuser (UID=0).

EMVSSAF2ERR An error occurred in the security product. Consult Reason_code
to determine the exact reason the error occurred.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the server_init service stores the reason code.
The server_init service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A successful call to server_init causes the calling address space to be

connected to WLM for the WLM management services requested. Additionally,
for a successful server manager connection call (SRV_SERVER_MGR
ManagerType), the calling process is made a child of and placed in the session
and process group of the corresponding work manager. The corresponding work
manager is the process that called server_init for the ManagerType combination

server_init (BPX1SIN)

660 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

SRV_WORK_MGR+SRV_QUEUE_MGR with the same SubSystemType and
SubSystemName values that were specified by the server manager process.

This parent child relationship facilitates the use of signals between the server
manager and the work manager to communicate with each other. The server
manager, for example, after calling this service can issue the getppid service
call to obtain the work server’s process id, and then send signals to the work
server when necessary.

Because the server manager processes are child processes of the work
manager/queue manager process, the work manager/queue manager process
needs to ensure that terminated server manager processes get cleaned up. This
requires the parent to either prevent the children processes from becoming
zombie processes by using the sigaction service for the SIGCHLD signal, or
clean up any terminated child processes by using the wait service.

2. This service should be used by a server that is designed to function in one of
the following two ways:

The server is divided into multiple address spaces, with a work and queue
manager (MANAGER_TYPE=SRV_WORK_MGR+SRV_QUEUE_MGR) address space obtaining
work requests from an external source and then queueing the work requests to
one or more server manager (MANAGER_TYPE=SRV_SERVER_MGR) address spaces to
process the work requests.

A single server address space functions as the work and queue manager and
as the server manager
(MANAGER_TYPE=SRV_WORK_MGR+SRV_QUEUE_MGR+SRV_SERVER_MGR), with one or more
threads obtaining work from an external source and then queueing the work
requests to one or more server threads that process the work.

The first method is the recommended approach to using this service, since it
takes best advantage of WLM’s system workload balancing capabilities by
allowing WLM to create and manage the server address spaces against all
other work in the system.

3. The server_init service is a privileged service that requires the caller to be
authorized in one of the following ways:
v Have read access to the BPX.WLMSERVER FACILITY class profile
v Have a UID of 0 when the BPX.WLMSERVER FACILITY class profile is not

defined

Related services
v “server_pwu (BPX1SPW) — Server Process Work Unit” on page 662

Examples
For an example using this callable service, see “BPX1SIN (server_init) Example” on
page 1243.

server_init (BPX1SIN)

Chapter 2. Callable services descriptions 661

server_pwu (BPX1SPW) — Server Process Work Unit

Function
The server_pwu callable service provides a general purpose interface for managing
and processing work using the Work Load Manager (WLM). It lets a program put
work requests onto the WLM work queues, obtain work from the WLM work
queues, transfer work to other WLM work servers, end units of work, delete WLM
enclaves, and refresh WLM work servers.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPW,(FcnCode,
TransClass,
ApplEnv,
ClassifyAreaLen,
ClassifyAreaPtr,
ApplDataLen,
ApplDataPtr,
FdStrucPtr,
Return_value,
Return_code,
Reason_code)

Parameters
FcnCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one or more of the following values
indicating the function that is requested. The following are the supported values:

SRV_PUT_NEWWRK A new work request is to be put onto the WLM
work queue for the application environment that
is identified by the ApplEnv parameter, as part
of a newly created WLM enclave. This value
cannot be combined with any other FcnCode
value.

SRV_PUT_SUBWRK A new work request is to be put onto the WLM
work queue for the application environment that
is identified by the ApplEnv parameter, as part

server_pwu (BPX1SPW)

662 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

of the existing WLM enclave that is associated
with the calling thread. This value can be
combined only with the SRV_END_WRK
FcnCode value.

SRV_TRANSFER_WRK The work request that is associated with the
WLM enclave of the calling thread is to be
transferred to the work queue of the target
application environment that is identified by the
ApplEnv parameter. As part of the transfer, the
calling thread is disassociated from its WLM
Enclave. This value cannot be combined with
any other FcnCode value.

SRV_GET_WRK A new work request is to be obtained from the
WLM work queue for the calling application
environment server. The SRV_GET_WRK
FcnCode also results in the association of the
calling thread with the WLM enlcave that was
created when the obtained work request was
put onto a WLM work queue. If the calling
thread is already associated with a WLM
enclave, an implicit SRV_END_WRK is
performed. This value can only be combined
with the SRV_END_WRK and SRV_DEL_ENC
FcnCode values.

SRV_REFRESH_WRK The servers that are associated with the
application environments that are managed by
the calling work and queue manager are to be
refreshed. This causes all servers to complete
existing work requests and then terminate. New
servers are then started to process new work.

SRV_END_WRK The calling thread is to be disassociated from
its WLM enclave. This value can only be
combined with the SRV_GET_WRK,
SRV_PUT_SUBWRK and SRV_DEL_ENC
FcnCode values.

SRV_DEL_ENC The WLM enclave that is associated with the
calling thread is to be deleted. This value can
only be combined with the SRV_GET_WRK
and SRV_END_WRK FcnCode values. This
value should not be used to delete an enclave
before ending the work units in the enclave, to
prevent erroneous workload management
results

SRV_DISCONNECT The calling server’s connection to WLM is to be
severed. Once a server is disconnected from
WLM, it can no longer use this service to
process more requests for the application
environment for which it had been connected to
WLM by a call to the server_init function. If a
SRV_DISCONNECT is performed by a work
and queue manager, all related server
managers implicitly lose their connections to
WLM. This means that the related server

server_pwu (BPX1SPW)

Chapter 2. Callable services descriptions 663

managers also lose their ability to process more
requests via this service.

SRV_DISCONNECT_COND The calling server’s connection to WLM is to be
severed only if the caller has no more WLM
enclaves that it is still managing. A work and
queue manager is still managing an enclave if it
has yet to be serviced by a server manager.
Once a server is disconnected from WLM, it
can no longer use this service to process more
requests for the application environment for
which it had been connected to WLM by a call
to the server_init function. If a
SRV_DISCONNECT is performed by a work
and queue manager, all related server
managers implicitly lose their connection to
WLM as well. This means that the related
server managers also lose their ability to
process more requests via this service.

These constants are defined in the BPXYCONS macro (“BPXYCONS —
Constants Used by Services” on page 956).

TransClass
Supplied parameter

Type: Character string

Length: 8 bytes

The name of an 8-byte area that contains the name of the transaction class that
is to be associated with the work request. This parameter is only valid when the
SRV_PUT_NEWWRK FcnCode parameter value is specified. It is ignored for
the other FcnCode parameter values, and ignored if a classification area is
supplied. This parameter must be padded with blanks if the name contains
fewer than 8 bytes.

ApplEnv
Supplied parameter

Type: Character string

Length: 32 bytes

The name of a 32-byte area that contains the name of the application
environment under which work requests are served. The character string must
be padded with blanks, if the name contains fewer than 32 characters. This
parameter is valid only when one of the SRV_PUT FcnCode parameter values
is specified, or if the SRV_TRANSFER_WRK function code parameter value is
specified and is ignored otherwise.

ClassifyAreaLen
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the classification information
area, as specified by the ClassifyAreaPtr parameter. This parameter is valid

server_pwu (BPX1SPW)

664 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

only with the SRV_PUT_NEWWRK FcnCode parameter value, and is ignored
for the other FcnCode parameter values.

ClassifyAreaPtr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the classification
information for the work request in the form of the parameter list for the
IWMCLSFY macro. This parameter is intended for use with the
SRV_PUT_NEWWRK FcnCode parameter value only. The length of this area is
supplied by the ClassifyAreaLen parameter. This parameter is ignored if the
ClassifyAreaLen parameter contains a zero value. Some of the classification
data that is pointed to by the IWMCLSFY parameter list is truncated if it
exceeds the maximum supported length, as follows:

ACCTINFO 143 bytes maximum length

SUBSYSPM 255 bytes maximum length

SOURCELU 17 bytes maximum length

COLLECTION 18 bytes maximum length

CORRELATION 12 bytes maximum length

ApplDataLen
Supplied or returned parameter

Type: Integer

Length: Fullword

When one of the SRV_PUT or SRV_TRANSFER FcnCode parameter values is
specified, this is a supplied parameter that is the name of a fullword that
contains the length of the application data that is specified by the ApplDataPtr
parameter.

When the SRV_GET_WRK FcnCode value is specified, this is a returned
parameter that is the name of a fullword in which the server_pwu service is to
return the length of the application data that is returned in the ApplDataPtr
parameter.

This parameter is intended for use when one of the SRV_PUT,
SRV_TRANSFER, or SRV_GET FcnCode parameter values is specified. The
maximum length that is supported for the application data is 10 megabytes.

ApplDataPtr
Supplied or returned parameter

Type: Address

Length: Fullword

When one of the SRV_PUT or SRV_TRANSFER FcnCode parameter values is
specified, this is a supplied parameter that is the name of a fullword that
contains the address of the application data area that is to be associated with
the work request. This application data allows the caller to uniquely identify the
specific work that the caller is requesting.

server_pwu (BPX1SPW)

Chapter 2. Callable services descriptions 665

When the SRV_GET_WRK FcnCode value is specified, this is a returned
parameter that is the name of a fullword in which the server_pwu service is to
return the address of the application data that is associated with the obtained
work request. The returned data area is an identical copy of the data area that
was supplied on the corresponding server_pwu call to put the work request on
a WLM work queue.

This parameter is intended for use when one of the SRV_PUT,
SRV_TRANSFER, or SRV_GET FcnCode parameter values is specified.

FdStrucPtr
Supplied or returned parameter

Type: Address

Length: Fullword

When one of the SRV_PUT or SRV_TRANSFER FcnCode parameter values is
specified, this is a supplied parameter that is the name of a fullword that
contains the address of the file descriptor list structure, as mapped by the
BPXYSFDL mapping macro. The file descriptors that are specified in the list are
to be propagated to the process that calls the server_pwu service to obtain the
work request that is created by the call to this service. If the SFDLCLOSE flag
is turned on in the SFDLFLAGS field of the supplied structure, all file
descriptors in the list are closed in the calling process. If a null address is
specified, no file descriptors are propagated.

When the SRV_GET_WRK FcnCode value is specified, this is a returned
parameter that is the name of a fullword in which the server_pwu service is to
return the address of the file descriptor list structure that is associated with the
obtained work request. The returned file descriptor list structure contains a
count of entries and a list of file descriptors that represent the list of file
descriptors that have been remapped in the calling process for the obtained
work request. The remapped file descriptor values correspond to the file
descriptor values that were supplied on the server_pwu call to put the work
request on a WLM work queue. A file descriptor list is only returned for a
SRV_GET_WRK call if the list that was supplied on the corresponding
SRV_PUT_WRK, SRV_PUT_SUBWRK or SRV_TRANSFER_WRK call had a
file descriptor count of greater than zero.

This parameter is intended for use when one of the SRV_PUT,
SRV_TRANSFER, or SRV_GET_WRK FcnCode parameter values is specified.
The maximum number of file descriptors that are supported in the file descriptor
list is 64.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the server_pwu service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

server_pwu (BPX1SPW)

666 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the server_pwu service stores the return code.
The server_pwu service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The server_pwu service can return one of the following
values in the Return_code parameter:

Return Code Explanation
EAGAIN The requested service could not be performed at the current

time. The following reason code can accompany this return code:
JRENCLAVESEXIST

EINVAL The FcnCode parameter contains a value that is not correct.
EMVSWLMERROR A WLM service failed. Consult Reason_code to determine the

WLM service that failed and the reason the error occurred. See
z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO for a list of WLM services (IWM*) error
reason codes.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the server_pwu service stores the reason
code. The server_pwu service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. Usage of the various server_pwu functions requires that the calling address

space has successfully issued a call to the server_init service.

2. For the SRV_PUT_NEWWRK and SRV_REFRESH_WRK functions to run
successfully, the caller must have successfully issued a call to the server_init
service for one of the following ManagerType parameter combinations:

v SRV_WORK_MGR + SRV_QUEUE_MGR

v SRV_WORK_MGR + SRV_QUEUE_MGR + SRV_SERVER_MGR

3. For the SRV_PUT_SUBWRK and SRV_TRANSFER_WRK functions to run
successfully, the caller must have successfully issued a call to the server_init
service for one of the following ManagerType parameter combinations:

v SRV_WORK_MGR + SRV_QUEUE_MGR + SRV_SERVER_MGR

v SRV_SERVER_MGR

4. For the SRV_GET_WRK, SRV_END_WRK and SRV_DEL_ENC functions to run
successfully, the caller must have successfully issued a call to the server_init
service for one of the following ManagerType parameter combinations:

v SRV_WORK_MGR + SRV_QUEUE_MGR + SRV_SERVER_MGR

v SRV_SERVER_MGR

5. A successful call to server_pwu for the SRV_PUT_NEWWRK FcnCode not only
creates a work request that is placed onto a WLM work queue, but it also
creates a new WLM enclave for that work to run in when the work request is
obtained. The newly created WLM enclave is classified based on the
classification information that is supplied in the input classify area, or based on

server_pwu (BPX1SPW)

Chapter 2. Callable services descriptions 667

the input transaction class. Unlike SRV_PUT_NEWWRK, the
SRV_PUT_SUBWRK and SRV_TRANSFER_WRK FcnCodes queue work
requests that eventually are associated with the WLM enclave of the calling
thread when the work request is obtained.

6. A successful call to server_pwu for the SRV_GET_WRK FcnCode not only
results in the caller’s obtaining a work request from a WLM work queue that is
associated with the caller’s application environment, but it also results in the
associating of the calling thread with the WLM enclave that is associated with
the obtained work request. When the calling thread goes through task
termination, or when its process is terminated, the work request is ended and
the associated WLM enclave is deleted if it is owned by the terminating task or
process. The SRV_GET_WRK caller owns the enclave if the work was queued
using the SRV_PUT_NEWWRK or SRV_TRANSFER_WRK functions. If the
caller is a thread created using pthread_create (pthread), the thread task owns
the enclave. If the caller is not a pthread, the process owns the enclave.

When the FdStrucPtr parameter is used to propagate file descriptors, the caller
must ensure that all of the file descriptors in the list are valid open file
descriptors in the caller’s process and are not being closed during the
processing of this service. If this is not the case, this service cannot guarantee
the proper propagation of the specified file descriptors.

7. The following demonstrates some sample usage scenarios for the FdStrucPtr
parameter:

v The queue manager process puts work on a work queue for a
single–threaded server manager with no open file descriptors. The queued
work has a supplied file descriptor structure with 3 file descriptors specified:
Fds Supplied on SRV_PUT_NEWWRK Fds returned on SRV_GET_WRK
------------------------------ ---------------------------
0, 1, 2 0, 1, 2

v The queue manager process puts work on a work queue for a multithreaded
server manager with open file descriptors. The queued work has a supplied
file descriptor structure with 3 file descriptors specified:
Fds Supplied on SRV_PUT_NEWWRK Fds returned on SRV_GET_WRK
------------------------------ ---------------------------
0, 1, 2 12, 9, 14

Related services
“server_init (BPX1SIN) — Server Initialization” on page 658

Examples
For an example using this callable service, see “BPX1SPW (server_pwu) Example”
on page 1258.

server_pwu (BPX1SPW)

668 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

set_dub_default (BPX1SDD) — Set the Dub Default Service

Function
The set_dub_default service allows the calling task to change the current default
dub setting for its subtasks. The default dub setting can be set so that:

v All subtasks are dubbed as new processes.

v All subtasks are dubbed as threads in the caller’s process.

v Each subtask is dubbed with its own z/OS UNIX security environment, if it has a
task-level security environment (ACEE) associated with it.

v The caller is dubbed as a process to which signals will not be delivered.

v Each subtask of the caller is dubbed as a new process when it issues its first
z/OS UNIX service call.

v All processes dubbed in this job are considered permanent processes.

v All z/OS UNIX callable services called during a shutdown and restart window
from a process registered as permanent will end abnormally (valid only with the
DUBJOBPERM option).

v The entire jobstep is not undubbed when the last dubbed task (other than the
jobstep task) undubs.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SDD,(Dub_setting,
Return_value,
Return_code,
Reason_code)

Parameters
Dub_setting

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the dub setting value.

Specifies the name of a fullword field that must contain one of the following dub
setting values:

set_dub_default (BPX1SDD)

Chapter 2. Callable services descriptions 669

DUBPROCESS Dub the subtasks of the caller as new
processes when each issues its first z/OS UNIX
service call.

DUBTHREAD Dub the subtasks of the caller as threads in the
caller’s process when each issues its first z/OS
UNIX service call.

DUBTASKACEE Dub each subtask of the caller with its own
z/OS UNIX security environment, if the subtask
has a task-level security environment (ACEE)
associated with it.

DUBNOSIGNALS Dub the caller as a process to which signals
will not be delivered.

DUBPROCESSDEFER Dub each subtask of the caller as a new
process when it issues its first z/OS UNIX
service call. The address space is not dubbed
when this call is issued. The first dub of the
address space occurs when the next z/OS
UNIX service call is issued (by this task or by
another task in the address space).

DUBJOBPERM Make the entire job permanent. All processes
dubbed in this job are to be considered
permanent processes. A permanent process is
one that is not taken down during a z/OS UNIX
shutdown; all z/OS UNIX callable services that
are called from these processes during a
shutdown and restart window will return in
failure.

DUBABENDCALLS All z/OS UNIX callable services that are called
from a process registered as permanent during
a shutdown and restart window will end
abnormally. This option is only relevant when it
is accompanied by the DUBJOBPERM option.

DUBNOJSTUNDUB Do not undub the entire jobstep when the last
dubbed task (other than the jobstep task)
undubs.

See “BPXYCONS — Constants Used by Services” on page 956 for the dub
setting values.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_dub_default service returns the prior
dub setting for the calling task, if the call is successful. If the call is
unsuccessful, the service returns −1.

Return_code
Returned parameter

Type: Integer

set_dub_default (BPX1SDD)

670 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the set_dub_default service stores the return
code. The set_dub_default service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The set_dub_default service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EINVAL One of the parameters contains an unsupported or incorrect value.

The following reason code can accompany the return code:
JRDubValue.

EPERM The calling process does not have the appropriate privilege to
perform the requested operation. The following reason code can
accompany the return code: JROK.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_dub_default service stores the reason
code. The set_dub_default service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The default dub setting for a process that has not called this service is

DUBTHREAD.

2. This service can be called to override a previous call to the service.

3. When a task that is not already dubbed issues its first z/OS UNIX service call,
its TCB tree is searched to determine the default dub setting to use. The search
starts at the caller’s mother task and continues up the TCB tree until an
ancestor task is found that is already dubbed. If the search finds a dubbed task,
the default dub setting from that task is used. If a dubbed task is not found, the
task is dubbed as a new process. A dubbed task is a task that has one or more
of the following attributes:

v It has issued a z/OS UNIX service call.

v It was created as a result of a fork service call.

v It was created as a result of an exec or execmvs service call.

v It was created as a result of an attach_exec or attach_execmvs service call.

v It was created as a result of a pthread_create service call.

4. DUBNOSIGNALS is mutually exclusive with DUBPROCESSDEFER. Specifying
both options yields unpredictable results.

5. If DUBNOSIGNALS is used in a POSIX(ON) environment, the behavior of the
process is undefined.

6. DUBDEFERPROCESS should only be used from the job step task. It is not
honored when issued from other tasks in the address space.

7. After the job step task issues a BPX1SDD call with option
DUBDEFERPROCESS:

v If it is the first task in the address space to issue a z/OS UNIX syscall and be
dubbed, the job step task becomes a process in the address space.

set_dub_default (BPX1SDD)

Chapter 2. Callable services descriptions 671

v If another task in the address space has already issued a z/OS UNIX syscall
and been dubbed, the job step task becomes a thread in that process.

When BPX1SDD is called with the DUBPROCESS option, the tasks must be
dubbed as processes. If, when a thread or process is being dubbed, the calling
task has a task-level ACEE that does not have a USP connected to it, an
INITUSP is done against the task-level ACEE. This causes z/OS UNIX security
information to be associated with the task-level ACEE. If neither DUBPROCESS
nor DUBTHREAD is specified, the tasks are dubbed as threads by default.

8. The DUBJOBPERM, DUBABENDCALLS, and DUBNOJSTUNDUB options
should be used from the jobstep task prior to the call to any other z/OS UNIX
callable service that could dub the address space, or they may not have their
intended effect.

Characteristics and restrictions
1. When you set the DUBTASKACEE option, each task is dubbed as a separate

process and uses the task-level ACEE that was set up by the user. In this
environment, there are numerous restrictions on which other services can be
used. This environment is supported primarily to allow a server to access HFS
files and socket services. You cannot use z/OS UNIX security functions, such as
setuid. Threads that are created with pthread_create do not inherit the identity
of the parent. Fork and spawn do not work correctly.

2. Users of the DUBJOBPERM and DUBABENDCALLS options must meet the
following requirements:

v The calling address space must be a system started task address space.

v The caller must be running authorized (APF-authorized, system key 0–7, or
supervisor state).

If these requirements are not met, the service will fail with return code EPERM.

Examples
For an example using this callable service, see “BPX1SDD (setdubdefault)
Example” on page 1230.

set_dub_default (BPX1SDD)

672 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setegid (BPX1SEG) — Set the Effective Group ID

Function
The setegid callable service sets the effective group ID (GID) of a process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SEG,(Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Group_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the group ID that the calling process
wishes to assume.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setegid service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setegid service stores the return code. The
setegid service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The setegid service can return one of the following values in the

setegid (BPX1SEG)

Chapter 2. Callable services descriptions 673

Return_code parameter:

Return_code Explanation
EINVAL The Group_ID that was specified is incorrect.
EPERM The process does not have the appropriate privileges to set the

group ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

EMVSSAF2ERR The SAF call IRRSEG00 incurred an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setegid service stores the reason code.
The setegid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR contains the RACF return and reason codes, respectively, in
the two low-order bytes. For a more detailed description of the RACF SETEGID
service return and reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 GID is not defined to RACF
8 8 User not authorized to change GID
8 12 Internal error during RACF processing
8 16 Unable to establish recovery

Usage notes
1. If Group_ID is equal to the real group ID or saved set group ID of the process,

the effective group ID is set to Group_ID.

2. If Group_ID is not the same as the real group ID, and the calling process has
the appropriate privileges, the effective group ID is set to Group_ID. Refer to
“Authorization” on page 8 for information on appropriate privileges.

3. The setegid service does not change any supplementary group IDs of the
calling process.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “getegid (BPX1GEG) — Get the Effective Group ID” on page 218
v “getgid (BPX1GID) — Get the Real Group ID” on page 220
v “setgid (BPX1SGI) — Set the Group ID” on page 678
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
v If the setegid service is issued from multiple tasks within one address space, use

synchronization to ensure that the setegid services are not performed
concurrently. The execution of setegid service calls concurrently within one
address space can yield unpredictable results.

v If the setegid service is issued from an address space with multiple processes,
the result of the service call affects all processes in the address space.

setegid (BPX1SEG)

674 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1SEG (setegid) Example” on
page 1232.

setegid (BPX1SEG)

Chapter 2. Callable services descriptions 675

seteuid (BPX1SEU) — Set the Effective User ID

Function
The seteuid callable service sets the effective user ID (UID) of a process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SEU,(User_ID,
Return_value,
Return_code,
Reason_code)

Parameters

User_ID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the user ID that the process is to assume.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the seteuid service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

Return_code Explanation
EINVAL The User_ID that was specified is incorrect.

seteuid (BPX1SEU)

676 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EPERM The process does not have the appropriate privileges to set the

user ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

EMVSSAF2ERR The SAF call IRRSEU00 incurred an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the seteuid service stores the reason code.
The seteuid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR contains the RACF return and reason codes, respectively, in
the two low-order bytes. For a more detailed description of the RACF SETEUID
service return and reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 UID is not defined to RACF
8 8 User not authorized to change UID
8 12 Internal error during RACF processing
8 16 Unable to establish recovery

Usage notes
v If User_ID is the same as the real or saved set user ID of the process, or if the

user has the appropriate privilege, the seteuid service sets the effective user ID
to be the same as User_ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

v For information about changing MVS identities, and other restrictions, see the
Usage Notes™ for “setuid (BPX1SUI) — Set User IDs” on page 719.

Related services
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
See “Characteristics and Restrictions” for “setuid (BPX1SUI) — Set User IDs” on
page 719.

Examples
For an example using this callable service, see “BPX1SEU (seteuid) Example” on
page 1234.

seteuid (BPX1SEU)

Chapter 2. Callable services descriptions 677

setgid (BPX1SGI) — Set the Group ID

Function
The setgid callable service sets the real, effective, and saved set group IDs (GIDs)
for the calling process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SGI,(Group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Group_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the group ID that the calling process is to
assume.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgid service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgid service stores the return code. The
setgid service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return

setgid (BPX1SGI)

678 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

code values. The setgid service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINVAL The Group_ID that was specified is incorrect.
EPERM The process does not have the appropriate privileges to set the

group ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

EMVSSAF2ERR The SAF call IRRSSG00 incurred an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgid service stores the reason code. The
setgid service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes. The reason code for EMVSSAF2ERR
contains the RACF return and reason codes, respectively, in the two low-order
bytes. For a more detailed description of the RACF SETGID service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 GID is not defined to RACF
8 8 User not authorized to change GID
8 12 Internal error during RACF processing
8 16 Unable to establish recovery

Usage notes
1. If Group_ID is equal to the real group ID or saved set group ID of the process,

the effective group ID is set to Group_ID.

2. If Group_ID is not the same as the real group ID, and the calling process has
the appropriate privileges, the real, saved set, and effective group IDs are set to
Group_ID. Refer to “Authorization” on page 8 for information on appropriate
privileges.

3. The setgid service does not change any supplementary group IDs of the calling
process.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “getegid (BPX1GEG) — Get the Effective Group ID” on page 218
v “getgid (BPX1GID) — Get the Real Group ID” on page 220
v “setegid (BPX1SEG) — Set the Effective Group ID” on page 673
v “setuid (BPX1SUI) — Set User IDs” on page 719

Characteristics and restrictions
v The calling process must be privileged in order to change the real group ID—that

is, to specify a group ID that is different from the process’s real group ID. Refer
to “Authorization” on page 8 for information on appropriate privileges.

setgid (BPX1SGI)

Chapter 2. Callable services descriptions 679

v If the setgid service is issued from multiple tasks within one address space, use
synchronization to ensure that the setgid services are not performed concurrently.
The execution of setgid services concurrently within one address space can yield
unpredictable results.

v If the setgid service is issued from an address space with multiple processes, the
result of the service call affects all processes in the address space.

Examples
For an example using this callable service, see “BPX1SGI (setgid) Example” on
page 1237.

setgid (BPX1SGI)

680 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setgrent (BPX1SGE) — Reset the Group Database

Function
The setgrent callable service resets the group database for subsequent searching
by the getgrent service. The next getgrent service that is used after setgrent starts
searching from the beginning of the group database.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SGE,(Return_value)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgrent service returns 0.

Usage notes
The setgrent service is intended to be used to interrupt a sequential search of the
group database from the calling task. The getgrent service performs the sequential
search. When the setgrent service is called, it resets the search point for the current
task in the group database to the beginning. The next getgrent service that is called
from this task after this point starts searching the group database from the
beginning.

Related services
v “getgrent (BPX1GGE) — Sequentially Access the Group Database” on page 221

Characteristics and restrictions
There are no restrictions on the use of the setgrent service.

Examples
For an example using this callable service, see “BPX1SGE (setgrent) Example” on
page 1236.

setgrent (BPX1SGE)

Chapter 2. Callable services descriptions 681

setgroups (BPX1SGR) — Set the Supplementary Group IDs List

Function
The setgroups callable service replaces the existing supplementary group IDs
(GIDs) list for the calling process with the list that is specified by the caller.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SGR,(SGid_list_count,
SGid_list,
Return_value,
Return_code,
Reason_code)

Parameters
SGid_list_count

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies the number of fullword entries in list that
is pointed to by the SGid_list parameter. The value must be in the range of zero
to NGroups_Max, inclusive.

Specifying 0 causes all existing supplementary group IDs for the calling process
to be deleted. After the setgroups service completes, the calling process does
not have any supplementary group IDs.

SGid_list
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains a pointer to an array of group IDs (GIDs).
The setgroups service uses this list to establish the list of supplementary group
IDs. The number of entries in the list is defined by the SGid_list_count
parameter.

setgroups (BPX1SGR)

682 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If the SGid_list_count specified is 0, the SGid_list is ignored and does not need
to contain a valid address.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgroups service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgroups service stores the return code.
The setgroups service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The setgroups service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EFAULT The SGid_list and SGid_list_count specify an array that is

partially or completely outside the addressable storage range.
EINVAL The SGid_list_count parameter was less than 0 or greater than

NGroups_Max.
EMVSSAF2ERR System authorization facility (SAF) had an error.
EPERM The caller is not authorized; only authorized users are allowed to

alter the supplementary group IDs list.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setgroups service stores the reason code.
The setgroups service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
To determine the value of NGroups_Max, see “sysconf (BPX1SYC) — Determine
System Configuration Options” on page 824.

Related services
v “setgid (BPX1SGI) — Set the Group ID” on page 678
v “getgroups (BPX1GGR) — Get a List of Supplementary Group IDs” on page 230
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824

setgroups (BPX1SGR)

Chapter 2. Callable services descriptions 683

Characteristics and restrictions
v To set the supplementary group IDs, the requester must be a superuser. If a

non-superuser caller requests the setgroups service, the service returns an
EPERM Return_code.

v To successfully complete the setgroups service, the caller’s process must be the
only process in the address space. If multiple processes are present (through
attach_exec or attach_execMVS), the function does not complete successfully.

Examples
For an example using this callable service, see “BPX1SGR (setgroups) Example”
on page 1239.

setgroups (BPX1SGR)

684 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setitimer (BPX1STR) — Set the Value of the Interval Timer

Function
The setitimer callable service sets the timer value and optionally returns a pointer to
a structure that contains the previous timer value. This function also generates a
signal that is to be delivered when the interval timer expires.

Requirements

Authorization: Problem Program or Supervisor State, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STR (Interval_Type,
Interval_Value_Adr,
Old_Interval_Value_Adr,
Return_value,
Return_code,
Reason_code)

Parameters
Interval_Type

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a numeric value that identifies the interval
timer (these values apply to both Interval_Value_Adr and
Old_Interval_Value_Adr). This parameter can have the following values:

ITIMER_REAL Real time (the default if VIRTUAL and PROF
are not specified)

ITIMER_VIRTUAL Virtual time (CPU time minus system time)

ITIMER_PROF CPU time

ITIMER_MICRO The initial and reload times are in microseconds
(the default if NANO is not specified)

ITIMER_NANO The initial and reload times are in nanoseconds

The ITIMER_ constants are defined in the BPXYITIM macro.

Interval_Value_Adr
Supplied parameter

setitimer (BPX1STR)

Chapter 2. Callable services descriptions 685

Type: address

Length: fullword

The address of a structure that is defined by the BPXYITIM macro. This
structure contains the initial interval and reload values in seconds and either
microseconds or nanoseconds.

Old_Interval_Value_Adr
Supplied parameter

Type: address

Length: fullword

The address of a structure that is defined by the BPXYITIM macro. This
structure contains the time remaining and reload values in seconds and either
microseconds or nanoseconds. This address may be zero if the current values
are of no interest to the user.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setitimer service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setitimer service stores the return code.
The setitimer service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The setitimer service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL One of the following occurred:

v The value that was specified for Interval_Type is incorrect
(JrStrIntervalTypeInvalid).

v The value that was specified in the structure that is pointed to
by Interval_Value_Adr is incorrect (JrNanoSecondsTooBig,
JrMSecondsTooBig, JRNegativeValueInvalid).

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setitimer service stores the reason code.
The setitimer service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value.

setitimer (BPX1STR)

686 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. The time between signals is maintained as a priority over the number of

signals in an extended period of time. A delay in processing could result in a
late signal; the signal generated by the reload value maintains the requested
interval. As with other signals, multiples are lost. For example, for a 1 second
timer, delays might result in 3597 signals per hour, with no two timers closer
than 1 second. If the application requires exactly 3600 signals per hour, a
reload value of zero should be used, and a new setitimer should be calculated
and issued by the signal handler.

2. The duration between signals is always greater than, or equal to, the reload
value that is specified.

3. Intervals vary, depending on when MVS gives the task its time slices.

4. The setting of the first two words of the Interval_Value disables the timer,
regardless of the reload value (third and fourth words).

5. Any setitimer() cancels the previous timer of the same type (that is, REAL,
VIRTUAL, or PROF).

6. Real interval timers and alarms are treated as mutually exclusive. If an
ITIMER_REAL interval timer is issued while an alarm is set, the ITIMER_REAL
interval timer overlays the alarm, and vice versa.

7. The setitimer environment is propagated on the exec() and not propagated on
fork().

8. Below are the interval timers and the corresponding signals that are to be
generated when the timer expires:

v ITIMER_REAL, which decrements in real time. A SIGALRM signal is
delivered when this timer expires.

v ITIMER_VIRTUAL, which decrements in task virtual time. It runs only when
the task is executing outside the kernel. A SIGVTALRM signal is delivered
when it expires. Task virtual is a best estimate, and loses significance when
it is run in a multiprocess environment.

v ITIMER_PROF, which decrements in task time. It runs when the task is
running on behalf of the process. A SIGVPROF signal is delivered when it
expires.

9. The setitimer(), alarm(), and sleep() services use the MVS STIMERM macro. If
the task invokes the STIMERM macro and a combination of these services,
the limit of concurrent STIMERM SET requests for a task can be exceeded,
which results in an abnormal end.

10. ITIMER_REAL interval timers are supported in both multiprocess and
multithreaded environments.

11. You can issue Setitimer() for ITIMER_PROF or ITIMER_VIRTUAL in a
multithreaded or multiprocess environment. However, for ITIMER_VIRTUAL in
a multithread environment, the results may be unpredictable.

12. If two interval timers of the same type expire before a signal is delivered, only
one signal is generated.

13. The reload time is set before the signal interface routine is given control.

MVS-related information
v “getitimer (BPX1GTR) — Get the Value of the Interval Timer” on page 245
v “alarm (BPX1ALR) — Set an Alarm” on page 25

Characteristics and restrictions
None (other than those indicated in the usage notes).

setitimer (BPX1STR)

Chapter 2. Callable services descriptions 687

Examples
For an example using this callable service, see “BPX1STR (setitimer) Example” on
page 1271.

setitimer (BPX1STR)

688 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setpeer (BPX1SPR) — Preset the Peer Address Associated with a
Socket

Function
The setpeer callable service presets the peer address that is associated with a
socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPR,(Socket_descriptor,
Sockaddr_length,
Sockaddr,
Option,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
setpeer is to be done.

Sockaddr_length
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the length of Sockaddr.

Sockaddr
Supplied and returned parameter

Type: Structure

Length: Length specified by Sockaddr_length

setpeer (BPX1SPR)

Chapter 2. Callable services descriptions 689

The name of a socket address structure that contains the peer address. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
more information about the format of this field.

Option
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that indicates the conditions of the setpeer request. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
more information about this field.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpeer service returns one of the
following:

v 0 if the request is successful.

v −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Character set: N/A

Length: Fullword

The name of a fullword in which the setpeer service stores the return code. The
setpeer service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The setpeer service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The socket descriptor is incorrect. The following reason codes

can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpeer service stores the reason code.
The setpeer service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

setpeer (BPX1SPR)

690 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
The setpeer service is not supported by AF_UNIX, AF_INET, or AF_INET6.

Characteristics and restrictions
There are no restrictions on the use of the setpeer service.

Examples
For an example using this callable service, see “BPX1SPR (setpeer) Example” on
page 1257.

setpeer (BPX1SPR)

Chapter 2. Callable services descriptions 691

|

setpgid (BPX1SPG) — Set a Process Group ID for Job Control

Function
The setpgid callable service places a process in a process group. You identify the
group by specifying a process group ID. You can assign a process to a different
group, or you can start a new group with that process as its leader.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPG,(Process_ID,
Process_group_ID,
Return_value,
Return_code,
Reason_code)

Parameters
Process_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the ID of the process that is to be placed
in the process group. If the ID is specified as 0, the system uses the process ID
of the calling process.

Process_group_ID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the ID of the process group where
Process_ID is assigned. If the ID is specified as 0, the system uses the process
group ID that is indicated by the Process_ID parameter.

Return_value
Returned parameter

Type: Integer

Length: Fullword

setpgid (BPX1SPG)

692 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the setpgid service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpgid service stores the return code. The
setpgid service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The setpgid service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The value of Process_ID matches the process ID of a child of the

calling process, but the child has successfully invoked one of the
exec functions. Access to the target process was denied. The
following reason code can accompany the return code:
JRExecAfterFork.

EINVAL The Process_group_ID parameter is less than zero or has some
other unsupported value. The following reason codes can
accompany the return code: JRNoSuchPid and
JRPgidDifferentSession.

EPERM The calling process cannot change the process group ID of the
specified process. The following reason codes can accompany
the return code: JRPidEQSessLeader, JRPidDifferentSession,
and JRPgidDifferentSession.

ESRCH The specified Process_ID is not that of the calling process or any
of its children. The following reason codes can accompany the
return code: JRNotDescendant and JRNoSuchPid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpgid service stores the reason code.
The setpgid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The process group ID that is to be assigned to the group must be within the

calling process’s session.

2. The subject process (the process identified by the Process_ID parameter) must
be a child of the process that issues the service and must be in the same
session, but it cannot be the session leader. It can be the caller.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “getpgrp (BPX1GPG) — Get the Process Group ID” on page 257
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709

setpgid (BPX1SPG)

Chapter 2. Callable services descriptions 693

v “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 857

Characteristics and restrictions
See the conditions described under Return_code.

Examples
For an example using this callable service, see “BPX1SPG (setpgid) Example” on
page 1254.

setpgid (BPX1SPG)

694 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setpriority (BPX1SPY) — Set the Scheduling Priority of a Process

Function
The setpriority callable service sets the scheduling priority of a process, process
group, or user.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPY,(Which,
Who,
Priority,
Return_value,
Return_code,
Reason_code)

Parameters
Which

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates how the Who
parameter is to be interpreted. This parameter can have one of the following
values:

PRIO_PROCESS The Who parameter is to be interpreted as a
process ID.

PRIO_PGRP The Who parameter is to be interpreted as a
process group ID.

PRIO_USER The Who parameter is to be interpreted as a
user ID.

The PRIO_ constants are defined in the BPXYCONS macro. See “BPXYCONS
— Constants Used by Services” on page 956.

Who
Supplied parameter

Type: Integer

Length: Fullword

setpriority (BPX1SPY)

Chapter 2. Callable services descriptions 695

The name of a fullword that contains a value that indicates the exact process
ID, process group ID, or user ID whose priority is to be set. The Which
parameter indicates how this parameter is to be interpreted. A value of zero for
this parameter specifies the current process, process group, or user ID.

Priority
Supplied parameter

Type: Signed Integer

Length: Fullword

The name of a fullword that contains a value that indicates the priority value to
which the specific process or group of processes is to be set. This value can be
an integer in the range of -20 to 19.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpriority service returns a value of zero if
successful and −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpriority service stores the return code.
The setpriority service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The setpriority service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EACCES The priority is being changed to a lower value, and the current

process does not have the appropriate privilege to do so.
EINVAL The value of the Which parameter was not recognized; or the

value of the Who parameter is not a valid process ID, process
group ID or user ID.

EMVSSAF2ERR A security product internal error has occurred. Consult the
Reason_code parameter for the exact reason for the error.

ENOSYS The system does not support this function. Your installation has
chosen not to enable this function.

EPERM A process was located, but neither the real nor the effective user
ID of the calling process matches the effective user ID of the
process whose priority is being changed.

ESRCH No process could be located using the Which and Who
parameter values that were specified.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

setpriority (BPX1SPY)

696 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the setpriority service stores the reason code.
The setpriority service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the supplied Who and Which values specify more than one process, each of

the specified processes has its priority value set to the supplied value. If at least
one of the specified processes has its priority value successfully changed, the
setpriority service returns successfully.

2. The priority value of a process is an integer that can be in the range of -20 to
19. If the supplied priority value is outside this range, the process’s priority is set
to the corresponding limit value. The default priority value for all processes is 0.

3. An increase in a process’s priority value results in a lower CPU priority for the
process. A decrease in a process’s priority value results in a higher CPU priority
for the process.

4. If the supplied priority value would result in a lower priority value for the
specified process or processes, the caller must have appropriate privileges.
Refer to “Authorization” on page 8 for information on appropriate privileges.

5. The setting of a process’s priority value has a corresponding effect on its nice
value, because they both represent the process’s relative CPU priority. For
example, using the setpriority service to set the priority value of a process to its
maximum value (19) has the effect of increasing its nice value to its maximum
value (2*NICE_ZERO)-1, and this is reflected on the nice, getpriority, and
setpriority services. The NICE_ZERO constant is defined in BPXYCONS.

6. If the ENOSYS return code is received, your installation does not support this
service. Contact your system administrator if you require activation of this
service.

7. If the supplied Who and Which values specify a process in a multiple process
address space, each of the processes in the address space have their priority
values set to the supplied value.

8. To do the initial system setup for using this service, see the information on the
BPXPRMxx parmlib member in z/OS UNIX System Services Planning.

Related services
v “nice (BPX1NIC) — Change the nice Value of a Process” on page 422
v “getpriority (BPX1GPY) — Get the Scheduling Priority of a Process” on page 260

Characteristics and restrictions
There are no restrictions on the use of the setpriority service.

Examples
For an example using this callable service, see “BPX1SPY (setpriority) Example” on
page 1259.

setpriority (BPX1SPY)

Chapter 2. Callable services descriptions 697

setpwent (BPX1SPE) — Reset the User Database

Function
The setpwent callable service resets the user database for subsequent searching
by the getpwent service. The next getpwent service that is used after setpwent
starts searching from the beginning of the user database.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPE,(Return_value)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setpwent service returns 0.

Usage notes
The setpwent service is intended to be used to interrupt a sequential search of the
user database from the calling task. The getpwent service performs the sequential
search. When the setpwent service is called, it resets the search point for the
current task in the user database to the beginning. The next getpwent service that
is called from this task after this point starts searching the user database from the
beginning.

Related services
v “getpwent (BPX1GPE) — Sequentially Access the User Database” on page 263

Characteristics and restrictions
There are no restrictions on the use of the setpwent service.

Examples
For an example using this callable service, see “BPX1SPE (setpwent) Example” on
page 1253.

setpwent (BPX1SPE)

698 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setregid (BPX1SRG) — Set the Real and/or Effective GIDs

Function
The setregid callable service sets the real or effective GIDs for the calling process
to the values that are specified by the input real and effective GID values. If a
specified value is equal to -1, the corresponding real or effective GID of the calling
process is left unchanged.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SRG,(RGID,
EGID,
Return_value,
Return_code,
Reason_code)

Parameters
RGID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the real GID to be set for the calling
process. If RGID is -1, the real GID for the calling process is left unchanged.

EGID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the effective GID to be set for the calling
process. If EGID is -1, the effective GID for the calling process is left
unchanged.

Return_value
Returned parameter

Type: Integer

Length: Fullword

setregid (BPX1SRG)

Chapter 2. Callable services descriptions 699

The name of a fullword in which the setregid service returns −1 if it is not
successful. If it is successful, the setregid service returns 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setregid service stores the return code.
The setregid service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The setregid service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EINVAL The value of RGID or EGID is not valid.
EPERM The process does not have appropriate privileges to set the real

GID or the effective GID. Refer to “Authorization” on page 8 for
information on appropriate privileges.

EMVSSAF2ERR The SAF call IRRSSG00 incurred an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setregid service stores the reason code.
The setregid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR contains the RACF return and reason codes, respectively, in
the two low-order bytes. For a more detailed description of the RACF SETGID
service return and reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing
8 16 Unable to establish recovery

For a more detailed description of the RACF CKPRIV service return and reason
code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing

Usage notes
1. A process with appropriate privileges can set the real and effective GID to any

valid GID value. An unprivileged process can only set the effective GID if the
EGID argument is equal to the real, effective, or saved GID of the process. An
unprivileged process can only set the real GID if the RGID argument is equal to
the real, effective, or saved GID of the process.

2. The setregid does not change any supplementary GIDs of the calling process.

setregid (BPX1SRG)

700 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “getegid (BPX1GEG) — Get the Effective Group ID” on page 218
v “setgid (BPX1SGI) — Set the Group ID” on page 678
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “setuid (BPX1SUI) — Set User IDs” on page 719
v “setreuid (BPX1SRU) —Set the Real and/or Effective UIDs” on page 702

Characteristics and restrictions
v If the setregid service is issued from multiple tasks within one address space,

use synchronization to ensure that the setregid services are not performed
concurrently. The execution of setregid requests concurrently within one address
space can yield unpredictable results.

v If the setregid service is issued from an address space with multiple processes,
the result of the service call affects all processes in the address space.

Examples
For an example using this callable service, see “BPX1SRG (setregid) Example” on
page 1260.

setregid (BPX1SRG)

Chapter 2. Callable services descriptions 701

setreuid (BPX1SRU) —Set the Real and/or Effective UIDs

Function
The setreuid callable service sets the real and/or effective UIDs for the calling
process to the values that are specified by the input real and effective UID values. If
a specified value is equal to -1, the corresponding real or effective UID of the
calling process is left unchanged.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SRU,(RUID,
EUID,
Return_value,
Return_code,
Reason_code)

Parameters
RUID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the real UID to be set in the calling
process. If RUID is -1, the real UID for the calling process is left unchanged.

EUID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the effective UID to be set in the calling
process. If EUID is -1, the effective UID for the calling process is left
unchanged.

Return_value
Returned parameter

Type: Integer

Length: Fullword

setreuid (BPX1SRU)

702 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the setreuid service returns −1 if it is not
successful. If it is successful, the setreuid service returns 0.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setreuid service stores the return code.
The setreuid service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The setreuid service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EINVAL The value of RUID or EUID is not valid.
EPERM The process does not have appropriate privileges to set the real

UID or the effective UID. Refer to “Authorization” on page 8 for
information on appropriate privileges.

EMVSSAF2ERR The SAF call IRRSSU00 incurred an error.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setreuid service stores the reason code.
The setreuid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes. The reason code for
EMVSSAF2ERR contains the RACF return and reason codes, respectively, in
the two low-order bytes. For a more detailed description of the RACF SETUID
service return and reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 12 Internal error during RACF processing
8 16 Unable to establish recovery

For a more detailed description of the RACF CKPRIV service return and reason
code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 User is not privileged
8 12 Internal error during RACF processing

Usage notes
1. A process with appropriate privileges can set the real and effective UID to any

valid UID value. An unprivileged process can set the effective UID only if the
EUID argument is equal to the real, effective, or saved UID of the process. An
unprivileged process can set the real UID only if the RUID argument is equal to
the real, effective, or saved UID of the process.

setreuid (BPX1SRU)

Chapter 2. Callable services descriptions 703

2. The setreuid service is allowed in a TSO address space so long as the caller
does not attempt to change the MVS identity. MVS identity changes are
triggered by changing the effective UID. The real UID can always be changed if
the invoker has appropriate privileges.

3. For information about changing MVS identities, and other restrictions, see the
UsageNotes for “setuid (BPX1SUI) — Set User IDs” on page 719.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “seteuid (BPX1SEU) — Set the Effective User ID” on page 676
v “setgid (BPX1SGI) — Set the Group ID” on page 678
v “setuid (BPX1SUI) — Set User IDs” on page 719
v “setregid (BPX1SRG) — Set the Real and/or Effective GIDs” on page 699

Characteristics and restrictions
See “Characteristics and Restrictions” for “setuid (BPX1SUI) — Set User IDs” on
page 719.

See also “Usage notes” on page 703.

Examples
For an example using this callable service, see “BPX1SRU (setreuid) Example” on
page 1262.

setreuid (BPX1SRU)

704 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setrlimit (BPX1SRL) — Set Resource Limits

Function
The setrlimit callable service sets resource limits for the calling process. A resource
limit is a pair of values; one specifies the current (soft) limit and the other the
maximum (hard) limit.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SRL,(Resource,
Rlimit,
Return_value,
Return_code,
Reason_code)

Parameters
Resource

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the resource for
which to set the hard and soft limits. This parameter can specify one of the
resources in the following table:

Table 10. Resources that can be limited by setrlimit

Resource Description Action when soft limit is
exceeded

RLIMIT_CORE Maximum core file size (in
bytes) created by a
process. A value of 0
prevents core file creation.

Core file writing terminates at this
size.

RLIMIT_CPU Maximum amount of CPU
time (in seconds) used by
a process.

SIGXCPU is sent to the process,
and the process is granted a small
extension to allow for signal
generation and delivery. If the
extension is used up, the process
is terminated with a SIGKILL.

setrlimit (BPX1SRL)

Chapter 2. Callable services descriptions 705

Table 10. Resources that can be limited by setrlimit (continued)

Resource Description Action when soft limit is
exceeded

RLIMIT_FSIZE Maximum file size (in
bytes) created by a
process. A value of 0
prevents the creation of
new files and the
expansion of existing files.

SIGXFSZ is sent to the process. If
the process is blocking, catching,
or ignoring SIGXFSZ, continued
attempts to increase the size of a
file beyond the limit fail with a
return code of EFBIG.

RLIMIT_NOFILE Maximum number of open
file descriptors for a
process. This number is
one greater than the
maximum value that may
be assigned to a
newly-created descriptor.

Functions that create new file
descriptors after the limit is
reached fail with a return code of
EMFILE.

RLIMIT_AS Maximum address space
size (in bytes) for a
process.

mmap and shmat callable services
fail with a return code of ENOMEM.
User getmain and storage obtain
requests fail (for example, runtime
library stack and heap expansion
fails).

The RLIMIT_ constants are defined in the BPXYCONS macro. See
“BPXYCONS — Constants Used by Services” on page 956.

Rlimit
Supplied parameter

Type: Structure

Length: The length of the rlimit structure

The name of an Rlimit structure that contains the values for the hard
(maximum) and soft (current) limits for the resource that is identified by the
resource parameter. Macro BPXYRLIM defines the Rimit structure. (See
“BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures” on page 1019.)
Each limit value contains two fullwords. For all resources except
RLIMIT_FSIZE, the upper fullword for each limit value is ignored.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setrlimit service returns a value of zero if it
is successful, and −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setrlimit service stores the return code. The
setrlimit service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages

setrlimit (BPX1SRL)

706 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

and Codes. The setrlimit service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINVAL The operation is not permitted for one of the following reasons:

v The resource that was specified is not valid.

v The soft limit that is to be set exceeds the hard limit to set.

v The soft limit that is to be set is below the current usage.

v The hard limit that is to be set exceeds a system–defined limit.

v One of the file size limits that was specified is a negative value.

The following reason codes can accompany the return code:
JrInvalidResource, JrSoftExceedsHard, JrSoftBelowUsage,
JrFdOpenAboveLimit, JrOpenFileLimitMax, or JrNegFileSizeLimit.

EMVSSAF2ERR A Security product internal error has occurred. Consult the
Reason_code parameter for the exact reason for the error.

EPERM An attempt was made to raise a hard (maximum) limit, but the
calling process did not have superuser authority. The following
reason code can accompany the return code: JrRaiseHardLimit.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setrlimit service stores the reason code.
The setrlimit service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The soft limit can be modified to any value that is less than or equal to the

hard limit. For the RLIMIT_CPU, RLIMIT_NOFILE, and RLIMIT_AS resources,
if setrlimit is called with a soft limit that is lower than the current usage,
setrlimit fails with an EINVAL return code.

An exception to this rule occurs when the process is running in an address
space that contains multiple processes. When you change the RLIMIT_CPU,
you can set a new soft limit that is greater than the time limit of the current
process, yet greater than the time consumed by the address space. This
allows the setrlimit call to succeed, and a SIGXCPU signal is generated. The
alternative is not to run multiple processes in the same address space.

2. The hard limit may be lowered to any value that is greater than or equal to the
soft limit.

3. The hard limit can only be raised by a process that has superuser authority.

4. Both the soft limit and the hard limit can be changed with a single call to the
setrlimit service.

5. If the setrlimit service is called with a soft limit that is greater than the hard
limit, setrlimit returns an EINVAL return code.

6. The resource limit values are propagated across the exec, fork, and spawn
services. An exception exists for the exec service. If a daemon process
invokes exec and it has previously invoked setuid, the limit values set are
based on the limit values that are specified in parmlib member BPXPRMxx.

setrlimit (BPX1SRL)

Chapter 2. Callable services descriptions 707

7. For processes in a multiprocess address space, the RLIMIT_CPU and
RLIMIT_AS limits are shared with all the processes within the address space.
For RLIMIT_CPU, when the soft limit is exceeded, action is taken on the first
process within the address space. If the action is termination, all the processes
within the address space are terminated.

8. In addition to the RLIMIT_CORE limit values, CORE dump defaults are set by
SYSMDUMP defaults. See z/OS MVS Initialization and Tuning Reference for
information on setting up SYSMDUMP defaults via the IEADMR00 parmlib
member.

9. Core dumps are taken in 4160-byte increments. Therefore, RLIMIT_CORE
values affect the size of core dumps in 4160-byte increments. For example, if
the RLIMIT_CORE soft limit value is 4000, core dumps contain no data. If the
RLIMIT_CORE soft limit value is 8000, the maximum size of a core dump is
4160 bytes.

10. Limits may have an infinite value of RLIM_INFINITY.

11. The hard limit for RLIMIT_NOFILE cannot exceed the system-defined limit of
65535.

12. The soft limit for RLIMIT_NOFILE must be set higher than the value of the
highest open file descriptor. Attempting to lower the soft limit to a value that is
less than or equal to the highest open file descriptor results in an EINVAL
return code.

13. Setting a limit of 0 for RLIMIT_FSIZE prevents the creation of new files and
the expansion of existing files.

14. When RLIM_INFINITY (X'7FFFFFFF') is passed on a setrlimit request, no limit
is enforced by setrlimit. As a result, the maximum allowable limit is set,
regardless of the resource. The new service RLIM_MEMLIMIT treats
RLIM_INFINITY as a request for 21474836471 1- megabyte pages.

Related services
v “getrlimit (BPX1GRL) — Get Resource Limits” on page 272
v “getrusage (BPX1GRU) — Get Resource Usage” on page 274

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1SRL (setrlimit) Example” on
page 1261.

setrlimit (BPX1SRL)

708 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|

setsid (BPX1SSI) — Create a Session and Set the Process Group ID

Function
The setsid callable service creates a new session, with the calling process as its
session leader. The caller becomes the group leader of a new process group.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SSI,(Session_ID,
Return_code,
Reason_code)

Parameters
Session_ID

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword to which, if successful, the setsid service returns the
session or process group ID of the new group. The new session or group
process ID is the same as the process ID of the caller.

If not successful in creating a new session, the setsid service returns −1 as the
Session_ID value.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setsid service stores the return code. The
setsid service returns Return_code only if Session_ID is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The setsid service can return one of the following values in the
Return_code parameter:

setsid (BPX1SSI)

Chapter 2. Callable services descriptions 709

Return_code Explanation
EPERM The caller is already a process group leader, or the caller’s

process ID matches the process group ID of some other process.
The following reason code can accompany the return code:
JRCallerIsPgLeader.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setsid service stores the reason code. The
setsid service returns Reason_code only if Session_ID is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
The calling process does not have a controlling terminal.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 150
v “fork (BPX1FRK) — Create a New Process” on page 184
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746

Characteristics and restrictions
The calling process must not already be a process group leader.

Examples
For an example using this callable service, see “BPX1SSI (setsid) Example” on
page 1264.

setsid (BPX1SSI)

710 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setsockopt or getsockopt (BPX1OPT) — Get or Set Options Associated
with a Socket

See “getsockopt or setsockopt (BPX1OPT) — Get or Set Options Associated with a
Socket” on page 281.

setsockopt or getsockopt (BPX1OPT)

Chapter 2. Callable services descriptions 711

set_thread_limits (BPX1STL) — Change a Process’s Task or Thread
Limits for pthread_created Threads

Function
The set_thread_limits callable service changes the calling process’s limits for
pthread_created threads. These limits are the maximum number of MVS tasks used
for pthread_created threads, and the maximum number of pthread_created threads.
The thread limit includes running, queued, and undetached exited threads.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STL,(Action,
MaxThreadTasks,
MaxThreads,
Return_value,
Return_code,
Reason_code)

Parameters
Action

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a numeric value that identifies the
process’s pthread_created thread limits that are to be set. The following
constants, which are defined in BPXYCONS, define the actions that are to be
taken (see “BPXYCONS — Constants Used by Services” on page 956):

STL_MAX_TASKS Replace the MaxThreadTasks limit for the
caller’s process with the value that is specified
in MaxThreadTasks only.

STL_MAX_THREADS Replace the MaxThreads limit for
pthread_created threads in the caller’s process
with the fullword value that is specified in
MaxThreads only.

STL_SET_BOTH Replace both the MaxThreadTasks and
MaxThreads limits for the caller’s process with

set_thread_limits (BPX1STL)

712 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

the fullword values that are specified in
MaxThreadTasks and MaxThreads, respectively.

MaxThreadTasks
Supplied parameter

Type: Integer

Length: Fullword

When the Action that is specified is STL_MAX_TASKS or STL_SET_BOTH, this
is the name of a fullword that contains the new MaxThreadTasks value for the
caller’s process.

MaxThreads
Supplied parameter

Type: Integer

Length: Fullword

When the Action that is specified is STL_MAX_THREADS or STL_SET_BOTH,
this is the name of a fullword that contains the new MaxThreads value for the
caller’s process.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_thread_limits service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_thread_limits service stores the return
code. The set_thread_limits service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The set_thread_limits service can return one of
the following values in the Return_code parameter:

Return_code Explanation
EINVAL The value that was specified for Action, MaxThreadTasks, or

MaxThreads is incorrect. The following reason codes can
accompany the return code: JRSTLActionInvalid, JRSTLTasksInvalid
or JRSTLThreadsInvalid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_thread_limits service stores the reason
code. The set_thread_limits service returns Reason_code only if Return_value

set_thread_limits (BPX1STL)

Chapter 2. Callable services descriptions 713

is −1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If the set_thread_limits service returns with an unsuccessful return value (−1),

the original MaxThreadTasks and MaxThreads values for the caller’s process
remain unchanged.

2. If any caller, authorized or nonauthorized, attempts to set a limit outside the
allowable ranges (see Table 11), the set_thread_limits service returns with a
return code of EINVAL and a reason code of JRSTLTasksInvalid or
JRSTLThreadsInvalid.

Table 11. Allowable thread limits for calling processes

MaxThreadTasks MaxThreads

Min Max Min Max

Authorized 1 32768 0 100000

Unauthorized 1 Parmlib 0 Parmlib

Note: Parmlib represents the values that are specified at z/OS UNIX startup by the
BPXPRMxx parmlib member.

3. To determine the allowable ranges for pthread_created thread limits for
non-authorized callers, see “sysconf (BPX1SYC) — Determine System
Configuration Options” on page 824.

4. For information on setting initial thread limits and performance considerations,
see the following publications:
v z/OS UNIX System Services Planning
v z/OS MVS Initialization and Tuning Reference

5. If the MaxThreadTasks limit is decreased below the number of tasks that are
currently in use, pthread_exit_and_get (BPX1PTX) requests fail until the number
of tasks in use is less than or equal to the new limit.

6. Setting the MaxThreads limit to zero inhibits the creation of pthread_created
threads.

7. Setting MaxThreads to be less than or equal to MaxThreadTasks prevents the
queueing of pthread_create requests, and limits the number of MVS tasks that
are attached for pthread_created threads to the MaxThreads value.

8. If the MaxThreadTasks limit of a process is set below the number of MVS tasks
that are already in use for pthread_created threads, the reduction of MVS tasks
is completed as running threads terminate. The reduction of tasks is not
synchronously carried out when the set_thread_limits service is invoked.

9. For POSIX compliance, the MaxThreads limit for a process must be 64 or
greater.

Related services
v “pthread_create (BPX1PTC) — Create a Thread” on page 486
v “sysconf (BPX1SYC) — Determine System Configuration Options” on page 824
v “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 494

Characteristics and restrictions
There are no restrictions on the use of the set_thread_limits service.

set_thread_limits (BPX1STL)

714 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1STL (set_thread_limits)
Example” on page 1269.

set_thread_limits (BPX1STL)

Chapter 2. Callable services descriptions 715

set_timer_event (BPX1STE) — Set DIE-Mode Timer Event

Function
The set_timer_event callable service sets a DIE-mode timer event that posts an
ECB when it expires. The ECB is located in the BPXYTHLI data area.

Requirements

Authorization: Problem program or supervisor state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STE,(Seconds,
Nanoseconds,
Return_value,
Return_code,
Reason_code)

Parameters
Seconds

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer that represents the
maximum number of seconds that the calling program is willing to wait for one
of the specified events to occur.

Notes:

1. Seconds can be any value greater than or equal to 0, and less than or
equal to 4 294 967 295. The value specified for Seconds is an unsigned
integer.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value.

Nanoseconds
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer that represents the
number of nanoseconds to be added to the value that is specified by Seconds.

set_timer_event (BPX1STE)

716 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Notes:

1. Nanoseconds can be any value greater than or equal to 0, and less than
1 000 000 000.

2. The Seconds and Nanoseconds values are combined to determine the
timeout value.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service returns 0 if a CW_CONDVAR event
occurred, or −1 if it has not.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_timer_event service stores the return
code. The set_timer_event service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The set_timer_event service can return one of
the following values in the Return_code parameter:

Return_Code Explanation
EINVAL One or more of the parameters that were passed to the service are

in error. The following reason code unique to the set_timer_event
can accompany the return code: JRNanoSecondsTooBig.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the set_timer_event service stores the reason
code. The set_timer_event service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

Usage notes
1. Once the time has expired, the kernel posts the ECB that is located at

ThliTimerEcb, mapped by BPXYTHLI. The kernel clears this ECB before the
timer is set.

2. The timer is canceled on the next syscall, or if the thread is terminated.

3. If the timer is set to a small enough value, the ECB that is defined at location
ThliTimerEcb may already have been posted before control is returned to the
caller.

Related services
v “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an

Event” on page 110

set_timer_event (BPX1STE)

Chapter 2. Callable services descriptions 717

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1STE (set_timer_event)
Example” on page 1267.

set_timer_event (BPX1STE)

718 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

setuid (BPX1SUI) — Set User IDs

Function
The setuid callable service sets the real, effective, and saved set user IDs for the
current process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SUI,(User_ID,
Return_value,
Return_code,
Reason_code)

Parameters
User_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the user ID the process is to assume.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setuid service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setuid service stores the return code. The
setuid service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The setuid service can return one of the following values in the

setuid (BPX1SUI)

Chapter 2. Callable services descriptions 719

Return_code parameter:

Return_code Explanation
EINVAL The user ID that was specified was incorrect.
EMVSSAF2ERR The SAF call IRRSSU00 incurred an error.
EPERM The process does not have the appropriate privileges to set the

user ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the setuid service stores the reason code. The
setuid service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes. The reason code for EMVSSAF2ERR
contains the RACF return and reason codes, respectively, in the two low-order
bytes. For a more detailed description of the RACF SETUID service return and
reason code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 UID is not defined to RACF
8 8 User not authorized to change UID
8 12 Internal error during RACF processing
8 16 Unable to establish recovery

For a more detailed description of the RACF CKPRIV service return and reason
code values, see the following table:

RACF Return
Code

RACF Reason
Code

Explanation

8 4 User is not privileged
8 12 Internal error during RACF processing

Usage notes
1. If User_ID is the same as the real UID of the process or the saved set UID,

the setuid service sets the effective UID to be the same as User_ID.

2. If User_ID is not the same as the real UID of the process, and the calling
process has appropriate privileges, the real, effective, and saved set UIDs are
set to User_ID. Refer to “Authorization” on page 8 for information on
appropriate privileges.

3. In z/OS UNIX, you change the identity of a process by changing the real and
effective UIDs and the supplementary groups. In order to change the identity of
the process on MVS, you have to also change the MVS security environment.
The setuid function invokes MVS SAF services to change the MVS identity
(userid) of the address space to the userid that is associated with the target
UID only if the caller is a daemon, or if the target userid has been properly
authenticated. If the caller is a daemon, the following conditions must be met:

v The caller must be a superuser (UID=0).

setuid (BPX1SUI)

720 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v If the BPX.DAEMON FACILITY class profile is defined, the caller must be
permitted to this profile.

v The calling program must be loaded from a controlled library, as defined by
the RACF support for Program Access to Data Sets (PADS). (See z/OS
UNIX System Services Planning.)

If the caller is not a daemon, the target userid must have been authenticated in
one of the following ways:

a. Successful completion of the password (BPX1PWD) service, where the
userid specified is associated with the target UID of the setuid service.

b. If the caller of the setuid service has read access to the BPX.SRV.userid
SURROGATE profile, where userid is the user ID that is associated with
the target UID, permission is granted to perform the specified operation.
See z/OS UNIX System Services Planning for more information about
setting up surrogate profiles.

4. When the MVS identity is to be changed, the target MVS userid is determined
as follows:

v If an MVS userid is already known (saved) by the kernel from a previous
call to the getpwnam (BPX1GPN) or the password (BPX1PWD) service
calls, and the UID created for this userid matches the UID that is specified
on the setuid call, this saved userid is used.

v For nonzero target UIDs, if there is no known userid, or if the UID for the
known userid does not match the UID that is requested on the setuid call,
the setuid service queries the security database to retrieve the userid. The
retrieved userid is then used.

v If the target UID is 0 and a userid is not known, the setuid service sets the
MVS userid to BPXROOT, or to a userid that is specified as a parmlib option
during installation. BPXROOT is set up during system initialization as a
superuser with a UID of 0. The BPXROOT userid is not defined to the
BPX.DAEMON FACILITY class profile. This special processing is necessary
to prevent a superuser from gaining daemon authority.

v When a change is being made from a nonzero UID to a zero UID, the MVS
userid is not changed. When you use the su shell command to become a
superuser, your shell retains your original MVS userid.

5. The MVS identity is not changed on a successful call to setuid in the following
situations:

v When a change is being made from a nonzero UID to a zero UID. When
you use the su shell command to become a superuser, your shell retains
your original MVS userid.

v When it is running in a setuid program, and a setuid is done back to the
original real UID.

6. You should be careful when you are constructing the MVS identity associated
with a setuid program. These programs effectively allow a subsequently
spawned child non-setuid program to set its effective UID and associated MVS
identity to the UID and MVS identity of the setuid of the program.

7. The setuid service is not supported from an address space that is running
multiple processes, because it would cause all processes in the address space
to have their security environments changed unexpectedly. The call to the
setuid service in this environment fails with an EMVSERR return code and a
JRMultiProc reason code.

setuid (BPX1SUI)

Chapter 2. Callable services descriptions 721

|
|
|
|

8. The setuid service is not supported from a TSO address space. The call to the
setuid service in this environment fails with an EMVSERR return code and a
JRTso reason code.

9. The setuid service is not supported from a task that is currently running with a
previously obtained task-level security environment. The call to the setuid
service in this environment fails with an EMVSERR return code and a
JRTaskAcee reason code.

10. The setuid service is not supported in the following situation: The
BPX.DAEMON FACILITY class profile is defined and the caller is attempting to
change its security environment by changing its MVS user identity, but a load
was issued from an uncontrolled data set in the caller’s address space. This
address space could be corrupted; for this reason, daemon activity is not
allowed. The call to the setuid service in this environment fails with an
EMVSERR return code and a JREnvDirty reason code.

11. The setuid service is not supported when running from within a setuid program,
because in most cases the MVS identity will not change in this environment.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “geteuid (BPX1GEU) — Get the Effective User ID” on page 219
v “getuid (BPX1GUI) — Get the Real User ID” on page 288
v “seteuid (BPX1SEU) — Set the Effective User ID” on page 676
v “setgid (BPX1SGI) — Set the Group ID” on page 678

Characteristics and restrictions
If the setuid service is used within a multi-threaded process, use synchronization to
ensure that the setuid service is not performed concurrently with other z/OS UNIX
services. Unserialized use can yield unpredictable results.

See also “Usage notes” on page 720.

Examples
For an example using this callable service, see “BPX1SUI (setuid) Example” on
page 1274.

setuid (BPX1SUI)

722 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

shmat (BPX1MAT) — Attach to a Shared Memory Segment

Function
The shmat service attaches the shared memory segment that is associated with a
shared memory identifier.

Requirements

Authorization: Supervisor state or problem state, PSW key 8 only
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MAT,(Shared_Memory_ID,
Shared_Memory_Address,
Shared_Memory_Flag,
Return_value,
Return_code,
Reason_code)

Parameters
Shared_Memory_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the shared memory identifier that is returned by BPX1MGT (shmget).

Shared_Memory_Address
Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains an address of where storage in the caller’s
address space is to be obtained and the segment is to be attached, or zero.

v If Shared_Memory_Address is a null pointer, the segment is attached at the
first available address selected by the system that is on a page boundary; or
on a megabyte boundary, if the shared memory segment is defined as an
Ipc_MEGA segment.

v If Shared_Memory_Address is not a null pointer and Shm_RND is specified,
the segment’s storage address is truncated to a page boundary (last 12 bits
zero); or to a megabyte boundary (last 20 bits zero), if the shared memory
segment is defined as an Ipc_MEGA segment.

shmat (BPX1MAT)

Chapter 2. Callable services descriptions 723

v If Shared_Memory_Address is not a null pointer and Shm_RND is not
specified, the segment is attached at the address that is specified. If the
shared memory segment is defined as an Ipc_MEGA segment, the specified
address must be a megabyte multiple, or the request is failed with an
EINVAL.

If the shared memory segment is defined as an Ipc_MEGA segment, the value
that is specified in Shared_Memory_Address must be either zero or equal to or
greater than 16 megabytes; otherwise, the request is failed with an EINVAL.

Shared_Memory_Flag
Supplied parameter

Type: Integer

Length: Fullword

Shm_RDONLY identifies the segment that is to be attached for read only;
otherwise, the segment is attached for read and write. Shm_RDONLY has no
effect for attaches to shared memory segments that are created with the
Ipc_MEGA option. Whether the segment is attached read only or read and write
depends on how it is currently accessed by other attaches, as all users have
the same access to shared memory that is created with the Ipc_MEGA option.

Shm_RND causes the Shared_Memory_Address to be truncated to a page
boundary (last 12 bits zero), or to a megabyte boundary (last 20 bits zero) if the
shared memory segment is defined as an Ipc_MEGA segment.

Return_value
Returned parameter

Type: Address

Length: Fullword

The name of a fullword in which the shmat service returns the shared memory
segment address (the address that is to be passed to the detach), or −1, if the
operation is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmat service stores the return code. The
shmat service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The shmat service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES Operation permission is denied to the caller. The combination of

Shared_Memory_Flag and permissions denies the requester
access. The following reason code can accompany the return
code: JRIpcDenied.

shmat (BPX1MAT)

724 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL Shared_Memory_ID is not a valid shared memory identifier, for

one of the following reasons:

v Shared_Memory_Address is not zero, it is not on a page
boundary, and SHM_RND was not specified.

v Shared_Memory_Address is not zero, it is not on a megabyte
boundary, and SHM_RND was not specified.

v The storage at Shared_Memory_Address could not be
obtained in the user’s address space.

v The caller is not running with a PSW key of 8.

The following reason codes can accompany the return code:
JRIpcBadID, JRBadAddress, JRNoUserStorage, JRStorNotAvail,
or JRNotKey8.

EMFILE The number of shared memory segments attached to the caller’s
process exceeds the system-imposed maximum. This system
limit is set with the IPCSHMNSEGS parameter in a BPXPRMxx
parmlib member. You can use the ipcs -x shell command to view
this value. The following reason code can accompany the return
code: JRShmMaxAttach.

ENOMEM The available system storage is not large enough to
accommodate the shared memory segment. The following reason
codes can accompany the return code: JRNoUserStorage,
JRSMNoStorage, JRIarvserv or JRShrStgShortage.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmat service stores the reason code. The
shmat service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Usage notes
1. If an attempt is made to access memory outside the shared memory segment,

normal address space storage is accessed.

2. It is the application’s responsibility to determine the length of the shared
memory segment that is attached.

3. If an attempt is made to update a shared memory segment that is attached with
Shm_RDONLY access, a program check occurs.

4. Because of the nature of the mapping of shared memory segments to different
addresses within the multiple processes it is attached to, relative addresses
should be used as pointers within the shared memory segment.

5. The storage is allocated in subpool 129, which is associated with the job step
task. This allows a thread to attach a shared memory segment and exit,
allowing other threads in the process to access the storage.

6. The storage is allocated with the same key as the job step task.

Related services
v “shmctl (BPX1MCT) — Perform Shared Memory Control Operations” on

page 727

shmat (BPX1MAT)

Chapter 2. Callable services descriptions 725

v “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 731
v “shmget (BPX1MGT) — Create/Find a Shared Memory Segment” on page 738

Characteristics and restrictions
v The invoker is restricted by ownership and read and write permissions defined by

shmget and shmctl Ipc_SET.

v Restricted to key 8 callers. Authorized users can exploit the IARVSERV macro
directly to created shared memory in system keys.

Examples
For an example using this callable service, see “BPX1MAT (shmat) Example” on
page 1161.

shmat (BPX1MAT)

726 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

shmctl (BPX1MCT) — Perform Shared Memory Control Operations

Function
The shmctl service provides a variety of shared memory control operations as
specified by the Command parameter. These functions include reading and
changing shared memory variables with the shmid_ds data structure, and removing
a shared memory segment from the system.

Requirements

Authorization: Supervisor state or problem state, PSW key 8 only
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MCT,(Shared_Memory_ID,
Command,
Buffer_address,
Return_value,
Return_code,
Reason_code)

Parameters
Shared_Memory_ID

Supplied parameter

Type: Integer

Length: Fullword

Specifies the shared memory identifier.

Command
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword field that indicates the shared memory command that is
to be executed. For the structure that contains these constants, see
“BPXYSHM—Map InterProcess Communication Shared Memory Segments” on
page 1024 and “BPXYIPCP — Map InterProcess Communication Permissions”
on page 978. The values for Command are:

Ipc_STAT This command obtains status information about the shared
memory that is identified by the Shared_Memory_ID parameter,
if the current process has read permission. This information is
stored in the area that is pointed to by the Buffer_address

shmctl (BPX1MCT)

Chapter 2. Callable services descriptions 727

parameter and mapped by area MSGID_DS data structure. For
the data structure, see “BPXYSHM—Map InterProcess
Communication Shared Memory Segments” on page 1024,
SHMID_DS DSECT.

Ipc_SET This command sets the value of the IPC_UID, IPC_GID and
IPC_MODE from the SHMID_DS data structure that is
associated with Shared_Memory_ID into the SHMID_DS
structure that is pointed to by the Buffer_address parameter.
Any value for IPC_UID and IPC_GID may be specified. Only
mode bits that are defined by semget (BPX1SGT) under
Semaphore_Flag argument may be specified in the IPC_MODE
field. This command can only be executed by a process with an
effective user ID equal to either that of a process with
appropriate privileges, or to the value of IPC_CUID or IPC_UID
in the SHMID_DS data structure that is associated with
Shared_Memory_ID. This information is taken from the buffer
pointed to by the Buffer_address parameter. For the data
structure, see “BPXYSHM—Map InterProcess Communication
Shared Memory Segments” on page 1024, SHMID_DS DSECT.

For shared memory segments that were not created with the
Ipc_MEGA option, the permissions that are in effect
(IPC_MODE) when a process attaches a segment remain, even
though these permissions may change. For shared memory
segments that were created with the Ipc_MEGA option, the
permissions that are set by this request take effect immediately.
All processes that are currently attached to the shared memory
segment are able to read only or read and write to it based on
the permissions that are specified in the IPC_MODE.

The effect of the new mode on access is determined by the
three parts of the mode field: the owner permissions, the group
permissions, and other permissions. If all three read and all
three write permissions in the new mode are off, the access for
all attached processes is changed to read. If any of the three
read permission bits is on without the corresponding write
permission bit on, the access for all attached processes is
changed to read. Otherwise, the access for all attached
processes is changed to write.

Ipc_RMID This command removes the shared memory identifier that is
specified by Shared_Memory_ID from the system, and removes
the shared memory segment and SHMID_DS data structure
that are associated with it. This command can only be executed
by a process with an effective user ID equal to either that of a
process with appropriate privileges, or to the value of
IPC_CUID or IPC_UID in the SHMID_DS data structure that is
associated with Shared_Memory_ID.

Buffer_address
Supplied parameter

Type: Address

Length: Fullword

shmctl (BPX1MCT)

728 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field that contains the address of the buffer that is mapped by
SHMID_DS. The shmctl service assumes that the size of this buffer is at least
as large as SHMID_DS.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmctl service stores the return value, or a
−1 if the operation is unsuccessful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmctl service stores the return code. The
shmctl service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The shmctl service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The command specified was Ipc_STAT, and the calling process

does not have read permission. The following reason code can
accompany the return code: JRIpcDenied.

EFAULT The Buffer_Address parameter specified an address that caused
the callable service to program check. The following reason code
can accompany the return code: JRBadAddress.

EINVAL This error code may be returned for the following reasons:

v Shared_Memory_ID is not a valid shared memory identifier.

v The Command parameter is not a valid command.

v The mode bits were not valid (SET). The following reason
codes can accompany the return code: JRIpcBadFlags,
JRIpcBadID and JRBadEntryCode.

EPERM Command=IPC_RMID or IPC_SET, and the effective user ID of
the caller is not that of a process with appropriate privileges, and
is not the value of IPC_CUID or IPC_UID in the SHMID_DS data
structure that is associated with Shared_Memory_ID. The
following reason code can accompany the return code:
JRIpcDenied.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmctl service stores the reason code. The
shmctl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

1. The remove operation is asynchronous to the return from the system call after
the last attachment is broken.

shmctl (BPX1MCT)

Chapter 2. Callable services descriptions 729

2. When a RMID is processed, no further attaches are allowed.

3. Ipc_SET can change permissions, and may affect a thread’s ability to use the
shared memory functions.

4. If an RMID was processed before a fork service, the child is not attached to the
memory segment.

Related services
v “w_getipc (BPX1GET) — Query Interprocess Communications” on page 901
v “shmat (BPX1MAT) — Attach to a Shared Memory Segment” on page 723
v “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 731
v “shmget (BPX1MGT) — Create/Find a Shared Memory Segment” on page 738

Characteristics and restrictions
The caller of the shmctl service is restricted by ownership and read and read-write
permissions that are defined by shmget and shmctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1MCT (shmctl) Example” on
page 1162.

shmctl (BPX1MCT)

730 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

shmdt (BPX1MDT) — Detach a Shared Memory Segment

Function
The shmdt service detaches a shared memory segment.

Requirements

Authorization: Supervisor state or problem state, PSW key 8 only
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MDT,(Shared_Memory_Address,
Return_value,
Return_code,
Reason_code)

Parameters
Shared_Memory_Address

Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the starting address of a shared memory
segment. This is the Return_value from shmat (BPX1MAT).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmdt service returns 0 if the request was
successful, or −1 if the operation was unsuccessful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmdt service stores the return code. The
shmdt service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The shmdt service can return one of the following values in the

shmdt (BPX1MDT)

Chapter 2. Callable services descriptions 731

Return_code parameter:

Return_code Explanation
EINVAL Shared_Memory_Address is not the data segment start address

of a shared memory segment attached to the caller’s process.
The following reason code can accompany the return code:
JRBadAddress.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmdt service stores the reason code. The
shmdt service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. See z/OS UNIX System Services
Messages and Codes for the reason codes.

Related services
v “shmat (BPX1MAT) — Attach to a Shared Memory Segment” on page 723
v “shmctl (BPX1MCT) — Perform Shared Memory Control Operations” on

page 727
v “shmget (BPX1MGT) — Create/Find a Shared Memory Segment” on page 738

Characteristics and restrictions
The caller of the shmdt service is restricted by ownership and read and read-write
permissions that are defined by shmget and shmctl Ipc_SET.

Examples
For an example using this callable service, see “BPX1MDT (shmdt) Example” on
page 1163.

shmdt (BPX1MDT)

732 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

shmem_lock (BPX1SLK) — Shared Memory Lock Service

Function
The shmem_lock callable service provides a general-purpose interface for
managing and operating locks in shared memory. It allows an application to
serialize resources that must be shared across multiple address spaces.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SLK,(LockFcnCode,
LockReqType,
LockType,
LockAddr,
LockAttrAddr,
LockTokenAddr,
Return_value,
Return_code,
Reason_code)

Parameters
LockFcnCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value indicating the function requested.
The following are the supported values:

SLK_INIT A new shared memory lock is to be created and
initialized.

SLK_DESTROY A shared memory lock is to be destroyed and
its resources cleaned up.

SLK_OBTAIN A shared memory lock is to be obtained
unconditionally.

SLK_OBTAIN_COND A shared memory lock is to be obtained on the
condition that is not already obtained. If the
requested lock is not available immediately, the
request will fail (EBUSY) without blocking.

SLK_RELEASE A shared memory lock is to be released.

shmem_lock (BPX1SLK)

Chapter 2. Callable services descriptions 733

These constants are defined in the BPXYCONS macro (“BPXYCONS —
Constants Used by Services” on page 956).

LockReqType
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one or more of the following values
indicating the lock request type. This parameter is valid only for the SLK_INIT
function, and is ignored for all other functions. The following are the supported
values:

SLK_NORMAL A new shared memory lock is to be created
with no deadlock detection. This value is
mutually exclusive with the
SLK_ERRORCHECK value.

SLK_ERRORCHECK A new shared memory lock is to be created
with deadlock detection. This value is mutually
exclusive with the SLK_NORMAL value.

SLK_RECURSIVE A new shared memory lock is to be created
with a recursive locking capability. This allows
the same lock to be obtained multiple times by
the same caller, without requiring intervening
releases and without causing deadlock. To take
advantage of this capability, the lock must be
obtained with the same lock type on each
obtain call.

These constants are defined in the BPXYCONS macro (“BPXYCONS —
Constants Used by Services” on page 956).

LockType
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains one or more of the following values
indicating the lock type. This parameter is valid only for the SLK_INIT and
SLK_OBTAIN functions; it is ignored for all other functions. For the SLK_INIT
function, the request type values can be combined to create a multiple-type lock
(that is, a lock that can be obtained either shared or exclusively). For the
SLK_OBTAIN function, only one of the values can be specified on a given call.
The following are the supported values:

SLK_SHARED A shared memory lock is to be created or
obtained with the shared attribute. A lock that is
obtained with the shared attribute can be
obtained concurrently by other callers
requesting a shared lock obtain. A lock
initialized with this value is, by default, defined
as a recursive lock.

SLK_EXCLUSIVE A shared memory lock is to be created or
obtained with the exclusive attribute. A lock that

shmem_lock (BPX1SLK)

734 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

is obtained with the exclusive attribute cannot
be obtained concurrently by other callers.

These constants are defined in the BPXYCONS macro; see“BPXYCONS —
Constants Used by Services” on page 956.

LockAddr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the user lockword in shared
memory.

LockAttrAddr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the lock attribute area. The
LockAttrAddr parameter is for use with the SLK_INIT function only. It is intended
to allow for potential extensions to the shared memory locks. Because these
extensions are not currently supported, the caller of the shmem_lock service
should specify a null pointer for the lock attribute area address.

LockTokenAddr
Supplied and returned parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of a fullword that the service
uses either to return a lock token, or as the input lock token. When it is
specified with the SLK_INIT function, the LockTokenAddr parameter is used as
the address of an output area in which to return the lock token of the newly
created lock. For all other functions, this parameter contains the address of the
lock token that represents the lock to be operated upon.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmem_lock service returns 0, if the
request is successful; or −1, if it is not successful. For all successful SLK_INIT
and SLK_DESTROY function requests, the BPX1SLK service returns 0. For
successful SLK_OBTAIN, SLK_OBTAIN_COND, and SLK_RELEASE function
requests, the BPX1SLK service returns a count of the number of times the
calling thread has had the requested lock held.

Return_code
Returned parameter

Type: Integer

Length: Fullword

shmem_lock (BPX1SLK)

Chapter 2. Callable services descriptions 735

The name of a fullword in which the shmem_lock service stores the return
code. The shmem_lock service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The shmem_lock service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EAGAIN The requested service could not be performed at the current time

because of a lack of available system resources. The following
reason codes can accompany this return code:
JRTLOCKMAXCNTTHD, JRLOCKMAXCNTSYS,
JRLOCKMAXCNTRECURSE.

ENOMEN The requested service could not be performed at the current time
because of a lack of available system storage.

EINTR A signal interrupted the callable service.
EINVAL One of the parameters contains a value that is not correct. The

following reason codes can accompany this return code:
JRLOCKFCNCODE, JRLOCKREQTYPE, JRLOCKTYPE,
JRLOCKADDR, JRLOCKTOKEN.

EFAULT One of the parameters contains an address that is not accessible
by the caller. The following reason code can accompany the
return code: JRLOCKTOKENADDR.

EBUSY The specified function cannot be performed because a required
resource is already in use. The following reason codes can
accompany the return code: JRLOCKINUSE,
JRLOCKEDALREADY.

EPERM The caller is not permitted to perform the specified operation. The
following reason codes can accompany the return code:
JRLOCKNOTOWNER, JRLOCKSHMACC.

EDEADLK The caller already owns the lock that is requested.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmem_lock service stores the reason
code. The shmem_lock service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. Lock initialization

In order for a lock initialization call to complete successfully, the specified lock
address must be in a memory-mapped area or shared storage segment that is
read-write accessible by the calling process. To most efficiently manipulate locks
in shared storage, it is recommended that the lock be in a shared memory
segment. The shmem_lock service is optimized to handle locks that reside in a
shared memory segment, rather than a memory-mapped area.

A successful lock initialization call causes a lock token representing the newly
created lock to be returned in the lock token output area that is supplied via the
LockTokenAddr parameter. Subsequent calls to the shmem_lock service to
manipulate the newly created lock must specify the returned lock token in order
to identify the lock that is to be manipulated. A lock initialization call can fail if

shmem_lock (BPX1SLK)

736 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

system resources other than storage are not available to initialize the lock
(EAGAIN), or if not enough system storage is available (ENOMEM).

2. Lock destroy

A destroy of a lock causes the system resources for that lock to be cleaned up,
if the lock is not in use. If the lock is in use, the destroy request fails (EBUSY).
A lock could be in use if a thread has it in a locked state, or if it is being
referenced by another thread on a pthread_cond_timedwait or
pthread_cond_wait. Once a lock is destroyed, any further operations against
that lock fail (EINVAL).

3. Lock obtain

A successful call to the shmem_lock service to obtain a shared memory lock
results in a GRS latch obtain against a latch in the
’SYS.BPX.AP00.GXSLT.SHMLOCKS.LSN’ latch set. If an application is
experiencing serialization problems with a shared memory lock, GRS contention
analysis tools such as D GRS,C and IPCS ANALYZE can be used to determine
the cause of the problem. The lower halfword of the lock token that is returned
by the shmem_lock service indicates the latch number of the corresponding
latch within the ’SYS.BPX.AP00.GXSLT.SHMLOCKS.LSN’ LATCH set.

If an exclusive obtain of a lock that is defined as both exclusive and shared is
attempted by a thread that already has that lock obtained exclusively, deadlock
results. Additionally, if an exclusive or shared obtain of a shared and exclusive
lock is attempted by a thread that already has that lock obtained exclusively,
deadlock results. To prevent exclusive obtain starvation for a lock that is defined
as shared and exclusive, a new shared lock obtain blocks if there are any
exclusive obtain callers waiting. A lock that is initialized with the recursive
attribute can be obtained multiple times by the same thread, up to a limit of
32 768 iterations. A single thread can hold up to a limit of 128 different shared
memory locks concurrently.

4. Lock release

A lock release call against a lock that is not in a locked state or that is not
owned by the calling thread results in an error (EPERM). A lock with the
recursive attribute that has been obtained n times by a given thread must be
released n times by that same thread in order for the lock to be completely
released.

5. System cleanup

During task termination processing of a thread that ends while it is holding a
shared memory lock, the lock is released by the system. If a jobstep ends
abnormally (for example, if it is canceled), or if an address space is terminated
at end of memory, all shared memory locks that are held by that job or address
space are released.

Related services
None.

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1SLK (shmem_lock) Example”
on page 1245.

shmem_lock (BPX1SLK)

Chapter 2. Callable services descriptions 737

shmget (BPX1MGT) — Create/Find a Shared Memory Segment

Function
The shmget function returns a shared memory ID that it either created or was
allowed to access.

Requirements

Authorization: Supervisor state or problem state, PSW key 8 only
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1MGT,(Key,
Shared_Memory_Size,
Shared_Memory_Flags,
Return_value,
Return_code,
Reason_code)

Parameters
Key

Supplied parameter

Type: Integer

Length: Fullword

Identification for this shared memory segment. This is either a user defined
value that serves as a lookup value to determine if the shared memory segment
already exists, or the reserved value Ipc_PRIVATE. (See “BPXYIPCP — Map
InterProcess Communication Permissions” on page 978. Ipc_PRIVATE is
sometimes used when a process does not want to share a memory segment
because it wants to privately control access to it by other processes.)

Shared_Memory_Size
Supplied parameter

Type: Integer

Length: Fullword

The number of bytes of shared memory that are required. If Ipc_MEGA is
specified, the value must be a multiple of megabytes, or the request is failed
with EINVAL.

Shared_Memory_Flags
Supplied parameter

shmget (BPX1MGT)

738 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

Valid values for this field include any combination of the following (additional
bits cause an EINVAL):

Ipc_CREAT Creates a shared memory segment if the key specified does
not already have an associated ID. Ipc_CREAT is ignored when
Ipc_PRIVATE is specified.

Ipc_EXCL Causes the shmget function to fail if the key specified has an
associated ID. Ipc_EXCL is ignored when Ipc_CREAT is not
specified, or when Ipc_PRIVATE is specified.

S_IRUSR Permits the process that owns the memory segment to read it.

S_IWUSR Permits the process that owns the memory segment to alter it.

S_IRGRP Permits the group that is associated with the memory segment
to read it.

S_IWGRP Permits the group that is associated with the memory segment
to alter it.

S_IROTH Permits others to read the memory segment.

S_IWOTH Permits others to alter the memory segment.

The values that begin with an ″Ipc_″ prefix are defined in BPXYIPCP. They are
mapped onto S_TYPE, which is in BPXYMODE. See “BPXYIPCP — Map
InterProcess Communication Permissions” on page 978 and “BPXYMODE —
Map the Mode Constants of the File Services” on page 986.

The values that begin with an ″S_I″ prefix are defined in BPXYMODE, and are
a subset of the access permissions that apply to files.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmget service returns the shared memory
identifier or, if it is unsuccessful, −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmget service stores the return code. The
shmget service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The shmget service can return one of the following values in the
Return_code parameter:

shmget (BPX1MGT)

Chapter 2. Callable services descriptions 739

Return_code Explanation
EINVAL One of the following occurred:

v The shared memory identifier does not exist for the Key
parameter, and either the Shared_Memory-Size parameter is
zero or it is greater than the system-imposed maximum. This
system-imposed maximum is set with the IPCHMMPAGES
parameter in a BPXPRMxx parmlib member. You can use the
ipcs -x shell command to view this value.

v The shared memory identifier exists for the Key parameter, but
the size of the segment that is associated with it is less than
the Shared_Memory_Size parameter, and the
Shared_Memory_Size parameter is not equal to 0.

v The Shared_Memory_Flags include bits that are not supported
by this function.

The following reason codes can accompany the return code:
JRShmBadSize and JRIpcBadFlags.

EACCES A shared memory identifier exists for the Key parameter, but the
operation permission, as specified by the low-order 9–bits of the
Shared_Memory_Flags parameter, is not granted (the ″S_″
items). The following reason code can accompany the return
code: JRIpcDenied.

EEXIST A shared memory identifier exists for the Key parameter, and
both Ipc_CREAT and Ipc_EXCL were specified. The following
reason code can accompany the return code: JRIpcExists.

ENOENT A shared memory identifier does not exist for the Key parameter,
and Ipc_CREAT was not specified. The following reason code
can accompany the return code: JRIpcNoExists.

ENOMEM A shared memory identifier and associated shared memory
segment are to be created, but the amount of system storage
would exceed the system-imposed limit. The system limit is set
with the IPCSHMSPAGES parameter in a BPXPRMxx parmlib
member. You can use the ipcs -x shell command to view this
value. The following reason code can accompany the return
code: JRShmMaxSpages.

ENOSPC A shared memory identifier is to be created, but the
system-imposed limit on the maximum number of allocated
shared memory identifiers system-wide would be exceeded. This
system limit is set with the IPCSHMNIDS parameter in a
BPXPRMxx parmlib member. You can use the ipcs -x shell
command to view this value. You can use the ipcrm shell
command to remove unused shared memory identifiers. The
following reason code can accompany the return code:
JRIpcMaxIDs.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shmget service stores the reason code.
The shmget service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes.

shmget (BPX1MGT)

740 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. When a shared memory segment has been created, subsequent BPX1MGT

(shmget) calls to find the existing shared memory segment must request a size
that is less than or equal to the value that was specified when the shared
memory segment was created.

2. As long as a task knows the shared memory segment ID, it may issue a shmat,
shmctl or shmdt (shmget is not needed).

3. The shmget function returns the shared memory segment identifier that is
associated with the Key parameter.

4. This function creates a data structure defined by SHMID_DS if one of the
following is true:
v The Key parameter is equal to Ipc_PRIVATE.
v The Key parameter does not already have a shared memory segment

identifier associated with it, and Ipc_CREAT is set.

For the data structure, see “BPXYSHM—Map InterProcess Communication
Shared Memory Segments” on page 1024.

5. Upon creation, the data structure that is associated with the new shared
memory segment identifier is initialized as follows:
v Ipc_CUID and Ipc_UID are set to the effective user ID of the calling process.
v Ipc_CGID and Ipc_GID are set to the effective group ID of the calling

process.
v The low-order 9-bits of Ipc_MODE are equal to the low-order 9-bits of the

Shared_Memory_Flags parameter.
v SHM_OTIME is set to 0 and SHM_CTIME is set to the current time.
v The storage is initialized to nulls when the segment is created.
v The storage is allocated in key 8.

6. The shared memory segment is removed from the system when BPX1MCT
(shmctl RMID) is processed, and when all users have detached (BPX1MDT -
shmdt) or terminated.

7. The first shmget request to define a shared memory segment determines
whether the segment has the Ipc_MEGA attribute (on the Ipc_MEGA option of
the Shared_Memory_Flags parameter). Subsequent shmget requests, which
use existing shared memory segments, have no effect on the Ipc_MEGA
attribute that is defined by that segment. In other words, the Ipc_MEGA option
takes effect only for the first shmget request, and is ignored for all subsequent
requests.

8. Shared memory segments created with the Ipc_MEGA attribute show this bit in
the S_MODE byte that is returned with the w_getipc request.

Related services
v “w_getipc (BPX1GET) — Query Interprocess Communications” on page 901
v “shmat (BPX1MAT) — Attach to a Shared Memory Segment” on page 723
v “shmctl (BPX1MCT) — Perform Shared Memory Control Operations” on

page 727
v “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 731

Characteristics and restrictions
v There is a maximum number of shared memory segments allowed in the system.

v There is a system-imposed limit on the maximum segment size that is defined in
the BPXPRMxx parmlib member.

v The caller of the shmget service is restricted by ownership and read and
read-write permissions that are defined by shmget and shmctl Ipc_SET.

shmget (BPX1MGT)

Chapter 2. Callable services descriptions 741

Examples
For an example using this callable service, see “BPX1MGT (shmget) Example” on
page 1164.

shmget (BPX1MGT)

742 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket
Connection

Function
The shutdown callable service shuts down all or part of a duplex socket connection.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SHT,(Socket_descriptor,
How,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
shutdown is to be done.

How
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the condition of the shutdown:
v 0 ends communication from Socket (Read).
v 1 ends communication to Socket (Write).
v 2 ends communication both to and from Socket.

Return_value
Returned parameter

Type: Integer

Length: Fullword

shutdown (BPX1SHT)

Chapter 2. Callable services descriptions 743

The name of a fullword in which the shutdown service returns one of the
following:

v 0 if the request is successful.

v −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shutdown service stores the return code.
The shutdown service returns Return_code only if Return_value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The shutdown service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was supplied. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

EINVAL The How parameter is incorrect. It is not 0, 1, or 2. The following
reason code can accompany the return code: JRBadEntryCode.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the shutdown service stores the reason code.
The shutdown service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A shutdown for read means that future write operations from the other end of

this socket are rejected. Any data that was already written before the shutdown
occurred are available for the application that issued the shutdown to read. The
data is read until a read is done that returns zero bytes, indicating that there is
no more data for that socket.

2. A shutdown for write means that any future writes by the application that issued
the shutdown request are rejected.

3. Regardless of the How option specified, reads are not rejected.

Characteristics and restrictions
There are no restrictions on the use of the shutdown service.

shutdown (BPX1SHT)

744 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1SHT (shutdown) Example” on
page 1241.

shutdown (BPX1SHT)

Chapter 2. Callable services descriptions 745

sigaction (BPX1SIA) — Examine or Change a Signal Action

Function
The sigaction callable service examines, changes, or both examines and changes
the action that is associated with a specific signal for all threads in the process.

Note: The signal handlers, a set of additional signals to be masked, and flags that
are specified by the sigaction service are shared by all threads within a
process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SIA,(Signal,
New_sa_handler_address,
New_sa_mask,
New_sa_flags,
Old_sa_handler_address,
Old_sa_mask,
Old_sa_flags,
User_data,
Return_value,
Return_code,
Reason_code)

Parameters
Signal

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of the signal to examine, set,
or both set and examine the action for.

New_sa_handler_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains either zero or the address of a fullword
that contains the new signal action.

sigaction (BPX1SIA)

746 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v If it contains zero, no new action is set for this signal.

v If it is not zero, set the signal action using the options that are described
below and in the BPXYSIGH macro. See “BPXYSIGH — Signal Constants”
on page 1024.

Constant Description
SIG_DFL# Take the default action for this signal.
SIG_IGN# Ignore this signal.
Address Address of the signal catcher function.

New_sa_mask
Supplied parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte area that contains a 64-bit mask of signals that are to
be blocked during execution of the signal-catching function. The leftmost bit
represents signal number 1, and the rightmost bit represents signal number 64.
Bits that are set to 1 represent signals that are blocked.

You must always provide this field, even though New_sa_mask is not used
when the New_sa_handler_address parameter contains a 0.

New_sa_flags
Supplied parameter

Type: Structure

Length: Fullword

The name of the fullword that contains the value of the signal action flags.

You must always provide this field, even though New_sa_flags is not used
when the New_sa_handler_address parameter contains a 0.

New_sa_flags can be set to the following constants defined in the BPXYSIGH
macro:

Constant Description
SA_FLAGS_DFT# None of the following functions.
SA_NOCLDSTOP# Do not generate SIGCHLD signals to the calling

process when its children stop or are continued.
(This is used only when Signal is set to SIGCHLD).

SA_OLD_STYLE# The PPSDOLDSTYLE flag is set. This is provided
for the C compiler runtime library to implement
old-style signal callable service functions. The C
compiler runtime library’s signal interface routine is
responsible for checking PPSDOLDSTYLE and
setting sigaction to default action where needed.

SA_ONSTACK# The PPSDONSTACK flag is set. This is provided for
the caller to implement alternate stack signal
delivery processing.

SA_RESETHAND# The PPSDRESETHAND flag is set. This is provided
for the caller to reset the signal action to SIG_DFL#
on entry to the signal catcher.

sigaction (BPX1SIA)

Chapter 2. Callable services descriptions 747

Constant Description
SA_RESTART# The PPSDRESTART flag is set. This is provided for

the caller to implement restart for functions that
normally would receive an EINTR if a signal is
delivered.

SA_SIGINFO# The PPSDSIGINF flag is set. This is provided for
the caller to provide additional information to the
signal catcher, namely additional signal information
and user context information.

SA_NOCLDWAIT# Do not create zombie processes when children of
the calling process exit (used only when Signal is
set to SIGCHLD).

SA_NODEFER The PPSDNODEFER flag is set. This is provided for
the caller to not automatically block the Signal when
the signal catcher is invoked.

SA_IGNORE The value of the new_sa_handler is saved and
returned on subsequent calls, but the signal is
ignored.

Old_sa_handler_address
Parameter supplied and returned

Type: Address

Length: Fullword

The name of a fullword that contains either zero or the address of a fullword in
which the system returns the old (current) signal action. If
Old_sa_handler_address is specified as 0, the old signal action, Old_sa_mask,
and Old_sa_flags, are not returned.

Old_sa_mask
Returned parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte area where the old (current) value of the 64-bit mask of
signals blocked during execution of the signal-catching function is returned. Bits
that are set to 1 represent signals that are blocked.

You must provide this parameter, although Old_sa_mask is not returned when
Old_sa_handler_address contains 0.

Old_sa_flags
Returned parameter

Type: Structure

Length: Fullword

The name of the fullword in which the old (current) signal action flags are
returned.

You must always provide this field, even though Old_sa_flags is not returned
when Old_sa_handler_address contains 0.

User_data
Supplied parameter

sigaction (BPX1SIA)

748 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Character

Length: Fullword

The name of a fullword that contains 4 bytes of user-supplied data that is
passed to the signal interface routine when the signal is delivered.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigaction service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigaction service stores the return code.
The sigaction service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The sigaction service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL The specified signal value is incorrect or is an unsupported signal

number; an attempt was made to catch a signal that cannot be
caught; or an attempt was made to ignore a signal that cannot be
ignored. The following reason codes can accompany the return
code: JRInvalidSignal and JRInvalidSigact.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigaction service stores the reason code.
The sigaction service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. If New_sa_handler_address value is set to the action SIG_DFL for a signal

that cannot be caught or ignored, the sigaction request is ignored and
Return_value is set to 0.

2. Setting a signal action to ignore for a signal that is pending causes the
pending signal to be discarded.

3. Setting signal action SIG_IGN or catch for signals SIGSTOP, SIGTHSTOP,
SIGTHCONT, or SIGKILL is not allowed.

4. Setting signal action SIG_IGN for SIGIO is not allowed.

sigaction (BPX1SIA)

Chapter 2. Callable services descriptions 749

|
|

5. The SA_NOCLDWAIT flag should not be used with the waitpid (BPX1WAT)
WNOHANG flag, or with the SIGSTOP or SIGCONT signals. Because the
SA_NOCLDWAIT flag indicates that child processes of the calling process do
not become zombies, these child processes do not report their status to the
calling process when they end. Thus, if the calling process subsequently
issues a BPX1WAT call, it suspends until all of its child processes terminate,
and then receives an ECHILD error return. This is expected behavior when
SA_NOCLDWAIT is set. However, using SIGSTOP or SIGCONT signals with a
child process could cause stop status to be reported to the calling process if it
issues a subsequent BPX1WAT call. Likewise, the use of the WNOHANG flag
on a subsequent BPX1WAT would result in an immediate return, instead of the
process suspending until all child processes terminate. For these reasons, care
should be taken not to mix these incompatible functions.

6. Setting signal action SIG_IGN for SIGCHLD has the same effect as setting the
SA_NOCLDWAIT flag.

7. The SA_NOCLDSTOP and SA_NOCLDWAIT flags, despite having similar
names, result in different types of actions. SA_NOCLDSTOP results in
SIGCHLD signals not being sent when child processes stop or are continued.
Setting SA_NOCLDWAIT results in child processes not becoming zombies or
reporting their exit status, but SIGCHLD signals are still sent when child
processes end.

8. The user data is delivered on a per-signal basis for the specific signal that is
specified on this invocation. This field must be respecified if user data is
desired for the next signal. This user data is set even if the action is SIG_DFT
or SIG_IGN.

9. Although the user can be in supervisor state and any PSW key when this
service is used, the kernel does not deliver signals to the signal interface
routine until the task is running with a PSW key equal to the PSW key when
the first callable service was entered and the process was created. See
“mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411.

10. The sigaction caller’s thread must be registered for signals. You can register
the thread by calling mvssigsetup, or, after signals are set up, by creating the
thread with pthread_create. If the thread is not registered for signals, the
sigaction service fails with a return code of EINVAL and a reason code of
JRNotSigSetup. See “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on
page 411.

11. Constants that are used for this callable service are defined in the BPXYSIGH
macro. See “BPXYSIGH — Signal Constants” on page 1024.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

Characteristics and restrictions
In a multithreaded process, the new signal action that is set by the sigaction service
changes the signal action for all threads in the process.

sigaction (BPX1SIA)

750 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

Examples
For an example using this callable service, see “BPX1SIA (sigaction) Example” on
page 1242.

sigaction (BPX1SIA)

Chapter 2. Callable services descriptions 751

__sigactionset (BPX1SA2) — Examine or Change a Set of Signal
Actions

Function
The __sigactionset callable service examines, changes, or both examines and
changes the actions that are associated with a set of signals.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SA2,(New_count,
New_structure,
Old_count,
Old_structure,
SsetOption_flags,
Return_value,
Return_code,
Reason_code)

Parameters
New_count

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of array elements in
New_structure. New_count must be in the range from 0 to 64. If New_structure
is not provided, specify a count of 0.

New_structure
Supplied parameter

Type: Address

Length: Fullword

The name of a field that contains the address that points to the beginning of the
new structure. The new structure contains the layout of the desired parameters
for sigaction: New_sa_handler_address, New_sa_flags, New_sa_mask,
UserData, and ConsolMask. ConsolMask is a bit mask that defines all the
signals that are to have the same action. New_sa_handler_address,

__sigactionset (BPX1SA2)

752 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

New_sa_flags, New_sa_mask, and UserData are mapped by the BPXYSSET
macro. See “BPXYSSET — Map the sigaction set” on page 1032.

Old_count
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of array elements that are
allowed within Old_structure on input. On output, Old_count contains the
number of array elements that have been stored. If Old_count is too small to
hold the number of array elements that are needed, return code ENOMEM is
returned. When ENOMEM is returned, Old_count contains the number of array
elements that are required to contain the current signal action state.

Old_count must be in the range from 0 to 64.

If Old_structure is not provided, specify a count of 0.

You may not pass a constant in Old_count. If a constant is passed, an EFAULT
is generated when an attempt is made to store back the result on exit.

Old_structure
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address that points to the beginning of
the old structure. On output from the call to __sigactionset, Old_structure
contains the number of signal actions specified in Old_count.

SsetOption_flags
Supplied parameter

Type: Structure

Length: Fullword

The name of the area in which the option flags are set. A leftmost bit
(Sset_IgInvalid) set to 1 indicates signals that are not valid; signals that are not
valid are to be ignored. Possible SsetOption_Flags: Sset_IgInvalid =
X'80000000', which indicates that invalid signals and sigactions are to be
ignored.

In the following example, Sset_IgInvalid is set to 1 and New_count is passed in
as 3. New_structure has been given an address that points to the storage area
that contains the five fields shown: ConsolidatedMask, New_sa_flags,

__sigactionset (BPX1SA2)

Chapter 2. Callable services descriptions 753

New_sa_mask, and New_user_data.

New
SaFlags
(4 Bytes)

New
SaHandler
(4 Bytes)

New
SaMask
(64 Bits)

New
UserData
(4 Bytes)

ConsolidatedMask
(64 Bits)

NewStruct

NewCount
1

2

3

X 0FFFFFFFFFFFFFFF

X 3000000000000000

X C000000000000000

0

0

0

0

0

0

0

1

0480E000

0

0

01..10 B

Notes:

1. New_count can range from 1 to the maximum number of signals.

2. The signal handlers (a set of additional signals to be masked), option flags,
and user data that is specified by the __sigactionset service, are shared by
all threads within a process.

3. In the example shown:

v The first set defines the action for signals 5–64 to their default state.
Because some of these signals are unsupported, the setting of
SsetOption_flags (Sset_IgInvalid) tells __sigactionset to ignore
unsupported signals.

v The second set tells __sigactionset to ignore signals 3 (SIGABRT#) and
4 (SIGILL#).

v The third set defines a signal catcher with a mask for signals 1
(SIGHUP#) and 2 (SIGINT#).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __sigactionset service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __sigactionset service stores the return
code. The __sigactionset service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The __sigactionset service can return one of
the following values in the Return_code parameter:

__sigactionset (BPX1SA2)

754 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL The specified signal is incorrect or is an unsupported signal number;

an attempt was made to catch or ignore a signal that cannot be
caught or ignored; or the specified signal value was not within the
range from 0 to 64. The following reason codes can accompany the
return code: JRInvalidSignal, JRInvalidSigact, and JRInvalidRange.

The following are examples of incorrect scenarios:

v Sset_IgInvalid is set to 0, and any bit position ranging from 33 to
64 is on. JRInvalidSignal is returned.

v Sset_IgInvalid is set to 0, and signal 7 (SIGSTOP#), signal 34
(SIGTHSTOP#), signal 35 (SIGTHCONT#), or signal 9 (SIGKILL#)
is on. JRInvalidSigact is returned.

ENOMEM There is not enough memory available to hold the number of array
elements required to contain the current signal action state. The
following reason codes can accompany the return code:
JRSsetTooSmall.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __sigactionset service stores the reason
code. The __sigactionset service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

Usage notes
1. For full details about the sigaction() parameters, see “sigaction (BPX1SIA) —

Examine or Change a Signal Action” on page 746.

2. In a multithreaded process, the new signal action that is set by the
__sigactionset service changes the signal action for all threads in the process.

3. If multiple masks have a bit set on for the same signal, the one that is set is the
last one.

4. If the caller of __sigactionset does not specify Sset_IgInvalid within
SsetOption_flags, a return code of EINVAL is returned for all signals and
sigactions that are not valid. You can bypass this error by setting Sset_IgInvalid
to 1.

5. If New_count is zero (indicating a query of old signal actions), no changes are
made to the signal actions.

6. If Old_count is zero, the __signactionset service does not return anything in
Old_structure.

Related services
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “exec (BPX1EXC) — Run a Program” on page 133
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

__sigactionset (BPX1SA2)

Chapter 2. Callable services descriptions 755

|
|
|

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1SA2 (__sigactionset)
Example” on page 1228.

__sigactionset (BPX1SA2)

756 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

sigpending (BPX1SIP) — Examine Pending Signals

Function
The sigpending service returns the union of the set of signals that are pending on
the thread and the set of signals that are pending on the process.

Pending signals at the process level are moved to the thread that called the
sigpending service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SIP,(Signal_pending_mask,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_pending_mask

Returned parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte area to which the sigpending service returns a 64-bit
signal pending mask. Bits that are set on represent signals that are pending
and blocked. Each bit that is set to on represents a signal that is currently
pending at the process level or the thread level and is blocked by the current
thread’s signal mask. The leftmost bit represents signal 1, and the rightmost bit
represents signal 64.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigpending service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

sigpending (BPX1SIP)

Chapter 2. Callable services descriptions 757

Type: Integer

Length: Fullword

The name of a fullword in which the sigpending service stores the return code.
The sigpending service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigpending service stores the reason code.
The sigpending service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
For an example using this callable service, see “BPX1SIP (sigpending) Example” on
page 1244.

sigpending (BPX1SIP)

758 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal
Mask

Function
The sigprocmask callable service examines, changes, or both examines and
changes the calling thread’s signal mask.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPM,(How,
New_signal_mask,
Old_signal_mask,
Return_value,
Return_code,
Reason_code)

Parameters
How

Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains a numeric value that identifies the action
that is to be taken on the thread’s signal mask. The following constants, which
are defined in BPXYSIGH, define the actions to be taken: See “BPXYSIGH —
Signal Constants” on page 1024.

Constant Description
SIG_BLOCK# Add the signals in New_signal_mask to those to be

blocked for this thread.
SIG_UNBLOCK# Delete the signals in New_signal_mask from those

blocked for this thread.
SIG_SETMASK# Replace the thread’s signal mask with

New_signal_mask.

New_signal_mask
Supplied parameter

Type: Address

sigprocmask (BPX1SPM)

Chapter 2. Callable services descriptions 759

Length: Fullword

The name of a fullword that contains either 0 or the address of an 8-byte area
that contains the 64-bit signal mask. The leftmost bit represents signal number
1, and the rightmost bit represents signal number 64. The New_signal_mask
parameter is applied to the thread’s signal mask as specified by the How
parameter. Mask bits that are set on represent signals that are blocked. If zero,
the signal mask is not changed, and the How parameter is ignored.

Old_signal_mask
Parameter supplied and returned

Type: Address

Length: Fullword

The name of a fullword that contains either 0 or the address of an 8-byte
signal-mask return area. The service stores in this area the signal mask that
was in effect, showing the signals that were blocked. The leftmost bit represents
signal number 1, and the rightmost bit represents signal number 64. Mask bits
set on represent signals that are blocked. A zero indicates that no signal mask
was returned.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigprocmask service returns 0 if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigprocmask service stores the return
code. The sigprocmask service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The sigprocmask service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EFAULT The specified address for New_signal_mask or Old_signal_mask

was incorrect.
EINVAL The value of the How parameter is not one of the allowable

values.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigprocmask service stores the reason
code. The sigprocmask service returns Reason_code only if Return_value is −1.

sigprocmask (BPX1SPM)

760 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The sigprocmask service examines, changes, or both examines and changes

the signal mask for the calling thread. This mask is called the thread’s signal
mask. If there are any pending unblocked signals, either at the process level or
at the current thread’s level, after changing the signal mask, at least one of the
signals is delivered to the thread before the sigprocmask service returns.

2. In a multithreaded process, the sigprocmask service is used to control to which
thread in the process a signal that is generated by the kill service is delivered.
For example, if two threads in a process have SIGUSR1 signals blocked and
one thread does not, the SIGUSR1 signal that is generated by the kill service
from another process is delivered to the thread that does not have the signal
blocked.

3. You cannot block the SIGKILL , SIGSTOP, SIGTHSTOP, and SIGTHCONT
signals. If you call the sigprocmask service with a request that would block
those signals, that part of your request is ignored and no error is indicated.

4. A request to block signals that are not supported is accepted, and a return value
of zero is returned.

5. All pending unblocked signals are moved from the process level to the current
thread.

6. See Appendix G, “Optimizing performance using process- and thread-level
information” on page 1335.

Related services
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigpending (BPX1SIP) — Examine Pending Signals” on page 757
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
For an example using this callable service, see “BPX1SPM (sigprocmask) Example”
on page 1255.

sigprocmask (BPX1SPM)

Chapter 2. Callable services descriptions 761

|
|
|

sigqueue (BPX1SGQ) — Queue a Signal to a Process

Function
The sigqueue callable service queues a signal to a process, a process group, or all
processes in the system to which the caller has permission to queue a signal.

CAUTION:
Note that when a caller with appropriate privileges specifies a process ID
equal to −1, the signal will normally be queued to all processes in the system,
excluding the INIT process (process ID 1). If the signal action is to terminate
the process, all processes will terminate. This may not be the desired action,
considering that some processes may be necessary for the continued
operation of the system.

Requirements

Authorization: Problem program or supervisor state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SGQ,(Process_ID,
Signal,
Signal_Value,
Signal_Options,
Return_value,
Return_code,
Reason_code)

Parameters
Process_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword whose value specifies the process or processes to
which the caller wants to queue a signal:

v If Process_ID is greater than 0, it is assumed to be a process ID. The signal
is queued to the process with that process ID.

v If Process_ID is equal to 0, the signal is queued to all processes that have a
process group ID equal to that of the caller, and for which the caller has
permission to queue the signal.

v If Process_ID is −1, the signal is queued to all processes for which the caller
has permission to queue the signal.

sigqueue (BPX1SGQ)

762 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v If Process_ID is less than −1, its absolute value is assumed to be a process
group ID. The signal is queued to all processes that have a process group ID
equal to this absolute value, and for which the caller has permission to queue
a signal.

Note the restrictions in “Characteristics and restrictions” on page 765.

Signal
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the signal number that is to be queued to
the processes indicated by the Process_ID parameter. The signal number must
be defined in the BPXYSIGH macro, or it must be 0. See “BPXYSIGH — Signal
Constants” on page 1024.

If the signal is 0, error checking takes place, but no signal is queued. Use a
signal value of 0 to verify that the Process_ID parameter is correct before
actually queuing a signal. This method does not verify permission to queue the
signal to the specified Process_ID.

Signal_Value
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains data to be delivered with the signal.

Signal_Options
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the binary flags that describe how the
signal is to be handled by the system and the user-supplied signal interface
routine (SIR). This byte of user information is passed to the SIR in a data
structure mapped by the PBXYPPSD macro. See “BPXYPPSD — Map Signal
Delivery Data” on page 1001.

Signal options are mapped as follows:

First 2 bytes User-defined bytes to be delivered with the signal to the SIR in
the signal information control block. These bytes are mapped
by PPSDKILDATA.

Last 2 bytes Flag bits, mapped by PPSDKILOPTS, that are defined as
follows:
v First bit - signal to bypass Ptrace processing
v Second bit - reserved
v Third bit - the signal code specified in the first 2 bytes is set

by the application
v Remaining bits - reserved

Return_value
Returned parameter

sigqueue (BPX1SGQ)

Chapter 2. Callable services descriptions 763

Type: Integer

Length: Fullword

The name of a fullword in which the sigqueue service returns 0 if it has
permission to queue the specified signal to any of the processes specified by
the Process_ID parameter. A return value of 0 means that a signal was queued
(or could have been queued, if the signal value was 0) to at least one of the
specified processes.

If a signal is not queued, the return value is −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigqueue service stores the return code.
The sigqueue service stores a return code only if the return value is −1. See
z/OS UNIX System Services Messages and Codes for a complete list of
possible return code values. The sigqueue service may return one of the
following values in the Return_code parameter:

Return code Explanation
EAGAIN The caller has reached the maximum number of queued signals

(MAXQUEUEDSIGS) allowed in a process.
EINVAL The value specified in the Signal parameter is incorrect, or not

the number of a supported signal.
EMVSSAF2ERR The SAF ck_process_owner (IRRSKO00) callable service

returned with an unexpected error.
EPERM The caller does not have permission to queue the signal to any

process specified in the Process_ID parameter.
ESRCH No processes or process groups corresponding to the value

specified in the Process_ID parameter were found.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigqueue service stores the reason code.
The sigqueue service stores a reason code only when the return value is −1.
The reason code further qualifies the return code value. See z/OS UNIX
System Services Messages and Codes for the reason codes.

In the case of EMVSSAF2ERR, the reason code contains the security product
return and reason codes, respectively, in the two low-order bytes. For a more
detailed description of the security product Check Privilege service return and
reason code values, see the following table:

Security
Product Return
Code

Security
Product Reason
Code

Explanation

8 4 The caller is not the owner of the target process.

sigqueue (BPX1SGQ)

764 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Security
Product Return
Code

Security
Product Reason
Code

Explanation

8 12 There was an internal error during security product
processing.

Related services
v “getpid (BPX1GPI) — Get the Process ID” on page 258
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709

Characteristics and restrictions
1. A caller can queue a signal if the real or effective user ID of the caller is the

same as the real or saved set user ID of the intended recipient. A caller can
also queue signals if it has appropriate privileges. Appropriate privileges are
discussed in “Authorization” on page 8.

2. Regardless of its user ID, a caller can always queue a SIGCONT signal to a
process that is a member of the same session.

3. A caller can queue a signal to itself. If the signal is not blocked, at least one
pending unblocked signal is delivered to the caller before the service returns
control. Provided that no other unblocked signals are pending, the signal that is
delivered is the signal that is queued. See Appendix E, “The relationship of z/OS
UNIX signals to callable services” on page 1319 for more information.

4. Note the caution at the beginning of this callable service description.

Examples
For an example using this callable service, see “BPX1SGQ (sigqueue) Example” on
page 1238.

sigqueue (BPX1SGQ)

Chapter 2. Callable services descriptions 765

sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the
Thread Until a Signal Is Delivered

Function
The sigsuspend callable service replaces a thread’s current signal mask with a new
signal mask. It then suspends the caller’s thread until delivery of a signal whose
action is either to process a signal-catching service or to end the thread.

Requirements

Authorization: Problem Program or Supervisor State, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SSU,(Signal_mask,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_mask

Supplied parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte area that contains a 64-bit signal mask that is set before
waiting for a signal, and during the execution of any signal catcher. The leftmost
bit represent signals 1 and the rightmost bit represents signal 64. Bits that are
set to 1 represent signals that are blocked.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigsuspend service returns a −1 if it returns
to its caller.

Return_code
Returned parameter

Type: Integer

sigsuspend (BPX1SSU)

766 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the sigsuspend service stores the return code.
The sigsuspend service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The sigsuspend service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINTR A signal was received and handled successfully.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigsuspend service stores the reason code.
The sigsuspend service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The caller’s thread starts running again when it receives one of the signals that

are not blocked by the mask that is set by this call, or when a system failure
occurs that sets Return_code to some value other than EINTR.

2. The signal mask represents a set of signals that are to be blocked. Blocked
signals do not “wake up” the suspended service. The signals SIGSTOP,
SIGTHSTOP, SIGTHCONT, and SIGKILL cannot be blocked or ignored; they
are delivered to the program no matter what the signal mask specifies.

3. If the signal action is to end the thread, the sigsuspend service does not return.

4. If the signal interruption is to give control to the signal interface routine (SIR),
which is defined by the BPX1MSS service, the SIR is given control with the
following PPSD fields:

PPSDSAMASK Set to the New_sa_mask value, which is set by
the BPX1SIA service, for the signal number that
caused the interruption.

PPSDCURRENTMASK The signal mask value that existed before the
BPX1SSU service was called.

To be XPG4 compliant, this is the signal mask
that is installed when a signal catcher performs
a normal return.

PPSDCATCHERMASK The signal mask that is specified on the
BPX1SSU service.

To be XPG4 compliant, the signal mask that is
installed before calling a signal catcher is
calculated by taking the union of
PPSCATCHERTMASK, PPSDSAMASK, and the
signal that caused the interrupt.

5. The signal interface routine (SIR) that is defined by the BPX1MSS service is
given control only when the PSW key of the sigsuspend caller is equal to the

sigsuspend (BPX1SSU)

Chapter 2. Callable services descriptions 767

|
|
|
|

signal catcher key of the process. The signal catcher key is set to the PSW key
of the caller of the first z/OS UNIX callable service that created the process.

6. If the caller has a PSW key that is different from the signal catcher key, or has a
PSW key of zero, the sigsuspend service returns with a return code of
EMVSERR and reason code of JRPSWKeyNotValid.

7. All pending unblocked signals are moved from the process level to the current
thread.

Related services
v “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 463
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigpending (BPX1SIP) — Examine Pending Signals” on page 757
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
See “BPX1SSU (sigsuspend) Example” on page 1265 for an example using this
callable service.

sigsuspend (BPX1SSU)

768 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

sigtimedwait (BPX1STW) — Wait for a Signal With a Specified Timeout

Function
The sigtimedwait callable service suspends the invoking thread until either the
specified timeout expires, or a signal specified in the signal set becomes pending,
at either the process or the invoking thread. If a signal that is specified in the signal
set is sent to the invoker of sigtimedwait, the value of that signal is returned to the
invoker and the sigtimedwait service ends.

Requirements

Authorization: Supervisor state or problem state, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STW,(Signal_mask,
Siginfo_ptr
Siginfo_len,
Seconds,
Nanoseconds,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_mask

Supplied parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte field area that contains a 64-bit signal mask that
contains the set of signals that this task is to wait on. The leftmost bit
represents signal 1, and the rightmost bit represents signal 64. Bits that are set
to 1 represent signals that are waited on.

Siginfo_ptr
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of user-supplied storage that
is mapped by the BPXYSINF macro (see “BPXYSINF — Map SIGINFO_T
Structure” on page 1026). If this address is nonzero, the sigtimedwait service

sigtimedwait (BPX1STW)

Chapter 2. Callable services descriptions 769

uses this area to place additional signal information when a signal number is
returned in Return_value. If this address is zero, or if an error is returned, no
additional information is returned in this area.

Siginfo_len
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the user-supplied storage
that is mapped by the BPXYSINF macro. If the address of Siginfo_ptr is zero,
this parameter is ignored.

Seconds
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer representing the
maximum number of seconds that the calling program is willing to wait for one
of the specified signals to become pending.

Notes:

1. Seconds can be any value greater than or equal to 0 and less than or equal
to 4 294 967 295. The value specified for Seconds must be an unsigned
integer.

2. The values in the Seconds and Nanoseconds parameters are combined to
determine the timeout value. A combined value of zero indicates that the
sigtimedwait service does not wait at all. A value of SIG#NO_TIMEOUT (see
“BPXYSIGH — Signal Constants” on page 1024) indicates that no timeout
value is set.

Nanoseconds
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an unsigned integer representing the
number of nanoseconds to be added to the value specified by the Seconds
parameter. Nanoseconds can be any value greater than or equal to 0 and less
than or equal to 1 000 000 000.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigtimedwait service returns the signal if
the request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

sigtimedwait (BPX1STW)

770 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the sigtimedwait service stores the return code.
The sigtimedwait service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The sigtimedwait service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL One or more of the parameters that were passed to this service

are in error. The following reason codes unique to the
sigtimedwait service can accompany the return code:
JRNanoSecondsTooBig, JRInvalidSignal.

EAGAIN The service timed out before any of the specified signals became
pending on the invoking thread.

EINTR The service received a signal that was not specified in the input
signal mask.

Reason_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigtimedwait service stores the reason
code. The sigtimedwait service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The sigtimedwait service behaves like the sigwait (BPX1SWT) service, except

that with the sigtimedwait service you can specify a timeout value.

2. If a nonzero address is specified for the siginfo_ptr parameter, the sigtimedwait
service also returns si_signo, si_code, and si_value, as mapped by BPXYSINF.

3. A timeout value of zero (Seconds + Nanoseconds) means that the sigtimedwait
service does not wait at all. It checks for pending signals, and if no signal is
found, it returns with an error of EAGAIN. If a signal is found, the service
returns with the signal number of the pending signal.

4. A passed timeout value of SIG#NO_TIMEOUT (see “BPXYSIGH — Signal
Constants” on page 1024) indicates that no timeout value is set. The
sigtimedwait service waits until a signal becomes pending.

Related services
v “sigwait (BPX1SWT) — Wait for a Signal” on page 772
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759

Characteristics and restrictions
There are no restrictions on the use of the sigtimedwait service.

Examples
For an example using this callable service, see “BPX1STW (sigtimedwait) Example”
on page 1273.

sigtimedwait (BPX1STW)

Chapter 2. Callable services descriptions 771

sigwait (BPX1SWT) — Wait for a Signal

Function
The sigwait callable service waits for an asynchronous signal. If a signal that is
specified in the signal set is sent to the invoker of sigwait, the value of that signal is
returned to the invoker and the sigwait service ends.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SWT,(Signal_mask,
Return_value,
Return_code,
Reason_code)

Parameters
Signal_mask

Supplied parameter

Type: Structure

Length: 8 bytes

The name of an 8-byte field area that contains a 64-bit signal mask that
contains the set of signals that this task is to wait on. The leftmost bit
represents signal 1, and the rightmost bit represents signal 64. Bits that are set
to 1 represent signals that are waited on.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigwait service returns the signal if the
request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

sigwait (BPX1SWT)

772 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the sigwait service stores the return code. The
sigwait service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The sigwait service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EINVAL The Signal_mask argument contained a signal that represents an

incorrect signal number. The following reason code can
accompany this return code: JRInvalidSignal.

Reason_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sigwait service stores the reason code. The
sigwait service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. If any signals that are specified in Signal_mask are pending upon invocation of

the sigwait service, one of those signals has its value returned to the invoker,
and that signal is cleared from the set of pending signals.

2. If there are no pending signals that were specified in Signal_mask, the sigwait
service waits until a signal that is specified in Signal_mask is generated. A
signal mask of zero causes the caller to wait until the task or process is
terminated.

3. If sigwait is invoked for a SIGKILL , SIGSTOP, or SIGTHSTOP signal, and a
SIGKILL , SIGSTOP, or SIGTHSTOP signal arrives, the value of the signal is
not returned to the invoker. Rather, the SIGKILL , SIGSTOP, or SIGTHSTOP
action occurs.

4. The current sigaction (“sigaction (BPX1SIA) — Examine or Change a Signal
Action” on page 746) that is associated with a signal that is returned is not
performed. This action also remains unchanged by the use of the sigwait
service.

5. If there are multiple threads in a process that have issued a sigwait for the
same signal, exactly one of these threads returns from sigwait with the signal
number if the signal was directed at the process.

Related services
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759

Characteristics and restrictions
There are no restrictions on the use of the sigwait service.

Examples
For an example using this callable service, see “BPX1SWT (sigwait) Example” on
page 1275.

sigwait (BPX1SWT)

Chapter 2. Callable services descriptions 773

|
|
|
|

sleep (BPX1SLP) — Suspend Execution of a Process for an Interval
of Time

Function
The sleep callable service suspends running of the calling thread (process) until the
number of seconds specified by the parameter Seconds has elapsed, or until a
signal is delivered to the calling thread to invoke a signal-catching function or end
the thread.

Requirements

Authorization: Problem Program or Supervisor State, PSW key when the
process was created (not PSW key 0)

Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SLP,(Seconds,
Return_value)

Parameters
Seconds

Supplied parameter

Type: Integer

Length: Fullword

The name of an unsigned fullword that contains the number of seconds for the
calling thread to sleep. Because of processor delays, the calling thread can
sleep slightly longer than this specified time.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of an unsigned fullword in which the sleep service returns the
“remaining sleep time” value: the difference between Seconds and the number
of seconds that elapsed before the thread was awakened. The return value is
rounded to the nearest second. (If the thread was awakened by the ending of
the elapsed time specified by Seconds, the return value is 0.) When a signal
arrives and the remaining time left in the sleep is less than a half second, a
value of 0 is returned.

sleep (BPX1SLP)

774 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
1. The suspension can actually be longer than the requested time, because of the

scheduling of other activity by the system.

2. The sleep service suspends the thread that is running for a specified number of
seconds, or until a signal is delivered to the calling thread that invokes a
signal-catching function or ends the thread. An unblocked signal that is received
during this time prematurely “wakes up” the thread. The appropriate
signal-handling function is invoked to handle the signal. When that
signal-handling function returns, sleep returns immediately, even if there is
“sleep time” remaining.

3. The sleep service returns a zero if it slept for the number of seconds that were
specified. If the time that was specified by the Seconds parameter has not
elapsed when the sleep service is interrupted because of the delivery of a
signal, the sleep service returns the unslept amount of time (the requested time
minus the time actually slept when the signal was delivered) in seconds. Any
time that is consumed by signal-catching functions is not reflected in the value
that is returned by the sleep service.

4. The following usage notes are for a SIGALRM signal that is generated by the
alarm, interval timer, or kill calls during the execution of the sleep call:

v If the calling thread has SIGALRM blocked before it calls the sleep service,
the sleep service does not return when SIGALRM is generated, and the
SIGALRM signal is left pending when sleep returns.

v If the calling process has SIGALRM ignored when the SIGALRM signal is
generated, the sleep service does not return and the SIGALRM signal is
ignored.

v If the calling process has SIGALRM set to a signal-catching function, that
function interrupts the sleep service and receives control. The sleep service
returns any unslept amount of time, as it does for any other type of signal.

5. If a signal-catching function interrupts the sleep service and examines or
changes the time a SIGALRM is scheduled to be generated, the action that is
associated with the SIGALRM signal is the same as it is when the
signal-catching function interrupts any other function.

6. If a signal-catching function interrupts the sleep service, restores a previously
saved environment, and does not return, the action that is associated with the
SIGALRM signal that was saved prior to the sleep service is the same as it is
when the signal-catching function interrupts any other function.

7. When the sleep service returns, any previous alarm time that has not elapsed is
restored before any signal-catcher gets control. Signal catchers can change this
alarm setting. See “alarm (BPX1ALR) — Set an Alarm” on page 25.

8. An EC6 abend is generated when the caller’s PSW key or RB state prevents
signals from being delivered.

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “smf_record (BPX1SMF) — Write an SMF Record” on page 777
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

sleep (BPX1SLP)

Chapter 2. Callable services descriptions 775

Characteristics and restrictions
See Appendix E, “The relationship of z/OS UNIX signals to callable services” on
page 1319.

Examples
For an example using this callable service, see “BPX1SLP (sleep) Example” on
page 1246.

MVS-related information
Both the alarm service, BPX1ALR, and the sleep service, BPX1SLP, use the MVS
STIMERM macro. It is possible that two STIMERM SET requests can be set by the
alarm and sleep services. If the task invokes both the STIMERM SET macro and
the sleep service, the limit of concurrent STIMERM SET requests for a task can be
exceeded, which results in an abnormal end.

sleep (BPX1SLP)

776 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

smf_record (BPX1SMF) — Write an SMF Record

Function
The smf_record callable service writes an SMF record to the SMF data set. The
caller must be permitted to the BPX.SMF FACILITY class profile.

The service can also be used to determine if a particular type or subtype of SMF
record is being recorded. This avoids the overhead of data collection if the SMF
record is not going to be recorded.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SMF,(Smf_record_type,
Smf_record_subtype,
Smf_record_length,
Smf_record_address,
Return_value,
Return_code,
Reason_code)

Parameters
Smf_record_type

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the SMF record type. See z/OS MVS
System Management Facilities (SMF) for information on SMF record type and
SMF record layout.

Smf_record_subtype
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the SMF record subtype. See z/OS MVS
System Management Facilities (SMF) for information on SMF record type and
SMF record layout.

smf_record (BPX1SMF)

Chapter 2. Callable services descriptions 777

Smf_record_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the SMF record length.

Smf_record_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the starting address of the SMF record to
be written, or zero. If it contains zero, SMF is tested to determine if a particular
record type or subtype is being recorded.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the smf_record service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the smf_record service stores the return code.
The smf_record service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The smf_record service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL The value that was specified for an operand was incorrect. The

following reason code can accompany the return code:
JRSMFBadRecordLength.

ENOMEM Not enough storage is available. The following reason code can
accompany the return code: JRNoStorage.

EPERM The calling process is not permitted to the BPX.SMF FACILITY
class profile. The following reason code can accompany the
return code: JRSMFNotAuthorized.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the smf_record service stores the reason code.
The smf_record service returns Reason_code only if Return_value is −1.

smf_record (BPX1SMF)

778 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
To determine if a particular type or subtype is being recorded, specify the record
address as zero. If the return value is zero, the type or subtype is being recorded. If
the return value is -1 and the return code is EMVSERR with a reason code of
JRSMFNotAccepting, SMF is not recording this type or subtype.

Related services
There are no related services.

Characteristics and restrictions
The caller must be permitted to the BPX.SMF FACILITY class profile.

Examples
For an example using this callable service, see “BPX1SMF (smf_record) Example”
on page 1247.

MVS-related information
1. See z/OS MVS System Management Facilities (SMF) for information on SMF

record types and SMF record layout.

2. See z/OS UNIX System Services Planning for a description of the BPX.SMF
FACILITY class profile and how it is created.

smf_record (BPX1SMF)

Chapter 2. Callable services descriptions 779

socket or socketpair (BPX1SOC) — Create a Socket or a Pair of
Sockets

Function
The socket or socketpair callable service creates a socket or a pair of sockets for
communication.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SOC,(Domain,
Type,
Protocol,
Dimension,
Socket_vector,
Return_value,
Return_code,
Reason_code)

Parameters
Domain

Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the address domain requested. See
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 for
more information on the values that are defined for this field.

Type
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the type of socket that is to be created. Some
of the socket types are:

Sock#_Stream Provides sequenced, two-way byte streams that
are reliable and connection-oriented. They
support out-of-band data.

socket or socketpair (BPX1SOC)

780 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Sock#_Dgram Provides datagrams, which are connectionless
messages of a fixed maximum length whose
reliability is not guaranteed. Datagrams can be
corrupted, received out of order, lost, or
delivered multiple times.

Sock#_Raw Supports AF_INET and AF_INET6. You must be
a superuser to use this type.

See “BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027
for more information on the values that are defined for this field.

Protocol
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the protocol requested. See “BPXYSOCK —
Map SOCKADDR Structure and Constants” on page 1027 for more information
on the values that are defined for this field.

Dimension
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the number of sockets to be returned. The
value of this field determines whether the service performed is socket or
socketpair. See “BPXYSOCK — Map SOCKADDR Structure and Constants” on
page 1027 for more information on the values that are defined for this field.

Socket_vector
Supplied parameter

Type: Integer

Length: Doubleword

The name of a doubleword field into which a socket descriptor or pair of socket
descriptors is to be stored.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the socket or socketpair service returns one of
the following:

v 0, if the request is successful.

v −1 if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

socket or socketpair (BPX1SOC)

Chapter 2. Callable services descriptions 781

|
|

The name of a fullword in which the socket or socketpair service stores the
return code. The socket or socketpair service returns Return_code only if
Return_value is −1. For a complete list of possible return code values, see z/OS
UNIX System Services Messages and Codes. The socket or socketpair service
can return one of the following values in the Return_code parameter:

Return_code Explanation
EACCES Permission is denied.
EAFNOSUPPORT The address family that was specified with the Domain

parameter is not supported.
EAGAIN The resource is temporarily unavailable. The following

reason code can accompany the return code:
JRTcpNotActive.

EINVAL Dimension is not a valid value. Only 1 or 2 can be specified
for this parameter. The following reason code can
accompany the return code: JRInvalidParms.

EIO There has been a network or transport failure. The following
reason code can accompany the return code: JRPFSdead.

ENOBUFS A buffer could not be obtained. The following reason code
can accompany the return code: JROutofSocketCells.

EPROTONOSUPPORT The Protocol parameter is incorrect. It is not 0. The following
reason code can accompany the return code:
JRSocketProtocolInvalid.

EPROTOTYPE The socket type is not supported by the protocol.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the socket or socketpair service stores the
reason code. The socket or socketpair service returns Reason_code only if
Return_value is −1. Reason_code further qualifies the Return_code value. For
the reason codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The socket callable service is invoked by specifying 1 (Sock#dim_socket) for the

Dimension parameter.

2. The socketpair callable service is invoked by specifying 2
(Sock#dim_socketpair) for the dimension parameter. Socketpair returns 2 socket
descriptors in the socket_vector parameter. The sockets are unnamed and
connected.

3. These usage notes apply for IPv6 sockets:

v An AF_INET6 socket may be opened only if there is at least one
IPv6-capable stack active at the time of the call.

v If a process has stack affinity under CINET, and that single stack is not
IPv6-capable, the call will fail.

v When an IPv6 socket is created through CINET, CINET creates AF_INET6
subsockets to IPv6 stacks and IPv4 sockets to IPv4 stacks.

Related services
None.

socket or socketpair (BPX1SOC)

782 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|

|
|

|
|

|
|

Characteristics and restrictions
There are no restrictions on the use of socket or socketpair.

Examples
For an example using this callable service, see “BPX1SOC (socket or socketpair)
Example” on page 1250.

socket or socketpair (BPX1SOC)

Chapter 2. Callable services descriptions 783

spawn (BPX1SPN) — Spawn a Process

Function
The spawn callable service creates a child process to run a specified hierarchical
file system (HFS) executable file. The spawn callable service combines the
semantics of the fork and exec callable services to provide this function.

Requirements

Authorization: Supervisor or problem state, any PSW key, TCB key 8
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SPN,(Pathname_length,
Pathname,
Argument_count,
Argument_length_list,
Argument_list,
Environment_count,
Environment_data_length,
Environment_data_list,
Filedesc_count,
Filedesc_list,
Inherit_area_len,
Inherit_area,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file. The
length can be up to1023 bytes long.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

spawn (BPX1SPN)

784 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a field that contains the fully qualified pathname of the file that is
to be run. Each component of the pathname (directory name, subdirectory
name, or filename) can be up to 255 characters long. The complete pathname
can be up to 1023 characters long, and does not require an ending NUL
character.

Pathnames can begin with or without a slash.

v If the pathname begins with a slash, it is an absolute pathname; the slash
refers to the root directory, and the search for the file starts at the root
directory.

v If the pathname does not begin with a slash, it is a relative pathname; the
search for the file starts at the working directory.

Argument_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for the
Argument_length_list and the Argument_list. If the program needs no
arguments, specify 0.

Argument_length_list
Supplied parameter

Type: Structure

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an argument that is to be passed to the
specified program. If the program needs no arguments, specify 0.

Argument_list
Supplied parameter

Type: Structure

Length: Variable specified by Argument_length_list

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an argument to be passed to the specified program.
Each argument is of the length that is specified by the corresponding element in
the Argument_length_list. If the program needs no arguments, specify 0.

Environment_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of pointers in the lists for
Environment_data_length and Environment_data_list. If the program needs no
environment data, specify 0.

Environment_data_length
Supplied parameter

Type: Structure

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 785

Length: Variable

The name of a list of pointers. Each pointer in the list is the address of a
fullword that gives the length of an environment variable that is to be passed to
the specified program. If the program does not use environment variables,
specify 0.

Environment_data_list
Supplied parameter

Type: Structure

Length: Variable, specified by Environment_data_length

The name of a list of pointers. Each pointer in the list is the address of a
character string that is an environment variable to be passed to the specified
program. Each environment variable is of the length that is specified by the
corresponding element in Environment_data_length. If the program does not
use environment variables, specify 0.

If the target executable file is an IBM Language Environment-enabled program,
the environment variables that are supplied to this service must include the null
terminator as part of the data string and length. Trailing blanks can cause the
environment variable to be processed incorrectly. Each environment variable is
searched for a null character; if a null character is found, the environment
variable is truncated at that point.

Filedesc_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of file descriptors the child
process is to inherit. It may take values from 0 to OPEN_MAX. If the value is 0,
all file descriptors from the parent are inherited without remapping by the child,
and the filedesc_list is ignored.

Filedesc_list
Supplied parameter

Type: Structure

Length: Variable

The name of an array of fullword file descriptor remap values that indicate how
the child’s file descriptors are to be remapped from the caller’s (parent’s) file
descriptors. Except for those file descriptors that are designated by
SPAWN_FDCLOSED in the supplied array, each of the child’s file descriptors in
the range zero to Filedesc_count-1 inherit file descriptor remap values
filedesc_list(1) to filedesc_list(filedesc_count) from the supplied file descriptor
array. The constant SPAWN_FDCLOSED is defined in the BPXYCONS macro.

As an example, assume that the caller supplies an array of 3 entries with the
values 7, 5, and 4 respectively. This causes the child’s file descriptor 0 to be
remapped to the parent’s file descriptor 7, the child’s file descriptor 1 to be
remapped to the parent’s file descriptor 5, and the child’s file descriptor 2 to be
remapped to the parent’s file descriptor 4.

spawn (BPX1SPN)

786 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Inherit_area_len
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the length of the inheritance structure that
is to follow. If this parameter contains a value of zero, the inherit_area
parameter is ignored.

Inherit_area
Supplied parameter

Type: Structure

Length: Fullword

The name of a data area that contains the inheritance structure for the child
process. See the BPXYINHE mapping for the details of the inheritance structure
(“BPXYINHE — Spawn Inheritance Structure” on page 972).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the spawn service returns the process ID of
the newly created child process, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the spawn service stores the return code. The
spawn service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The spawn service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The caller does not have appropriate permissions to run the

specified file. It may lack permission to search a directory that is
named in the Pathname parameter; it may lack execute
permission for the file to be run; or the file to be run is not a
regular file and the system cannot run files of its type.

EAGAIN The resources that are required to let another process be created
are not available now; or you have already reached the maximum
number of processes or UIDs that you are allowed to create. This
error is also generated if _BPX_USERID was specified, and the
specified username was not defined to SAF with an OE segment.
The following reason codes can accompany the return code:
JROK, JRMaxUIDs or JRWlmWonErr.

EBADF An entry in the filedesc_list is not a valid file descriptor; or the
controlling terminal file descriptor that was specified in the
inheritance structure is not valid.

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 787

Return_code Explanation
EINVAL One or more of the following conditions were detected:

v The username that was specified on the _BPX_USERID
environment variable has an incorrect length.

v An attribute that was specified in the inheritance structure
(BPXYINHE) is not valid or contains an unsupported value.

v The version number that was specified for the inheritance
structure (BPXYINHE) is not valid. See “BPXYINHE — Spawn
Inheritance Structure” on page 972 for supported version
numbers.

v The inheritance structure length that was specified by the
Inherit_area_len parameter or within the inheritance structure
does not contain a length that is appropriate for the
BPXYINHE version. See “BPXYINHE — Spawn Inheritance
Structure” on page 972 for supported lengths.

v The process group ID that was specified in the inheritance
structure is less than zero or has some other unsupported
value.

The following reason codes can accompany the return code:
JROK, JRUserNameLenError, JRJsRacXtr, JRInheUserid,
JRInheRegion, JRInheCPUTime, JRInheDynamber,
JRInheAccountData, JRInheCWD, JRInheSetPgrp,
JRInheVersion, and JRInheLength.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Filename argument. This error is issued if more
than 24 symbolic links are detected in the resolution of Filename.

EMVSERR If EMVSERR is accompanied by reason code
JrLocalSpawnNotAllowed, one of the following conditions
occurred:

v The environment variable _BPX_SHAREAS was set to MUST
(_BPX_SHAREAS=MUST).

v The inheritance structure specified InheMustBeLocal, but
spawn processing determined that the local spawn could not
be allowed.

For OS/390 Releases 6 through 8, a local spawn is not allowed if
any of the following are specified in the BPXYINHE structure:
v InheSetRegionSz
v InheSetTimeLimit
v InheSetAcctData
v InheSetJobName
v InheCWD
v InheUMASK

For OS/390 Releases 9 and 10, a local spawn is not allowed if
any of the following are specified in the BPXYINHE structure:
v InheSetRegionSz
v InheSetTimeLimit
v InheSetAcctData
v InheSetJobName

EMVSSAF2ERR The executable file is a set-user-ID or set-group-ID file and the
file owner’s UID or GID is not defined to the Security Access
Facility (SAF).

ENAMETOOLONG File_name is longer than 1023 characters, or some component of
the filename is longer than 255 characters. Name truncation is
not supported.

ENOENT No filename was specified, or one or more of the components of
the specified Filename were not found.

spawn (BPX1SPN)

788 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOEXEC The specified file has execute permission, but it is not in the

proper format to be a process image file. Reason_code contains
the loader reason code for the error.

ENOMEM The new process requires more memory than is permitted by the
hardware or the operating system.

ENOTDIR A directory component of Filename is not a directory.
ENOTTY The tcsetpgrp failed for the specified controlling terminal file

descriptor in the inheritance structure. The failure occurred
because the calling process does not have a controlling terminal,
or the specified file descriptor is not associated with the
controlling terminal, or the controlling terminal is no longer
associated with the session of the calling process.

EPERM The spawn failed for one of the following reasons:

v The spawned process is not a process group leader.

v The _BPX_USERID environment variable was specified, and
the invoker does not have appropriate privileges to change the
MVS identity.

v The invoker does not have the appropriate privileges to
change one or more of the attributes specified in the
inheritance structure (BPXYINHE).

The following reason codes can accompany the return code:
JROK, JRNoChangeIdentity, JRInheUserid, JRInheRegion,
JRInheCPUTime, JRInheUmask, and JRInheCWD.

ESRCH The specified process group ID in the inheritance structure is not
that of a process group in the calling process’s session.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the spawn service stores the reason code. The
spawn service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For most of the reason codes, see
z/OS UNIX System Services Messages and Codes. For the ENOEXEC
Return_code, Reason_code contains the loader reason code for the error:

Reason Code Explanation
X'xxxx0C27' The target HFS file is not in the correct format to be an

executable file.
X'xxxx0C31' The target HFS file is built at a level that is higher than that

supported by the running system.

Usage notes
1. Aspects of spawn processing are controlled by environment variables. The

environment variables that affect spawn processing are the ones that are
passed into the spawn syscall, and not the environment variables of the calling
process. The environment variables of the calling process do not affect spawn
processing, unless they are the same as those that are passed in the
Environment_data_list parameter.

2. The new process (called the child process) inherits the following attributes from
the process that calls spawn (called the parent process):

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 789

v Session membership

v Real user ID

v Real group ID

v Supplementary group IDs

v Priority

v The region size of the parent is inherited by the child, unless the
INHESETREGIONSZ flag in the inheritance structure is set on to indicate
that the value specified in INHEREGIONSZ is to be used to determine the
child’s region size.

v The time limit of the parent is inherited by the child, unless the
INHESETTIMELIMIT flag in the inheritance structure is set on to indicate
that the value specified in INHETIMELIMIT is to be used to determine the
child’s time limit.

v The accounting data of the parent is inherited by the child, unless the
INHESETACCTDATA flag in the inheritance structure is set on to indicate
that the data pointed to by INHEACCTDATAPTR is to be used to determine
the child’s accounting data.

v The current working directory (CWD) of the parent is inherited by the child,
unless the INHESETCWD flag in the inheritance structure is set on to
indicate that the value pointed to by INHECWDPTR is to be used to
determine the child’s initial current working directory.

v The root directory of the parent is inherited by the child.

v The file creation mask of the parent is inherited by the child, unless the
INHESETUMASK flag in the inheritance structure is set on to indicate that
the value specified in INHEUMASK is to be used to determine the child’s file
creation mask.

v The process group ID of the parent is inherited by the child, unless the
INHESETGROUP flag in the inheritance structure is set on to indicate that
the value specified in INHEPGROUP is to be used to determine the child’s
process group. If the value in INHEPGROUP is set to INHE#NEWPGROUP,
the child is placed into a new process group with a process group ID set to
the child’s process ID. Otherwise, the child is placed into the process group
that is represented by the value that is specified in INHEPGROUP.

v Signals that are set to be ignored in the parent are set to be ignored in the
child, unless the INHESETSIGDEF flag is on and the INHESIGDEF field
specifies an overriding value in the supplied inheritance structure.

v The signal mask is inherited from the parent, unless the INHESETSIGMASK
flag is set on in the inheritance structure and the INHESIGMASK field
specifies an overriding value in the supplied inheritance structure.

v Security information from the parent’s address space is propagated to the
child’s address space, and the child has a security environment equivalent
to that of the parent, unless:

– The _BPX_USERID environment variable specifies otherwise.

– The INHESETUSERID flag in the inheritance structure is set on, and
INHEUSERID contains a userid.

v The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active
for the current task are propagated to the child’s address space, unless the
STEPLIB environment variable specifies otherwise. This causes the child’s
address space to have the same MVS program search order as the calling
parent task.

spawn (BPX1SPN)

790 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v To support the creation and propagation of a STEPLIB environment to the
new process image, the spawn service allows for the specification of a
STEPLIB environment variable. The following are the accepted values for
the STEPLIB environment variable, and the actions taken for each value:

a. STEPLIB=NONE. No STEPLIB DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
exec service are propagated to the new process image, if they are found
to be cataloged. Uncataloged data sets are not propagated to the new
process image.

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,
Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new process
image.

Note: The actual name of the DD is not STEPLIB, but a
system-generated name that has the same effect as a STEPLIB
DD. The data sets are concatenated in the order that is specified.
The specified data sets must follow standard MVS data set
naming conventions. Data sets found to be in violation of this
standard are ignored. If the data sets follow the standard, but:

– The caller does not have the proper security access to a data
set

– A data set is uncataloged or is not in load library format

the data set is ignored. Because the data sets in error are
ignored, the executable file may run without the proper STEPLIB
environment. If a data set is in error because of improper security
access, a X'913' abnormal end is generated. The dump for this
abnormal end can be suppressed by the installation.

If the STEPLIB environment variable is not specified, the default behavior of
the spawn service is the same as if STEPLIB=CURRENT were specified.

If the program that is to be invoked is a set-user-ID or set-group-ID file, and
the user-ID or group-ID of the file is different from that of the current
process image, the data sets to be built into the STEPLIB environment for
the new process image must be found in the system sanction list for
set-user-id and set-group-id programs. Only those data sets that are found
in the sanction list are built into the STEPLIB environment for the new
process image. For detailed information regarding the sanction list, and for
information on STEPLIB performance considerations, see z/OS UNIX
System Services Planning.

v The jobname of the parent is propagated to the child and appended with a
numeric value in the range of 1–9, if the jobname is 7 characters or less. If
the jobname is 8 characters, the jobname is propagated as is. When a
jobname is appended with a numeric value, the count wraps back to 1 when
it exceeds 9.

v If the calling parent task is in a WLM enclave, the child is joined to the same
WLM enclave. This allows WLM to manage the parent and child as one
“business unit of work” entity for system accounting and management
purposes.

3. The new child process has the following differences from the parent process:

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 791

v The child process has a unique process ID (PID) that does not match any
active process group ID.

v The child has a different parent process ID (namely, the process ID of the
process that called spawn).

v If the filedesc_count parameter specifies a 0 value, the child has its own
copy of the parent’s file descriptors, except for those files that are marked
FCTLCLOEXEC or FCTLCLOFORK and for directories that were opened on
a call to the opendir (BPX1OPD) service. The files marked FCTLCLOEXEC
or FCTLCLOFORK and open directories are not inherited by the child. If the
filedesc_count parameter specifies a value greater than 0, the parent’s file
descriptors are remapped for the child as specified in the filedesc_list array.
Those file descriptors from filedesc_count through OPENMAX in the parent
are closed in the child, as are any elements in the filedesc_list array that are
designated SPAWN_FDCLOSED. See the description of the BPXYCONS
macro for the definition of the SPAWN_FDCLOSED constant (“BPXYCONS
— Constants Used by Services” on page 956). The FCTLCLOFORK flag
and FCTLCLOEXEC flags have no effect on inheritance when the
filedesc_list is used to map the child’s file descriptors.

v The FCTLCLOEXEC and FCTLCLOFORK flags are not inherited from the
parent file descriptors to the child’s.

v If the INHESETTCPGRP flag is set in the inheritance structure,
INHECTLTTYFD must be set to the file descriptor that is associated with the
controlling terminal for this session. The foreground process group for this
session is set to the PGID of this child process, thus placing the child
process in the foreground process group. (This is done by issuing a
tcsetpgrp() syscall as a part of spawn processing.)

v If INHESETTCPGRP is not set, the foreground process group of the session
remains unchanged.

v If the INHESETCWD flag is set on in the inheritance structure, the child’s
initial working directory is set to the directory path described by
INHECWDPTR (pointer) and INHECWDLEN (length), provided that the
caller has appropriate privileges.

v If the INHESETUMASK flag is set on in the inheritance structure, the child’s
file mode creation mask (umask) is set to the value in INHEUMASK,
provided that the caller has appropriate privileges.

v If the INHESETREGIONSZ flag is set on in the inheritance structure, the
child’s region size is set to the value in INHEREGIONSZ, provided that the
caller has appropriate privileges.

v If the INHESETTIMELIMIT flag is set on in the inheritance structure, the
child’s CPU time limit is set to the value in INHETIMELIMIT, provided that
the caller has appropriate privileges.

v If the INHESETACCTDATA flag is set on in the inheritance structure, the
child’s accounting data is set to the value specified by INHEACCTDATAPTR
(pointer) and INHEACCTDATALEN (length).

v The process and system utilization times for the child are set to zero.

v Any file locks that were previously set by the parent are not inherited by the
child.

v The child process has no alarms or interval timers set. (This is similar to the
results of a call to the alarm service with Wait_time specified as zero.)

v The child has no pending signals.

v The child gets a new process image to run the executable file that is not a
copy of the parent’s.

spawn (BPX1SPN)

792 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v Signals that are set to be caught are reset to their default action.

v Memory mappings that are established by the parent with the shmat or
mmap services are not inherited by the child.

v The semaphore adjustment values, semadj, are set to zero.

v If the SSTFNOSUID bit is set for the file system that contains the new
process image file, the effective user ID, effective group ID, saved
set-user-ID and saved set-group_ID are unchanged in the new process
image. Otherwise, if the set-user-ID mode bit of the new process image file
is set, the effective user ID of the new process image is set to the owner id
of the new process image file. Similarly, if the set-group-ID mode bit of the
new process image file is set, the effective group ID of the new process
image is set to the group ID of the new process image file. The real user ID,
real group ID, and supplementary group IDs of the new process image will
remain the same as those of the calling process image. The effective user
ID and effective group ID of the new process image are saved (as the
saved set-user-ID and the saved set-group-ID) for use by the setuid and
setgid functions.

4. The executable file that is to be run receives control with the following
attributes:
v Problem program state
v PSW key 8
v AMODE=31
v Primary ASC mode

5. The information that the service passes to the hierarchical file system (HFS)
executable file to be run is a parameter list, which is pointed to by register 1.
The parameter list consists of the following parameter addresses. In the last
parameter address, the high-order bit is 1.

@Argument count Arg

Parameter list

@Plist

R1

@Argument length list Arg len list

@Argument data list Arg list

@Environment count Env count

@Environment length list Env len list

@Environment data list Env var list

@Plist (high-order = ’1’) Parameter list

The last parameter that spawn passes to the executable file identifies the
caller of the file as the exec or spawn service.

6. To support the creation and propagation of a STEPLIB environment to the new
process image, the spawn service allows for the specification of a STEPLIB
environment variable. The following are the accepted values for the STEPLIB
environment variable, and the actions taken for each value:

a. STEPLIB=NONE. No STEPLIB DD is to be created for the new process
image.

b. STEPLIB=CURRENT. The TASKLIB, STEPLIB or JOBLIB DD data set
allocations that are active for the calling task at the time of the call to the
spawn service are propagated to the new process image, if they are found
to be cataloged. Uncataloged data sets are not propagated to the new
process image.

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 793

c. STEPLIB=Dsn1:Dsn2:,...DsnN. The specified data sets,
Dsn1:Dsn2:...DsnN, are built into a STEPLIB DD in the new process
image.

Note: The actual name of the DD is not STEPLIB, but a system-generated
name that has the same effect as a STEPLIB DD. The data sets are
concatenated in the order that is specified. The specified data sets
must follow standard MVS data set naming conventions. Data sets
found to be in violation of this standard are ignored. If the data sets
follow the standard, but:

v The caller does not have the proper security access to a data set

v A data set is uncataloged or is not in load library format

the data set is ignored. Because the data sets in error are ignored,
the executable file may run without the proper STEPLIB
environment. If a data set is in error because of improper security
access, a X'913' abnormal end is generated. The dump for this
abnormal end can be suppressed by your installation.

If the STEPLIB environment variable is not specified, the default behavior of
the spawn service is the same as if STEPLIB=CURRENT were specified.

If the program that is to be invoked is a set-user-ID or set-group-ID file, and
the user-ID or group-ID of the file is different from that of the current process
image, the data sets that are to be built into the STEPLIB environment for the
new process image must be found in the system sanction list for set-user-id
and set-group-id programs. Only those data sets that are found in the sanction
list are built into the STEPLIB environment for the new process image. See
z/OS UNIX System Services Planning for detailed information regarding the
sanction list and information on STEPLIB performance considerations.

7. For performance reasons, the spawn() service is allowed to create a new
image under a specific userid that is different from that of the invoker. When
an invoker with appropriate privileges specifies a username on the
_BPX_USERID environment variable or in the inheritance structure
(INHEUSERID), the resulting image runs under the associated MVS user
identity. This service allows spawn() to replace the sequence of functions
fork(), setgid(), initgroups(), setuid(), and exec(). The following rules apply to
spawn()s with username changes (using either the _BPX_USERID
environment variable or the inheritance structure):

a. _BPX_USERID must be a valid 1-8 character XPG4–compliant name with
a defined OE segment. An incorrect username length results in a failure of
the spawn() request with an EINVAL and JRUserNameLenError. An
undefined username results in an ERRNOJR of JRJsrRacXtr; an
incompletely defined OE username results in an ERRNO of
EMVSSAF2ERR and ERRNOJR of the propagated SAF return code and
reason code.

b. If the creation of the new address space with the new user identity puts the
system over the limit of MAXUIDs, spawn() fails with an ERRNO of
EAGAIN and an ERRNOJR of JRMaxUIDs.

c. Authorization to change the username is the same as for the setuid()
function. If the caller is not authorized, spawn() fails with an ERRNO of
EPERM and an ERRNOJR of JRNoChangeIdentity (_BPX_USERID) or an
ERRNOJR of JRInheUserid (inheritance structure).

spawn (BPX1SPN)

794 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

d. If _BPX_SHAREAS is active and an identity change is called for,
_BPX_SHAREAS is ignored and a new address space is created for the
new image.

8. To allow the caller to control whether the spawned child process runs in a
separate address space from the parent address space or in the same
address space, the spawn service allows for the specification of the
_BPX_SHAREAS environment variable. The following are the accepted values
for the _BPX_SHAREAS environment variable, and the actions taken for each
value:

a. _BPX_SHAREAS=YES - Indicates that the child process that is to be
created is to run in the same address space as the parent. In the following
circumstances, the _BPX_SHAREAS=YES value cannot be honored, and
the child process is created in its own address space:

v If the program to be run is a set-user-ID or set-group-ID program that
would cause the effective user-ID or group-ID of the child process to be
different from that of the parent process.

v If the program to be run is an APF-authorized HFS or MVS program and
the caller is not running APF authorized.

v If the program to be run is an unauthorized HFS or MVS program and
the caller is running APF authorized.

v If the specified filename represents an external link or a sticky bit file. If,
however, the program that is to be run is a shell script and
_BPX_SPAWN_SCRIPT=YES is set, the process runs in the same
address space.

v If the parent’s address space lacks the necessary resources to create
another process within the address space.

v If any of the following values in the inheritance structure are set and the
corresponding INHESETxxxx flag is on:

– For OS/390 Releases 6 through 8: INHEREGIONSZ,
INHETIMELIMIT, INHEACCTDATA, INHEJOBNAME, INHEUMASK,
and INHECWDPTR

– For OS/390 Releases 9 and 10: INHEREGIONSZ, INHETIMELIMIT,
INHEACCTDATA, and INHEJOBNAME

Note that only one local spawned process per TSO address space is
supported at a given time. This is done to reduce conflict among multiple
shells running in the same address space.

b. _BPX_SHAREAS=MUST - Indicates that the child process that is to be
created must run in the same address space as the parent, or the spawn
request will fail. In the following circumstances, the
_BPX_SHAREAS=MUST value cannot be honored, and the spawn
invocation fails:

v If the program to be run is a set-user-ID or set-group-ID program that
would cause the effective user ID or group ID of the child process to be
different from that of the parent process.

v If the program to be run is an APF-authorized HFS or MVS program and
the caller is not running APF authorized.

v If the program to be run is an unauthorized HFS or MVS program and
the caller is running APF authorized.

v If the parent’s address space lacks the necessary resources to create
another process within the address space.

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 795

v If any of the following values in the inheritance structure are set and the
corresponding INHESETxxxx flag is on:

– For OS/390 Releases 6 through 8: INHEREGIONSZ,
INHETIMELIMIT, INHEACCTDATA, INHEJOBNAME, INHEUMASK,
and INHECWDPTR

– For OS/390 Releases 9 and 10: INHEREGIONSZ, INHETIMELIMIT,
INHEACCTDATA, and INHEJOBNAME

c. _BPX_SHAREAS=REUSE - Indicates that the child process to be created
is to run in the same address space as the parent; also, that it will be
created as a medium-weight process. Specifying REUSE allows the caller
to indicate that it wants to reuse the existing process structure for locally
spawned processes.

The same rules that apply to the creation of a local spawn process apply to
the specification of a local spawn medium-weight process. In addition, in
the following circumstances, the _BPX_SHAREAS=REUSE value cannot
be honored, and the child process will be created as a non-medium weight
local spawn process:
v If PTRACE is active for the process.
v If the program to execute is a REXX exec.

For performance reasons, the STEPLIB that is specified for each
medium-weight process that is created for the address space should be the
same.

d. _BPX_SHAREAS=NO - Indicates that the child process that is to be
created is to run in a separate address space from the parent’s address
space. This is the default behavior for the spawn service if the
_BPX_SHAREAS environment variable is not specified, or if it contains an
unsupported value.

9. When the parent and child processes are sharing the same address space,
special consideration must be given to the resources that are shared in this
environment. These considerations include, but are not limited to, the following:

v The parent and child share the same data set allocations, and must
coordinate usage of these allocations. Programs that have special ddname
allocation requirements should not be run in this shared environment.

v The parent and child share the same private area storage; they should be
careful not to overreach their own storage bounds, and together they must
not exceed the region size of the address space.

v A prior loaded copy of a HFS program is reused under the same
circumstances that apply to the reuse of a prior loaded MVS unauthorized
program from an unauthorized library by the MVS XCTL service, with the
following exceptions:

– If the calling process is in Ptrace debug mode, a prior loaded copy is not
reused.

– If the calling process is not in Ptrace debug mode, but the only prior
loaded usable copy of the HFS program found is in storage that is
modifiable by the caller, the prior copy is not reused.

v If the specified file name represents an external link or a sticky bit file, the
program is loaded from the caller’s MVS load library search order. For an
external link, the external name is used only if the name is eight characters
or less; otherwise the caller receives an error from the spawn service. For a
sticky bit program, the filename is used if it is eight characters or less.
Otherwise, the program is loaded from the HFS.

spawn (BPX1SPN)

796 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v The program that is being spawned should have the APF extended attribute
turned on and should be linked AC=1. DLLs that are loaded by
APF-authorized applications should have the APF extended attribute set on
and should be linked AC=0.

10. To allow the caller to control whether the spawn service is to treat the specified
file as a shell script if it is found not to be in the correct format to be a process
image file, the spawn service allows the specification of the
_BPX_SPAWN_SCRIPT environment variable. The following are the accepted
values for the _BPX_SPAWN_SCRIPT environment variable, and the actions
that are taken for each value:

v _BPX_SPAWN_SCRIPT=YES - Indicates that the specified file is to be
treated as a shell script if the following are true:

– The file is not in the correct format to be a process image file, and does
not contain the “magic number” (#!) in the first line.

– The file is not a REXX exec.

In this case, the spawn service behaves as follows:

– The z/OS shell executable file that is current in the caller’s environment
is executed to run the specified file as a shell script. The pathname for
the shell executable file is determined by extracting the pathname from
the SHELL environment variable, if the SHELL variable is present in the
environment data list that is supplied to spawn. If it is not present, the
default pathname of ’/bin/sh’ is used as the shell executable pathname.

– The argument data list and argument length list that are passed to the
shell executable file are to contain the following argument data and
corresponding argument data lengths:
- The shell pathname, terminated by a null character (X'00')
- The string '-S', terminated by a null character (X'00')
- The string '—', terminated by a null character (X'00')

The fourth through the last arguments in the list are to contain the list of
arguments specified by the caller of the spawn service.

v _BPX_SPAWN_SCRIPT=NO - Indicates that the specified file is NOT to be
treated as a shell script if it is found not to be in the correct format to be a
process image file, not to contain the file magic number (#!), and not to be a
REXX exec. In this case, the spawn service fails and returns the return code
ENOEXEC to the caller of spawn. This is the default behavior for the spawn
service if the _BPX_SPAWN_SCRIPT environment variable is not specified,
or if it contains an unsupported value.

11. If the specified HFS file is not in the correct format to be an executable, but
contains the “magic number” (#!) in the first line, the program that is specified
in the magic number header is executed. The expected format of the magic
number header is as follows:
#! Path String

#! is the file magic number. It identifies the first line of the file as a special
header that contains the name of the program to be run and any argument
data to be supplied to it.

The Path parameter specifies the pathname of the file that is to be run. It is
separated by blank or tab characters from the #! characters, or can
immediately follow the characters.

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 797

The String parameter is an optional character string that can be used to pass
options to a target command interpreter (shell) that is to run the script. It must
be separated from the Path parameter by tab or blank characters, and cannot
itself contain tab or blank characters.

The argument data list and argument length list that are passed to the magic
number file are to contain the following argument data and corresponding
argument data lengths:

v The magic number pathname, ended by a null character (X'00')

v The string, if one is supplied, ended by a null character (X'00')

The remaining arguments in the list are to contain the list of arguments
specified by the caller of the spawn service.

If the pathname that is specified in the magic number header cannot be
executed for some reason, the spawn request fails with return code
ENOEXEC, regardless of the error. ENOEXEC is returned for compatibility
purposes, so that existing scripts can continue to run successfully when
invoked from an application such as a command interpreter (shell). The reason
code indicates the exact reason the magic number file could not be executed.

12. If the target executable program is an IBM Language Environment-enabled
program, the environment variables that are supplied to the service must
include the null terminator as part of the string and length.

13. If the _BPX_PTRACE_ATTACH environment variable is set to YES, the target
executable program is loaded into user-modifiable storage to allow subsequent
debugging. Any additional programs that are loaded into storage during the
execution of the target program are also loaded into user-modifiable storage,
with the exception of modules that are loaded from the LPA.

14. The _BPXK_MDUMP environment variable can be used to specify where a
SYSMDUMP is to be written. The following are the allowable values:

Value Description

OFF The dump is to be written to the current
directory. This is the default.

MVS data set name The dump is to be written to an MVS data set.
The data set name must be fully qualified, and
can be up to 44 characters. It can be specified
in uppercase, lowercase, or both; it is folded to
uppercase.

HFS file name The dump is to be written to an HFS file. The
file name can be up to 1024 characters, and
must begin with a slash. The slash refers to
the root directory, in which the file is created.

15. The _BPXK_JOBLOG environment variable can be used to specify that WTO
messages are to be written to an open HFS job log file. The following are the
allowable values:

Value Description

nn Job log messages are to be written to open file
descriptor nn.

STDERR Job log messages are to be written to the
standard error file descriptor, 2.

spawn (BPX1SPN)

798 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

NONE Job log messages are not to be written. This is
the default.

The file that is used to capture messages can be changed at any time by
calling the oe_env_np service (BPX1ENV) and specifying _BPXK_JOBLOG
with a different file descriptor.

Message capturing is turned off if the specified file descriptor is marked for
close on a fork or exec.

Message capturing is process-related. All threads under a given process share
the same job log file. Message capturing may be initiated by any thread under
that process.

Multiple processes in a single address space can each have different files
active as the JOBLOG file; some or all of them can share the same file; and
some processes can have message capturing active while others do not.

When the file that is used as a job log is shared by several processes (for
example, by a parent and child), the file should be opened for append. Failure
to do this causes unpredictable results.

Only files that can be represented by file descriptors may be used as job log
files; MVS data sets are not supported.

Message capturing is propagated on a fork() or spawn(). If a file descriptor is
specified, the physical file must be the same in order for message capturing to
continue in the forked or spawned process. If STDERR is specified, the file
descriptor may be remapped to a different physical file.

Message capturing may be overridden on exec() or spawn() by specifying the
_BPXK_JOBLOG environment variable as a parameter on the exec() or
spawn().

Message capturing only works in forked (BPXAS) address spaces.

This is not true joblog support: messages that would normally go to the
JESYSMSG data set are captured, but messages that go to JESMSGLG are
not.

16. When the INHESETUSERID or INHESETACCTDATA flags are set on in the
inheritance structure, the corresponding environment variables for username
(_BPX_USERID) or accounting data (_BPX_ACCT_DATA) are ignored.

17. Depending on the attributes and values specified in the inheritance structure
(BPXYINHE), the caller is required to have different levels of authorization. The
following table defines the specific authorization required for each attribute.
Inheritance structure attributes that are not listed in the table do not require
authorization.

BPXYINHE Field Authority Required
INHEUSERID The caller must have daemon authority. See z/OS UNIX System

Services Planning for information about setting up daemon authority
for a user.

INHEREGIONSZ When the new region size is smaller than the caller’s current hard
limit for RLIMIT_AS, no authorization is required. To exceed the
current hard limit, the caller must have superuser authority (UID=0),
or the spawn function will fail.

spawn (BPX1SPN)

Chapter 2. Callable services descriptions 799

BPXYINHE Field Authority Required
INHETIMELIMIT When the new CPU time limit is less than the caller’s current hard

limit for RLIMIT_CPU, no authorization is required. To exceed the
current hard limit, the caller must have superuser authority (UID=0),
or the spawn function will fail.

INHEUMASK The caller must have superuser authority to set the child’s file mode
creation mask, or the spawn function will fail.

INHECWD The caller must have superuser authority to set the child’s current
working directory, or the spawn function will fail.

18. If the INHESETDEBUGENV flag in the inheritance structure is set on, the
target program is under the control of the debugger process.

19. If the INHEMUSTBELOCAL flag in the inheritance structure is set on, the
program must run in the same address space as the caller, or the spawn
invocation will fail. (This flag causes the same behavior as
_BPX_SHAREAS=MUST.)

20. If the BPXK_SIGDANGER environment variable is set to YES, the process will
receive a SIGDANGER signal rather than a SIGTERM signal when an OMVS
shutdown is initiated. This may be advantageous for an application that uses
the SIGTERM signal for other purposes.

Related services
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “exec (BPX1EXC) — Run a Program” on page 133
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “fork (BPX1FRK) — Create a New Process” on page 184
v “sigpending (BPX1SIP) — Examine Pending Signals” on page 757
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808
v “setuid (BPX1SUI) — Set User IDs” on page 719
v “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 857
v “umask (BPX1UMK) — Set the File Mode Creation Mask” on page 875

Characteristics and restrictions
The spawn service must be called from a program with a storage protection key
value of 8 in the TCBPKF field of the task control block (TCB). The spawn service
from authorized or problem-state programs with a TCBPKF value other than 8 is
rejected with an error code.

Examples
For an example using this callable service, see “BPX1SPN (spawn) Example” on
page 1256.

spawn (BPX1SPN)

800 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

srx_np (BPX1SRX) — Send or Receive CSM Buffers on a Socket

Function
The srx_np callable service sends or receives data on a socket using CSM
(Communications Storage Manager) buffers.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SRX,(Socket_descriptor,
Direction,
Msghdrx_length,
Msghdrx,
Return_value,
Return_code,
Reason_code)

Parameters
Socket_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the socket file descriptor for which the
srx_np service is requested.

Direction
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the operation
requested:

v MSGX_SEND or 0, for a send operation

v MSGX_RECV or 1, for a receive operation

Msghdrx_length
Supplied parameter

Type: Integer

srx_np (BPX1SRX)

Chapter 2. Callable services descriptions 801

Length: Fullword

The name of a field that contains the length of the Msghdrx parameter.

Before the data structures are built for the first time, you can use a value of 0 in
this field to determine whether the operation is supported on a given socket. If
the operation is supported, a Return_value of 0 is returned. If the operation is
not supported, a Return_value of −1 with a Return_code of ENOSYS is
returned.

Msghdrx
Supplied and returned parameter

Type: Structure

Length: Length of MSGX from BPXYMSGX

The name of the MSGX structure that contains the information for this
operation. See “Usage notes” and the BPXYMSGX macro (“BPXYMSGX —
Map the Message Header” on page 988) for more information about the MSGX
structure.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the srx_np service returns one of the following:

v The number of bytes that were sent or received from the buffers, if the
request is successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the srx_np service stores the return code. The
srx_np service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The srx_np service can return one of the following values in the
Return_code parameter:

Return_code Explanation
ENOSYS This function is not supported on the specified socket.
EAFNOSUPPORT The address family that was specified in the message header is

not the same as the address family that owns the socket.
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

ECONNRESET The connection was reset by a peer. The following reason code
can accompany the return code: JRSockNotCon.

EINTR A signal interrupted the srx_np service before any data was
written. The following reason code can accompany the return
code: JRSockRdwrSignal.

srx_np (BPX1SRX)

802 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL An input parameter was incorrect. The following reason codes

can accompany the return code: JRInvalidMsgh,
JRSocketCallParmError, and JRSockNoName.

EMSGSIZE The message is too large to be sent all at once, as the socket
requires. The following reason code can accompany the return
code: JRSockBufMax.

EFAULT An address that was passed pointed to storage that could not be
accessed.

ENOTCONN The socket was not connected. The following reason code can
accompany the return code: JRSocketNotCon.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPIPE An attempt was made to send a message to a socket that is shut
down or closed. This error also generates a SIGPIPE signal. The
following reason code can accompany the return code:
JRSocketClosed.

EWOULDBLOCK For a receive operation, the socket is marked nonblocking, and
there is no data available to be read. The following reason code
can accompany the return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the srx_np service stores the reason code. The
srx_np service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The Communications Storage Manager (CSM) provides a facility that allows

programs to avoid data moves on a communications session by transferring
buffer ownership instead of copying the buffer contents.

The BPX1SRX service provides a way to send these buffers on a socket
session. It is assumed that the application has its own interactions with CSM
that allow it to obtain and free these buffers independently from the BPX1SRX
service. CSM is restricted to authorized programs, and the buffers are in key 6
storage. BPX1SRX, however, may be invoked from problem state or authorized
programs. All parameters are in local application storage and the caller’s key.

For more information about CSM, see z/OS Communications Server: CSM
Guide.

2. The general flow for using this service is as follows:

For sending:

a. The application obtains CSM buffers and fills them with the data to be sent.
The collection of one or more CSM data buffers is described with an IOVX
array that may be built in application storage or in another CSM buffer. This
whole structure and operational characteristics are specified in a Msghdrx
structure, which is passed to the BPX1SRX callable service.

b. The request is passed on to the transport, such as TCP/IP, for the specified
socket. If the socket transport does not support CSM buffers, the call fails

srx_np (BPX1SRX)

Chapter 2. Callable services descriptions 803

with ENOSYS. A specific socket can be tested for support before the buffers
are built, by specifying 0 for Msghdrx_length. If CSM buffers are not
supported, the data will have to be sent with standard services, such as
BPX1SND (send) or BPX1WRV (writev). CSM buffers could be used on the
standard services, but they would be treated as application buffers, and the
application would retain ownership and be responsible for freeing the
buffers.

c. The socket transport transfers ownership of the CSM data buffers, not the
IOVX, to itself and passes them along to the communications adapter.
Ownership of the IOVX buffer, if it is a CSM buffer, remains with the
application.

d. The communications adapter transfers buffer ownership to itself and
transmits the data.

e. When the I/O is complete, the adapter issues CSM deallocates for the
buffers.

f. CSM puts the buffers back into its global free pool.

g. When control returns to the application after the BPX1SRX call, it no longer
owns the buffers and must not reference them again.

For receiving:

a. Inbound data is received into CSM buffers obtained by the communications
adapter.

b. These buffers are passed up to the socket transport, who assumes
ownership.

c. The application calls BPX1SRX to receive. A Msghdrx structure is passed
that may contain some control information, but that does not specify any
buffers or an IOVX array.

d. The socket transport builds an IOVX array to describe the inbound data
buffers that have been accumulated. This array is itself in a CSM buffer.

If data has not arrived yet, the request is suspended or failed with
EWOULDBLOCK, as for any other socket receive type of operation.

When data is to be returned to the application, the transport assigns
ownership of the CSM buffers to the application, and the application’s
Msghdrx structure is filled in with a description of the IOVX array buffer.

e. When control returns to the application after the BPX1SRX call, it has
ownership of the CSM buffers and may process the data that has been
received.

f. When the application has finished with the buffers and the IOVX array, it
issues CSM deallocates for them.

g. CSM puts the buffers back into its global free pool.

3. For a receive operation, Msghdrx contains the following fields:

Field Description

MsgxNamePtr A pointer to a sockaddr buffer in which the system returns
the source address of the data that is received.

This field is optional. If it is not used, MsgxNamePtr or
MsgxnameLen should be zero.

MsgxNameLen The length of the sockaddr buffer that is pointed to by
MsgxNamePtr.

srx_np (BPX1SRX)

804 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Field Description

MsgxIovx An IVTBUFL structure in which the system describes the
CSM buffer containing the IOVX array being returned for this
request. This CSM buffer is obtained by the system and
freed by the calling application.

The IOVX array contains IVTBUFL structures, each of which
describes a CSM data buffer that contains the data received
by this request. The CSM data buffers that are used by this
service are obtained by the system and freed by the caller.

MsgxMsgFlags MSG_* flags for this operation. Refer to “BPXYMSGF —
Map the Message Flags” on page 987.

MsgxFlags Control flags:

v MSGX_CECSA, indicating that the CSM buffers should
be obtained from ECSA

v MSGX_CDSPACE, indicating that the CSM buffers should
be obtained from one of the CSM data spaces

If neither flag is specified, the application can handle CSM
buffers in either ECSA or a data space.

MsgxDataLen The maximum or minimum amount of data that is to be
received:

v When MSG_WAITALL is off, MsgxDataLen specifies the
maximum amount of data that the caller wants to receive.

v When MSG_WAITALL is on, MsgxDataLen specifies the
minimum amount of data that the caller wants to receive.

You can use this value to control the amount of data that is
received, in the same way that you use the Buffer_length
parameter of the recv service.

If this field is 0, the receive operation completes as soon as
the first block of data is available, and whatever data is
available is returned.

If the receive operation cannot be completed immediately,
the application blocks or receives an EWOULDBLOCK error,
depending on its blocking state.

MsgxTcb The TCB address of a task with which the CSM storage is
to be associated. By default the storage is associated with
the calling task.

This field is optional, and should be 0 if not specified.

4. For a send operation, Msghdrx contains the following fields:

Field Description

MsgxNamePtr A pointer to a sockaddr buffer that contains the destination
address for the send operation.

This field is optional. If it is not used, MsgxNamePtr or
MsgxNameLen should be 0.

MsgxNameLen The length of the sockaddr buffer that is pointed to by
MsgxNamePtr.

srx_np (BPX1SRX)

Chapter 2. Callable services descriptions 805

Field Description

MsgxIovx An IVTBUFL structure that describes the buffer containing
the IOVX array. This buffer may be a CSM buffer, or it may
be in the caller’s storage. Ownership of a CSM buffer used
for the IOVX array remains with the application.

The IOVX array contains IVTBUFL structures, each of which
describes a CSM data buffer that contains the data to be
sent. The CSM data buffers that are used by this service are
obtained by the caller and freed by the system.

MsgxMsgFlags MSG_* flags for this operation. Refer to “BPXYMSGF —
Map the Message Flags” on page 987.

MsgxIVTBUFLOffset The returned offset of the IOVX array entry for the first CSM
data buffer that the application still owns. After a successful
send, this value is equal to the length of the IOVX array. If
this value is zero, no buffers were taken.

MsgxErrIovx The offset of the IOVX array entry that is in error.

This field and MsgxErrData are returned only when there is
an error that is specifically related to one of the IOVX entries
or their associated buffers. Refer to the Return_code and
Reason_code for details on the error.

MsgxErrData The amount of data that has been sent successfully from
the buffer that is indicated by MsgxErrIovx.

MsgxErrIovx and MsgxErrData should only be examined when the request
completes with a Return_value of −1, or when the amount of data sent is less
than the amount of data that was requested to be sent.

5. A C header, BPXYSRXH, is available which contains a C structure for the
Msghdrx and a prototype for BPX1SRX. With this header and the IVTBUFL C
header, you can send and receive CSM buffers from C programs.

Note, however, that this program would simply be making C calls to the
BPX1SRX callable service, and not making normal C functional references. In
particular, the return value and errno value would be returned in explicit calling
parameters, rather than in the standard C method.

6. The socket may be connected or unconnected.

7. Consult the documentation for the TCP/IP stack that is being used for support
for this function.

8. Common INET considerations:

When the socket is associated to a specific transport, the requests are accepted
or rejected based on that transport’s support for CSM buffers. A socket
becomes associated with a specific transport by being a connected stream
socket, bound to a specific IP address, or through setibmopt(IBM_IMAGE) or
ioctl(SIOCSETRTTD).

When the application’s socket is associated with more than one transport, every
associated transport must support CSM buffers for a receive operation to be
accepted. For a send operation, the transport chosen by the system for the
destination IP address must support CSM buffers.

Related services
“recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in
Message Buffers” on page 599

srx_np (BPX1SRX)

806 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|

|
|
|
|

Characteristics and restrictions
There are no restrictions on the use of the srx_np service.

Examples
For an example using this callable service, see “BPX1SRX (srx_np) Example” on
page 1263.

srx_np (BPX1SRX)

Chapter 2. Callable services descriptions 807

stat (BPX1STA) — Get Status Information about a File by Pathname

Function
The stat callable service obtains status information about a specified file. You
specify the file by its pathname.

If the pathname that is specified refers to a symbolic link, the symbolic link name is
resolved to a file, and the status information for that file is returned. To obtain status
information about a symbolic link, rather than a file it refers to, use “lstat (BPX1LST)
— Get Status Information about a File or Symbolic Link by Pathname” on page 335.

For the corresponding service using a file descriptor, see “fstat (BPX1FST) — Get
Status Information about a File by Descriptor” on page 195.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STA,(Pathname_length,
Pathname,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Pathname.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

stat (BPX1STA)

808 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of an area, of length Pathname_length, that contains the pathname
of the file for which you want to obtain status. The Pathname can be a
pathname to a file, a link named by a pathname to a file (as created by “link
(BPX1LNK) — Create a Link to a File” on page 319), or a symbolic link named
by a pathname to a file (as created by “symlink (BPX1SYM) — Create a
Symbolic Link to a Pathname” on page 817).

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the area to which the service
returns Status_area. To determine the value of Status_area_length, use the
BPXYSTAT macro (see “BPXYSTAT — Map the Response Structure for stat” on
page 1034).

Status_area
Parameter supplied and returned

Type: Structure

Length: Specified by the Status_area_length parameter

The name of an area, of length Status_area_length, to which the service returns
the status information for the file. The Status_area is mapped by the
BPXYSTAT macro (see “BPXYSTAT — Map the Response Structure for stat” on
page 1034).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the stat service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the stat service stores the return code. The
stat service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The stat service can return one of the following values in the
Return_code parameter:

stat (BPX1STA)

Chapter 2. Callable services descriptions 809

Return_code Explanation
EACCES The process does not have permission to search some

component of the Pathname prefix.
EINVAL Parameter error—for example, a zero-length buffer. The following

reason code can accompany the return code: JRBuffTooSmall.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or some component of
the pathname is longer than 255 characters. This could be as a
result of encountering a symbolic link during resolution of
Pathname, if the substituted string is longer than 1023
characters.

ENOENT No file named Pathname was found, or Pathname was not
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR A component of the Pathname prefix is not a directory.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the stat service stores the reason code. The
stat service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. All time fields in the Status_area are in POSIX format.

2. The File Mode field in the Status_area is mapped by the BPXYMODE macro
(see “BPXYMODE — Map the Mode Constants of the File Services” on
page 986). For information on the values for file type, see “BPXYFTYP — File
Type Definitions” on page 969.

Related services
v “chmod (BPX1CHM) — Change the Mode of a File or Directory” on page 82
v “exec (BPX1EXC) — Run a Program” on page 133
v “fpathconf (BPX1FPC) — Determine Configurable Pathname Variables Using a

Descriptor” on page 189
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “link (BPX1LNK) — Create a Link to a File” on page 319
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “open (BPX1OPN) — Open a File” on page 434
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475
v “read (BPX1RED) — Read from a File or Socket” on page 567
v “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on page 817
v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882
v “utime (BPX1UTI) — Set File Access and Modification Times” on page 890
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

stat (BPX1STA)

810 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
To obtain information about a file, you need not have permissions for the file itself;
however, you must have search permission for all the directory components of
Pathname.

Examples
For an example using this callable service, see “BPX1STA (stat) Example” on
page 1266.

stat (BPX1STA)

Chapter 2. Callable services descriptions 811

statvfs (BPX1STV) — Get the File System Status

Function
The statvfs callable service obtains status information about a file system that is
specified by a file pathname from the desired file system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STV,(Pathname_length,
Pathname,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname.

Pathname
Supplied parameter

Type: Character string

Character set: Printable characters

Length: Pathname_length

The name of a field, of length Pathname_length, that specifies a file pathname
in the file system about which status is desired.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

statvfs (BPX1STV)

812 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword that contains the length of the area to which the service
returns status information.

Status_area
Parameter supplied and returned

Type: Structure

Length: Specified by the Status_area_length parameter

The name of an area of length Status_area_length to which the service returns
the status information for the file system. The BPXYSSTF macro maps this
area. For information on this macro, see “BPXYSSTF — Map Response
Structure for File System Status” on page 1033.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the statvfs service returns the length of the
status written to the Status_area if the request is successful, or −1 if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the statvfs service stores the return code. The
statvfs service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The statvfs service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search some

component of the Pathname prefix.
EAGAIN Information is temporarily unavailable. This can occur if the

mount process for the file system is not complete.
EINVAL Parameter error; for example, Status_area_length is too small.

The following reason code can accompany the return code:
JRBuffTooSmall.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters.

ENOENT No file named Pathname was found, or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of the Pathname prefix is not a directory.

Reason_code
Returned parameter

Type: Integer

statvfs (BPX1STV)

Chapter 2. Callable services descriptions 813

Length: Fullword

The name of a fullword in which the statvfs service stores the reason code. The
statvfs service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. Provided that the passed Status_area_length is not less than or equal to zero, it

is not considered an error if the Status_area_length is not sufficient to hold all
the requested information. (That is, future expansion is allowed for.) As much
information as will fit is written to Status_area, and this amount is returned.

2. The amount of valid data that is returned in the Status_area is indicated by the
Return_value. This allows for differences in the release levels of z/OS UNIX and
the physical file systems.

Related services
v “fstatvfs (BPX1FTV) — Get the File System Status” on page 198
v “w_statvfs (BPX1STF) — Get the File System Status” on page 932

Characteristics and restrictions
There are no restrictions on the use of the statvfs service.

Examples
For an example using this callable service, see “BPX1STV (statvfs) Example” on
page 1272.

statvfs (BPX1STV)

814 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

sw_sigdlv (BPX1DSD) — Switch the Setting for Signal Delivery

Function
The sw_sigdlv callable service enables or disables signal delivery for the current
process.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1DSD,(signal_ind)

Parameters
signal_ind

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing a numeric value that indicates whether signal
delivery should be enabled or disabled. The signal_ind constants are defined in
the BPXYCONS macro. See “BPXYCONS — Constants Used by Services” on
page 956.

Constant Description
SW_SIGDLV_ENABLE# Enable signal delivery
SW_SIGDLV_DISABLE# Disable signal delivery

Usage notes
There are no returns from the sw_sigdlv callable service. The task is abended if an
error occurs.

Related services
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “mvsunsigsetup (BPX1MSD) — Detach the Signal Setup” on page 419
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759

sw_sigdlv (BPX1DSD)

Chapter 2. Callable services descriptions 815

Characteristics and restrictions
There are no restrictions on the use of the sw_sigdlv service.

sw_sigdlv (BPX1DSD)

816 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

symlink (BPX1SYM) — Create a Symbolic Link to a Pathname

Function
The symlink callable service creates a symbolic link to a pathname. A file of type
“symbolic link” is created.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SYM,(Pathname_length,
Pathname,
Link_name_length,
Link_name,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Pathname.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field, of length Pathname_length, that contains the pathname for
which you are creating a symbolic link.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

symlink (BPX1SYM)

Chapter 2. Callable services descriptions 817

v A pathname that does not begin with a slash is a relative pathname, and the
search for the file starts at the parent directory of the symbolic link file.

Link_name_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Link_name. The name can
be up to 1023 bytes long; each component of the name (between delimiters)
can be up to 255 bytes long.

Link_name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Link_name_length parameter

The name of a field that contains the symbolic link that is being created.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the symlink service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the symlink service stores the return code. The
symlink service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The symlink service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES The requested operation requires writing in a directory with a

mode that denies write permission.
EEXIST The link name already exists. The following reason code can

accompany the return code: JRSymFileAlreadyExists.
EFBIG A request to create a symbolic link is prohibited because the file

size limit for the process is set to 0.

symlink (BPX1SYM)

818 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL This error code may be returned for any of the following reasons:

v A component of the path prefix of Pathname or the entire
pathname exceeds the maximum allowed.

v The value of Pathname_length is less than or equal to zero.

v A null character appears in Pathname.

v Link_name has a slash as its last component, which indicates
that the preceding component is a directory. A symbolic link
cannot be a directory.

The following reason code can accompany the return code:
JRCompNotDir, JRInvalidSymLinkCom, JRInvalidSymLinkLen,
and JRNullInPath.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Link_name argument. This error is issued if
more than 24 symbolic links are detected in the resolution of
Link_name.

ENAMETOOLONG Pathname or Link_name is longer than 1023 characters, or some
component of that name is longer than 255 characters. Name
truncation is not supported.

ENOSPC The directory in which the entry for the symbolic link is being
placed cannot be extended; not enough space remains in the file
system.

ENOTDIR A component of the path prefix of Link_name is not a directory.
EROFS The requested operation requires writing in a directory on a

read-only file system. The following reason code can accompany
the return code: JRReadOnlyFS.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the symlink service stores the reason code.
The symlink service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The symlink service creates a symbolic link (Link_name) with the file that you

specify by Pathname.

2. Like a hard link (described in “link (BPX1LNK) — Create a Link to a File” on
page 319), a symbolic link allows a file to have more than one name. The
presence of a hard link guarantees the existence of a file, even after the original
name has been removed. A symbolic link, however, provides no such
assurance; in fact, the file identified by Pathname need not exist when the
symbolic link is created. In addition, a symbolic link can cross file system
boundaries.

3. When a component of a pathname refers to a symbolic link rather than to a
directory, the pathname that is contained in the symbolic link is resolved. If the
pathname in the symbolic link begins with / (slash), the symbolic link pathname
is resolved relative to the process root directory. If the pathname in the symbolic
link does not begin with /, the symbolic link pathname is resolved relative to the
directory that contains the symbolic link.

symlink (BPX1SYM)

Chapter 2. Callable services descriptions 819

4. If the symbolic link is not the last component of the original pathname,
remaining components of the original pathname are resolved from there.

When a symbolic link is the last component of a pathname, it may or may not
be resolved. Resolution depends on the function that is using the pathname. For
example, a rename request does not have a symbolic link resolved when it
appears as the final component of the new or old pathname. However, an open
request does have a symbolic link resolved when it appears as the last
component.

When a slash is the last component of a pathname, and it is preceded by a
symbolic link, the symbolic link is always resolved.

5. Because the mode of a symbolic link cannot be changed, its mode is ignored
during the lookup process. Any files and directories to which a symbolic link
refers are checked for access permission.

6. Systems in a sysplex participating in shared HFS can access (read/write) file
system data on other systems in the sysplex. For example, if SY1 and SY2 are
two systems in a sysplex, a user on SY1 can access SY2’s /etc directory.

This file system HFS sharing capability requires that /etc , /dev , /var , and /tmp
be converted into symbolic links. If the content of the symbolic link begins with
$VERSION or $SYSNAME, the symbolic link will resolve in a specific manner:

v If the content of the symbolic link begins with $SYSNAME and the
BPXPRMxx parameter SYSPLEX is specified YES, then $SYSNAME is
replaced with a slash followed by the system name (/SY1). If SYSPLEX(NO)
is specified, then $SYSNAME is replaced with /SYSTEM. For example, if you
have specified SYSPLEX(YES) and the symbolic link for /etc has the
contents $SYSNAME/etc , this will resolve to /SY1/etc on a system whose
name is SY1, and will resolve to /SY2/etc on a system whose name is SY2.

v If the content of the symbolic link begins with $VERSION, when the
BPXPRMxx SYSPLEX parameter is YES, $VERSION will resolve to the value
specified on the VERSION parameter in BPXPRMxx. Thus, if VERSION in
parmlib is set to REL9, then resolution of a symbolic link with $VERSION
causes $VERSION to be replaced with /REL9. For example, the symbolic link
for /bin , which has the contents $VERSION/bin , will resolve to /REL9/bin on
a system whose $VERSION value is set to REL9.

For more information on HFS sharing in a sysplex, see z/OS UNIX System
Services Planning. The SYSPLEX(YES|NO) and VERSION(’nnnn’) BPXPRMxx
parameters are described in z/OS MVS Initialization and Tuning Reference.

7. Certain directories like /etc, /dev, /tmp, and /var are converted to symbolic
links. Some shell commands have minor technical differences when referring to
symbolic links than for regular files or directories. For example, ls does not
follow symbolic links by default. /etc is a symbolic link, so ls /etc will display
only the symbolic link name, in this case /etc .

In order to follow symbolic links, you must specify ls -L or provide a trailing
slash. For example, ls -L /etc and ls /etc/ both display the files in the
directory that the /etc symbolic link points to.

Other shell commands that have differences due to symbolic links are du, find,
pax, rm and tar .

8. By default, the owning GID of the symbolic link is set to that of the parent
directory. However, if the FILE.GROUPOWNER.SETGID profile exists in the
UNIXPRIV class, the owning GID is determined by the set-gid bit of the parent
directory, as follows:

v If the parent’s set-gid bit is on, the owning GID is set to that of the parent
directory.

symlink (BPX1SYM)

820 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|

|
|

v If the parent’s set-gid bit is off, the owning GID is set to the effective GID of
the process.

Related services
v “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on

page 86

v “mkdir (BPX1MKD) — Make a Directory” on page 349

v “mknod (BPX1MKN) — Make a Directory, a FIFO, a Character Special, or a
Regular File” on page 353

v “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by
Pathname” on page 335

v “open (BPX1OPN) — Open a File” on page 434

v “readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 581

v “rename (BPX1REN) — Rename a File or Directory” on page 602

v “rmdir (BPX1RMD) — Remove a Directory” on page 610

v “unlink (BPX1UNL) — Remove a Directory Entry” on page 882

Characteristics and restrictions
There are no restrictions on the use of the symlink service.

Examples
For an example using this callable service, see “BPX1SYM (symlink) Example” on
page 1277.

symlink (BPX1SYM)

Chapter 2. Callable services descriptions 821

|
|

sync (BPX1SYN) — Schedule File System Updates

Function
The sync callable service causes all information in memory that updates file
systems to be scheduled for writing.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SYN,(Return_value,
Return_code,
Reason_code)

Parameters
Return_value

Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sync service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sync service stores the return code. The
sync service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

sync (BPX1SYN)

822 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the sync service stores the reason code. The
sync service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
The actual writing of data to all file systems is scheduled, but is not necessarily
completed, upon return from the sync() service.

Characteristics and restrictions
There are no restrictions on the use of the sync service.

Examples
For an example using this callable service, see “BPX1SYN (sync) Example” on
page 1278.

sync (BPX1SYN)

Chapter 2. Callable services descriptions 823

sysconf (BPX1SYC) — Determine System Configuration Options

Function
The sysconf callable service gets the value of a configurable system variable.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1SYC,(Sysconf_name,
Return_value,
Return_code,
Reason_code)

Parameters
Sysconf_name

Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that specifies the configurable system variable that is to
be retrieved. Each configurable system variable is mapped to a specific value
that is defined in the BPXYCONS macro. See “BPXYCONS — Constants Used
by Services” on page 956.

Constant Configurable System Variable Returned
SC_ARG_MAX For ARG_MAX
SC_CHILD_MAX For CHILD_MAX
SC_CLK_TCK For CLK_TCK
SC_JOB_CONTROL For _POSIX_JOB_CONTROL
SC_NGROUPS_MAX For NGROUPS_MAX
SC_OPEN_MAX For OPEN_MAX
SC_SAVED_IDS For _POSIX_SAVED_IDS
SC_MMAP_MEM_MAX_NP For MMAP_MEM_MAX_NP
SC_TTY_GROUP For TTY GROUP
SC_THREADS_MAX_NP For _THREADS_MAX_NP
SC_THREAD_TASKS_MAX_NP For _THREAD_TASKS_MAX_NP
SC_TZNAME_MAX For TZNAME_MAX
SC_VERSION For _POSIX_VERSION
SC_2_CHAR_TERM For CHAR_TERM

sysconf (BPX1SYC)

824 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sysconf service returns the actual value of
the configurable system variable if the request is successful, or −1 if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sysconf service stores the return code. The
sysconf service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The sysconf service can return the following value in the
Return_code parameter:

Return_code Explanation
EINVAL The value of the Sysconf_name argument is not valid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the sysconf service stores the reason code.
The sysconf service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
SC_MAX_THREADS_NP and SC_MAX_THREAD_TASKS_NP return the limits that
are defined for the caller’s process, not the system-wide limits.

Related services
v “pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a

Pathname” on page 459
v “set_thread_limits (BPX1STL) — Change a Process’s Task or Thread Limits for

pthread_created Threads” on page 712

Examples
For an example using this callable service, see “BPX1SYC (sysconf) Example” on
page 1276.

sysconf (BPX1SYC)

Chapter 2. Callable services descriptions 825

takesocket (BPX1TAK) — Acquire a Socket from Another Program

Function
The takesocket callable service acquires a specified socket from the program that is
identified in the Clientid parameter.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TAK,(Clientid,
Socket_Id,
Return_value,
Return_code,
Reason_code)

Parameters
Clientid

Supplied parameter

Type: Structure

Length: Length of BPXYCID

The name of a structure that contains Clientid information that identifies the
(server) program from which the socket is to be taken. This information is
typically obtained with the getclientid (BPX1GCL) service, issued by the server
and passed to the slave. See “BPXYCID — Map the Returning Structure for
getclientid()” on page 956 for more information about the format of this field.
Clientid input may be as follows:

CIdDomain Domain of the socket that is to be taken. See “BPXYSOCK —
Map SOCKADDR Structure and Constants” on page 1027 for
more information on the values that are defined for this field.

CIdName One of the following:

v The server program’s address space name

v A fullword of binary zeros followed by the server program’s
process id.

CIdTask The server program’s subtask identifier (supplied only if the
address space name was supplied in the CIdName field).

CIdReserved Binary zeros.

takesocket (BPX1TAK)

826 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Socket_Id
Supplied parameter

Type: Integer

Length: Fullword

An identifier for the socket that is being taken. This is supplied by the server
program, and is either the socket descriptor obtained from an accept, or the
socket token returned on a givesocket (BPX1GIV) service if givesocket was
invoked with CIdType=CId#Close.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the takesocket service returns one of the
following:

v −1 if the request is not successful.

v If not −1, the return value is the new socket descriptor.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the takesocket service stores the return code.
The takesocket service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The takesocket service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF The Socket_Id does not specify a valid socket that is owned by

the other application; or the socket has already been taken.
EACCESS The other application did not give the socket to your application.
EFAULT Using the Clientid parameter as specified would result in an

attempt to access storage that is outside the caller’s address
space.

EINVAL The Clientid parameter does not specify a valid client identifier:
either the client’s process cannot be found, or the client’s process
was found, but it has no outstanding givesockets.

EMFILE The socket descriptor table is already full.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the takesocket service stores the reason code.
The takesocket service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

takesocket (BPX1TAK)

Chapter 2. Callable services descriptions 827

Usage notes
1. The takesocket callable service used to be an MVS TCP/IP API, and was added

to the z/OS UNIX callable services to allow migration of applications to a single
library.

2. The Clientid output of getclientid (BPX1GCL) that is issued by the server
program and passed to the slave is intended to be used as the input Clientid of
the takesocket service. This identifies the program from which the socket is to
be taken. By using a FunctionCode of 2 on the getclientid service (BPX1GCL)
to obtain Clientid information that is to be used as the Clientid input of the
takesocket service, the best performance of the takesocket service is achieved.

Related services
v “getclientid (BPX1GCL) — Obtain the Calling Program’s Identifier” on page 213
v “givesocket (BPX1GIV) — Give a Socket to Another Program” on page 292

Characteristics and restrictions
There are no restrictions on the use of the takesocket service.

takesocket (BPX1TAK)

828 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted

Function
The tcdrain callable service waits until all output sent to a file descriptor has actually
been sent to the terminal device.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TDR,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor that represents the
output device.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcdrain service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcdrain service stores the return code. The
tcdrain service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return

tcdrain (BPX1TDR)

Chapter 2. Callable services descriptions 829

code values. The tcdrain service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF File_descriptor does not describe a valid open file.
EINTR A signal interrupted the service before all output had been sent.
EIO The process group of the process that is issuing the function is

an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENOTTY File_descriptor is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcdrain service stores the reason code. The
tcdrain service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. For slave pseudoterminals, data is considered written when the master side has

read it.

2. The following table defines the processing of the SIGTTOU signal when
BPX1TDR is called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on

page 831
v “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 834
v “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 847

Characteristics and restrictions
There are no restrictions on the use of the tcdrain service.

Examples
For an example using this callable service, see “BPX1TDR (tcdrain) Example” on
page 1281.

tcdrain (BPX1TDR)

830 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal

Function
The tcflow callable service suspends or resumes data flow on a terminal.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TFW,(File_descriptor,
Action,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal device.

Action
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains an indicator of the action that is to be
taken. The possible constants are mapped in the BPXYTIOS macro (see
“BPXYTIOS — Map the termios Structure” on page 1049).

Constant Description
TCIOFF Send a STOP character to the terminal to stop the

terminal from sending any further input.
TCION Send a START character to the terminal to start the

terminal sending input.
TCOOFF Suspend output to the terminal.
TCOON Resume output to the terminal.

tcflow (BPX1TFW)

Chapter 2. Callable services descriptions 831

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflow service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflow service stores the return code. The
tcflow service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The tcflow service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF File_descriptor does not describe a valid open file.
EINTR A signal interrupted the call.
EINVAL The Action parameter does not contain one of the expected

values.
EIO The process group of the process that is issuing the function is

an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENOTTY File_descriptor is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflow service stores the reason code. The
tcflow service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
The following table defines the processing of the SIGTTOU signal when the tcflow
service is called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

tcflow (BPX1TFW)

832 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
v “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 829
v “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 834
v “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 847

Characteristics and restrictions
There are no restrictions on the use of the tcflow service.

Examples
For an example using this callable service, see “BPX1TFW (tcflow) Example” on
page 1283.

tcflow (BPX1TFW)

Chapter 2. Callable services descriptions 833

tcflush (BPX1TFH) — Flush Input or Output on a Terminal

Function
The tcflush callable service flushes all data that is sent to a device. Depending on
the value of the Queue_selector parameter, any data written, but not sent, or any
data received, but not read, is discarded.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TFH,(File_descriptor,
Queue_selector,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal.

Queue_selector
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that specifies the queues that are to be flushed. The
constants are mapped in the BPXYTIOS macro; see “BPXYTIOS — Map the
termios Structure” on page 1049.

Constant Description
TCIFLUSH Flush data received but not read
TCOFLUSH Flush data written but not sent
TCIOFLUSH Flush both data received but not read and data

written but not sent

tcflush (BPX1TFH)

834 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflush service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflush service stores the return code. The
tcflush service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The tcflush service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF File_descriptor is not a valid open file descriptor.
EINTR A signal interrupted the call.
EINVAL The Queue_selector specified was incorrect.
EIO The process group of the process that is issuing the function is

an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENOTTY The file that is associated with the file descriptor is not a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcflush service stores the reason code. The
tcflush service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
The following table defines the processing of the SIGTTOU signal when tcflush is
called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 829

tcflush (BPX1TFH)

Chapter 2. Callable services descriptions 835

v “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on
page 831

v “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 847

Characteristics and restrictions
There are no restrictions on the use of the tcflush service.

Examples
For an example using this callable service, see “BPX1TFH (tcflush) Example” on
page 1282.

tcflush (BPX1TFH)

836 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcgetattr (BPX1TGA) — Get the Attributes for a Terminal

Function
The tcgetattr callable service gets control information for a terminal and stores it in
the specified Termios_structure.

Requirements

Authorization: Supervisor state or problem state, state any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TGA,(File_descriptor,
Termios_structure,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal for which
you want attributes.

Termios_structure
Returned parameter

Type: Structure

Length: Specified by BPXYTIOS#LENGTH in the
BPXYTIOS macro

The name of an area into which the function is to return the terminal
information. Termios_structure is mapped by the BPXYTIOS macro. This
structure contains the control modes, input modes, output modes, local modes,
and special control characters as defined by the POSIX standard (see
“BPXYTIOS — Map the termios Structure” on page 1049).

Return_value
Returned parameter

Type: Integer

Length: Fullword

tcgetattr (BPX1TGA)

Chapter 2. Callable services descriptions 837

The name of a fullword in which the tcgetattr service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetattr service stores the return code.
The tcgetattr service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcgetattr service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF File_descriptor is not a valid open file descriptor.
ENOTTY The file that is associated with the file descriptor is not a terminal;

the process does not have a controlling terminal; or the file is not
the controlling terminal for the process.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetattr service stores the reason code.
The tcgetattr service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The BPXYTIOS macro should be used to map the termios structure and define

the equates for bits and values. Note the following about BPXYTIOS:

v BPXYTIOS generates standard POSIX-defined names, except that all names
are uppercase. In addition, all names can have a user-specified prefix.

v When testing or setting bits in flag fields, you should use an offset name to
define which byte in the flag field contains the bit. For instance: TM
C_CFLAG+HUPCL_O,HUPCL.

v CS5 through CS8 values can be contained in CSIZE. CSIZE is essentially a
2-bit integer that can contain decimal values 0 through 3, as defined by CS5
through CS8.

v BPXYTIOS can be used to define either a DSECT or an inline structure. This
is determined by the DSECT= keyword.

v The C_CC field is an array of 1-byte fields, indexed by the various special
character equates. These equates can be used as offsets into C_CC, or can
be put into a register to be used with indexing instructions. For instance:
MVC C_CC+VSUSP,NEWVAL To set a new value
LA R10,VSUSP To set an register to use as an index

in a later IC or STC instructions

2. You can run the tcgetattr service in either a foreground or a background
process. However, if the process is in the background, a foreground process
can later change the attributes that you obtained.

tcgetattr (BPX1TGA)

838 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Related services
“tcsetattr (BPX1TSA) — Set the Attributes for a Terminal” on page 850

Characteristics and restrictions
There are no restrictions on the use of the tcgetattr service.

Examples
For an example using this callable service, see “BPX1TGA (tcgetattr) Example” on
page 1284.

tcgetattr (BPX1TGA)

Chapter 2. Callable services descriptions 839

tcgetcp (BPX1TGC) — Get Terminal Code Page Names

Function
The tcgetcp callable service gets the terminal session code page names and Code
Page Change Notification (CPCN) capability.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TGC,(File_descriptor,
Termcp_length,
Termcp_structure,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal for which
you want to get the code page names and data conversion environment.

Termcp_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the length of the Termcp_structure. The
Termcp_structure is mapped by BPXYTCCP, and has a length of
TCCP#LENGTH. See “BPXYTCCP — Map the Terminal Control Code Page
Structure” on page 1035.

Termcp_structure
Returned parameter

Type: Structure

Length: Specified by Termcp_length.

tcgetcp (BPX1TGC)

840 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of an area where the tcgetcp service returns the Termcp_structure.
The Termcp_structure is mapped by the BPXYTCCP macro. See “BPXYTCCP
— Map the Terminal Control Code Page Structure” on page 1035.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetcp service returns one of the following:

v 1, if the terminal device supports a capability of forward code page names
only

v 2, if the terminal device supports a capability of forward code page names
and tables

v −1, if the request is not successful

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetcp service stores the return code. The
tcgetcp service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The tcgetcp service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF File_descriptor is an incorrect open file descriptor.
EINVAL One of the parameters contains a value that is not correct.

Consult Reason_Code returned to determine the exact reason
the error occurred.

ENODEV One of the following error conditions exists:
v The terminal device driver does not support CPCN functions.
v CPCN functions have not been enabled. For a pseudoterminal

device file, issue the BPX1TSC callable service against the
master pty first, to enable CPCN support.

ENOTTY The file that is associated with the file descriptor is not a terminal
device.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetcp service stores the reason code.
The tcgetcp service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

tcgetcp (BPX1TGC)

Chapter 2. Callable services descriptions 841

Usage notes
1. For terminal devices that support forward code page names only CPCN

capability, use the tcsetcp (BPX1TSC) callable service to change the terminal
session data conversion environment.

The pseudoterminal device driver supports this CPCN capability.

2. For terminal devices that support forward code page names and tables CPCN
capability, use the tcsettables (BPX1TST) callable service to change the
terminal session code conversion environment.

The OCS remote-tty device driver supports this CPCN capability.

3. In the returned Termcp_structure, if the TCCPBINARY flag is set, the code page
names should not be used. BINARY indicates that the data conversion point is
to perform no data conversion for the terminal session.

4. For pseudoterminal support, the tcsetcp (BPX1TSC) callable service must be
against the pty master terminal device for CPCN functions to be enabled.

5. In the returned Termcp_structure, if the TCCPFASTP flag is set, the data
conversion that is specified by the source and target code page names can be
performed locally to the data conversion application. This is valid any time that a
table-driven conversion can be performed. For example, the data conversion
point (application) could use the z/OS UNIX iconv() service to build local data
conversion tables and perform all data conversion using the local tables, instead
of using iconv() all in subsequent conversions. This provides for
better-performing data conversion.

6. The BPXYTCCP macro should be used to map the Termcp_structure and define
the equates for the flag byte values. Note the following about BPXYTCCP:

v BPXYTCCP can be used to define either a DSECT or an inline structure. This
is determined by the DSECT= keyword.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME should be terminated by a NUL (X’00’) character.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME are case sensitive.

Related services
v “tcsetcp (BPX1TSC) — Set Terminal Code Page Names” on page 853
v “tcsettables (BPX1TST) — Set Terminal Code Page Names and Conversion

Tables” on page 860

Characteristics and restrictions
The tcgetcp service is supported by the pseudoterminal and (OCS) remote terminal
device drivers.

Examples
For an example using this callable service, see “BPX1TGC (tcgetcp) Example” on
page 1285.

tcgetcp (BPX1TGC)

842 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID

Function
The tcgetpgrp callable service gets the process group ID of the foreground process
group that is associated with a terminal, which is identified by its file descriptor.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TGP,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetpgrp service returns the process group
ID of the foreground process group that is associated with the terminal, if the
request is successful; or −1, if it is not successful. If there is no foreground
process group, a positive value, not equal to any existing process group, is
returned.

Return_code
Returned parameter

Type: Integer

Length: Fullword

tcgetpgrp (BPX1TGP)

Chapter 2. Callable services descriptions 843

The name of a fullword in which the tcgetpgrp service stores the return code.
The tcgetpgrp service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcgetpgrp service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF The File_descriptor parameter does not specify a valid open file

descriptor.
ENOTTY The file descriptor is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetpgrp service stores the reason code.
The tcgetpgrp service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Related services
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709
v “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 857

Characteristics and restrictions
There are no restrictions on the use of the tcgetpgrp service.

Examples
For an example using this callable service, see “BPX1TGP (tcgetpgrp) Example” on
page 1286.

tcgetpgrp (BPX1TGP)

844 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcgetsid (BPX1TGS) — Get a Process Group ID for the Session Leader
for the Controlling Terminal

Function
The tcgetsid callable service obtains the process group ID of the session leader that
is associated with the terminal that is specified by the file descriptor.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TGS,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetsid service returns the process group
ID associated with the terminal if the request is successful, or −1 if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetsid service stores the return code. The
tcgetsid service returns Return_code only if Return_value is −1. See z/OS UNIX

tcgetsid (BPX1TGS)

Chapter 2. Callable services descriptions 845

System Services Messages and Codes for a complete list of possible return
code values. The tcgetsid service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCESS The File_descriptor parameter is not associated with a controlling

terminal.
EBADF The File_descriptor parameter does not specify a valid file

descriptor.
ENOTTY The file descriptor is not associated with a terminal device.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcgetsid service stores the reason code.
The tcgetsid service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Characteristics and restrictions
There are no restrictions on the use of the tcgetsid service.

tcgetsid (BPX1TGS)

846 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal

Function
The tcsendbreak callable service sends a BREAK signal to a terminal that uses
asynchronous serial data transmission.

If the target terminal is an OCS-attached serial terminal, the BREAK signal is sent
to the terminal. If the target terminal is a pseudoterminal (pty), control returns
without any significant action.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TSB,(File_descriptor,
Duration,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal device to
which the break is to be sent.

Duration
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the duration of the BREAK transmission. If
the target terminal is a pseudoterminal, the Duration parameter has no effect.

Return_value
Returned parameter

Type: Integer

Length: Fullword

tcsendbreak (BPX1TSB)

Chapter 2. Callable services descriptions 847

The name of a fullword in which the tcsendbreak service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsendbreak service stores the return code.
The tcsendbreak service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcsendbreak service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF File_descriptor is not a valid open file descriptor.
EINTR BPX1TSB was called from a background job, and the SIGTTOU

signal either had default action or a signal handler. The function
was not performed.

EIO The process group of the process that is issuing the function is
an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENOTTY File_descriptor is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsendbreak service stores the reason
code. The tcsendbreak service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
The following table defines the processing of the SIGTTOU signal when
tcsendbreak is called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 829
v “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on

page 831
v “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 834

tcsendbreak (BPX1TSB)

848 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
There are no restrictions on the use of the tcsendbreak service.

Examples
For an example using this callable service, see “BPX1TSB (tcsendbreak) Example”
on page 1292.

tcsendbreak (BPX1TSB)

Chapter 2. Callable services descriptions 849

tcsetattr (BPX1TSA) — Set the Attributes for a Terminal

Function
The tcgetattr callable service sets control information for a terminal from the
specified Termios_structure.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TSA,(File_descriptor,
Actions,
Termios_structure,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal for which
attributes are to be set.

Actions
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword that contains indicators that control the setting of the
attributes. The following possible values are defined in the BPXYTIOS macro;
see “BPXYTIOS — Map the termios Structure” on page 1049.

Constant Description
TCSANOW Change the terminal attributes immediately.
TCSADRAIN Change the terminal attributes when all output to

the terminal has been sent.

tcsetattr (BPX1TSA)

850 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Constant Description
TCSAFLUSH Change the terminal attributes when all output to

the terminal has been sent; and all input that has
been received, but not read, is to be discarded.

Termios_structure
Supplied parameter

Type: Structure

Length: Specified by BPXYTIOS#LENGTH in the
BPXYTIOS macro

The name of an area that contains the attributes that are to be set.
Termios_structure is mapped by the BPXYTIOS macro. This structure contains
the control modes, input modes, output modes, local modes, and special control
characters. For the layout of the Termios_structure, see “BPXYTIOS — Map the
termios Structure” on page 1049.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetattr service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetattr service stores the return code.
The tcsetattr service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcsetattr service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF File_descriptor is an incorrect open file descriptor.
EINTR A signal interrupted the call.
EINVAL An action or value that was specified was incorrect.
EIO The process group of the process that is issuing the function is

an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENOTTY The file that is associated with the file descriptor is not a terminal.
EPERM A change was made that is not permitted from a slave pty. See

“Characteristics and restrictions” on page 852.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

tcsetattr (BPX1TSA)

Chapter 2. Callable services descriptions 851

The name of a fullword in which the tcsetattr service stores the reason code.
The tcsetattr service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A program should always issue the tcsetattr callable service using a termios

structure that was returned from a previous call to BPX1TGA (see “tcgetattr
(BPX1TGA) — Get the Attributes for a Terminal” on page 837), with appropriate
changes to the various fields.

2. The BPXYTIOS macro should be used to map the termios structure and define
the equates for bits and values. Note the following about BPXYTIOS:

v BPXYTIOS generates standard POSIX-defined names, except that all names
are uppercase. In addition, all names can have a user-specified prefix.

v When testing or setting bits in flag fields, you should use an offset name to
define which byte in the flag field contains the bit. For instance: TM
C_CFLAG+HUPCL_O,HUPCL.

v CS5 through CS8 values can be contained in CSIZE. CSIZE is essentially a
2-bit integer that can contain decimal values 0 through 3, as defined by CS5
through CS8.

v BPXYTIOS can be used to define either a DSECT or an inline structure. This
is determined by the DSECT= keyword.

v The C_CC field is an array of 1-byte fields, indexed by the various special
character equates. These equates can be used as offsets into C_CC, or can
be put into a register to be used with indexing instructions. For instance:
MVC C_CC+VSUSP,NEWVAL To set a new value
LA R10,VSUSP To set a register to use as an index

in a later IC or STC instruction

3. The following table defines the processing of the SIGTTOU signal when
BPX1TSA is called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “tcgetattr (BPX1TGA) — Get the Attributes for a Terminal” on page 837

Characteristics and restrictions
v The slave pty cannot set the PACKET, PKTXTND, or PKT3270 bits.

v Neither the slave nor the master pty can set the PTU3270 bit if PKT3270 is not
on.

v The master pty cannot set the PKT3270 bit unless PKRXTND is also on.

Examples
For an example using this callable service, see “BPX1TSA (tcsetattr) Example” on
page 1291.

tcsetattr (BPX1TSA)

852 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcsetcp (BPX1TSC) — Set Terminal Code Page Names

Function
The tcsetcp callable service sets the terminal session code page names to the
specified values.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TSC,(File_descriptor,
Termcp_length,
Termcp_structure,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal for which
the code page names are to be set.

Termcp_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the length of the Termcp_structure. The
Termcp_structure is mapped by BPXYTCCP, and has a length of
TCCP#LENGTH. See “BPXYTCCP — Map the Terminal Control Code Page
Structure” on page 1035.

Termcp_structure
Supplied parameter

Type: Structure

Length: Specified by Termcp_length

tcsetcp (BPX1TSC)

Chapter 2. Callable services descriptions 853

The name of an area that contains the code page information to be set. This
structure contains the source (ASCII) code page name, target (EBCDIC) code
page name, and control flags. The Termcp_structure is mapped by the
BPXYTCCP macro (see “BPXYTCCP — Map the Terminal Control Code Page
Structure” on page 1035).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetcp service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetcp service stores the return code. The
tcsetcp service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The tcsetcp service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF File_descriptor is an incorrect open file descriptor.
EINTR A signal interrupted the call.
EINVAL One of the parameters contains a value that is not correct.

Consult Reason_Code returned to determine the exact reason
the error occurred.

EIO The process group of the process that is issuing the function is
an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENODEV One of the following error conditions exists:

v CPCN functions have not been enabled. tcsetcp must be
issued against the master pty before any CPCN function can
be issued against the slave pty.

v The terminal device driver does not support the forward code
page names only CPCN capability.

ENOTTY The file that is associated with the file descriptor is not a terminal
device.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetcp service stores the reason code.
The tcsetcp service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

tcsetcp (BPX1TSC)

854 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Usage notes
Attention: Use this service carefully. By changing the code pages for the data
conversion, you may cause unpredictable behavior in the terminal session if the
actual data used for the session is not encoded to the specified source (ASCII) and
target (EBCDIC) code pages.

1. Use the tcsetcp callable service to send new code page names to the terminal
session data conversion point to change the data conversion environment.

The tcsetcp callable service is used with terminal devices that support the
forward code page names only CPCN capability. Use the tcgetcp (BPX1TGC)
callable service to determine the terminal device CPCN capability.

2. The BPXYTCCP macro should be used to map the Termcp_structure and define
the equates for the flag byte values. Note the following about BPXYTCCP:

v BPXYTCCP can be used to define either a DSECT or an inline structure. This
is determined by the DSECT= keyword.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME must be terminated by a NUL (X'00') character.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME are case sensitive.

3. The tcsetcp callable service is supported by the pseudoterminal (pty) device
driver. For terminal sessions that use pty support, the data conversion point is
the application that uses the master pty. An example data conversion point is
the rlogin server. Here, rlogin uses CPCN functions to change the ASCII
source or EBCDIC target code pages to use in its data conversion for the
terminal session.

During its processing of the tcsetcp service, the pty device driver applies the
new code page names once the pty outbound data queue is drained. When this
occurs, the pty input data queue is also flushed, and a TIOCXPKT_CHCP
packet exception event is generated (if extended packet mode is enabled) to
notify the master pty application that the code page names have been changed.
The master pty application can then use the tcgetcp (BPX1TGC) callable
service to retrieve the new code page names and establish the new data
conversion environment.

The tcsetcp service is supported by both the master and slave pty device
drivers. However, CPCN functions must first be enabled by the application that
uses the master pty; enabling CPCN functions is performed by the system
during the initial tcsetcp invocation against the master pty device. When the
tcsetcp invocation is performed against the master pty it may be subsequently
issued against the slave pty.

4. The data conversion for a terminal session is performed on a session (terminal
file) basis. If you change the data conversion characteristics for one file
descriptor, the new data conversion applies to all open file descriptors that are
associated with this terminal file.

5. Use the tcsetcp callable service to notify the data conversion point to stop data
conversion. This is done by setting the TCCPBINARY flag. If this flag is set, the
source and target code page names (TCCPSRCNAME and TCCPTRGNAME,
respectively) are not changed from their current values.

Attention: Use this option carefully. When the data conversion is disabled, the
z/OS shell cannot be used until the data conversion is reenabled, using valid
code pages for the terminal session.

6. Use the TCCPFASTP flag to indicate to the data conversion point (such as
rlogin) that the data conversion that is specified by the source and target code
page names can be performed locally to the application. This is valid any time

tcsetcp (BPX1TSC)

Chapter 2. Callable services descriptions 855

that a table-driven conversion can be performed. For example, the data
conversion point (application) could use the iconv() command to build the local
data conversion tables and perform all data conversion using the local tables,
instead of using iconv() in subsequent conversions. This provides for
better-performing data conversion.

7. The following table defines the processing of the SIGTTOU signal when
BPX1TSC is called from a background process group against its controlling
terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “tcgetcp (BPX1TGC) — Get Terminal Code Page Names” on page 840
v “tcsettables (BPX1TST) — Set Terminal Code Page Names and Conversion

Tables” on page 860

Characteristics and restrictions
The tcsetcp service is supported by the pseudoterminal device driver.

Examples
For an example using this callable service, see “BPX1TSC (tcsetcp) Example” on
page 1293.

tcsetcp (BPX1TSC)

856 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID

Function
The tcsetpgrp callable service moves the requested process group into the
foreground, replacing the current foreground process group. The current foreground
process group then becomes a background process group.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TSP,(File_descriptor,
Process_group_id,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal device.

Process_group_ID
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the process group ID that is to be
associated with the controlling terminal.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetpgrp service returns 0 if the request is
successful, or −1 if it is not successful.

tcsetpgrp (BPX1TSP)

Chapter 2. Callable services descriptions 857

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetpgrp service stores the return code.
The tcsetpgrp service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcsetpgrp service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF File_descriptor is not a valid open file descriptor.
EINTR A signal interrupted the function.
EINVAL Process_group_ID is not a process group ID that is supported by

this implementation.
ENOTTY The calling process does not have a controlling terminal;

File_descriptor is not associated with the controlling terminal; or
the controlling terminal is no longer associated with the session
of the calling process.

EPERM Process_group_ID does not match the process group ID of any
process in the same session as the calling process.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsetpgrp service stores the reason code.
The tcsetpgrp service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The tcsetpgrp service moves the requested process group into the foreground,

replacing the current foreground process group. The current foreground process
group then becomes a background group. This terminal must be the controlling
terminal of the calling process, and it must be currently associated with the
session of the calling process. Process_group_ID must represent a process
group in the same session as the calling process.

2. After the foreground process group is set, reads by the process group that was
formerly in the foreground fail or cause the process group to stop from a
SIGTTIN signal. Writes can also cause the process to stop (from a SIGTTOU
signal), or they can succeed, depending upon the current setting of TOSTOP
(from tcsetattr) and the signal options for SIGTTOU.

3. The system issues a SIGTTOU signal when tcsetpgrp() is issued from a
background process, unless SIGTTOU is being ignored or blocked. If the signal
is set to default processing (SIG_DFL), the process group is stopped. If there is
a handler, the handler gets control and errno=EINTR is returned.

4. The File_descriptor parameter that is specified can be any of the descriptors
that represent the controlling terminal (such as standard input [stdin], standard
output [stdout], and standard error [stderr]). The service affects future access
from any file descriptor in use for the terminal.

tcsetpgrp (BPX1TSP)

858 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Note: You must consider redirection when choosing the file descriptor to
specify.

5. The following table defines the processing of the SIGTTOU signal when
BPX1TSP is called from a background process against a controlling terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated.

The function is not performed.
Return_value is set to −1,
and Return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Related services
v “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 692
v “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on

page 709
v “tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID” on page 843

Characteristics and restrictions
There are no restrictions on the use of the tcsetpgrp service.

Examples
For an example using this callable service, see “BPX1TSP (tcsetpgrp) Example” on
page 1294.

tcsetpgrp (BPX1TSP)

Chapter 2. Callable services descriptions 859

tcsettables (BPX1TST) — Set Terminal Code Page Names and
Conversion Tables

Function
The tcsettables callable service sets the terminal session code page names and
conversion tables to the specified values.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TST,(File_descriptor,
Termcp_length,
Termcp_structure,
Srctable,
Trgtable,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the terminal for which
the code page names and data conversion tables are to be set.

Termcp_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword that contains the length of the Termcp_structure. The
Termcp_structure is mapped by BPXYTCCP, and has a length of
TCCP#LENGTH. See “BPXYTCCP — Map the Terminal Control Code Page
Structure” on page 1035.

Termcp_structure
Supplied parameter

tcsettables (BPX1TST)

860 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Structure

Length: Specified by Termcp_length.

The name of an area that contains the code page information that is to be set.
This structure contains the source (ASCII) code page name, target (EBCDIC)
code page name, and control flags. The Termcp_structure is mapped by the
BPXYTCCP macro (see “BPXYTCCP — Map the Terminal Control Code Page
Structure” on page 1035).

Srctable
Supplied parameter

Type: Character string

Character set: No restriction

Length: 256 bytes

The name of a field that contains a 256-byte data conversion table for the
source-to-target (ASCII to EBCDIC) data conversion. The byte offset into this
table corresponds to the character code from the source (ASCII) code page.
The data value at each offset is the converted target (EBCDIC) character code.

Trgtable
Supplied parameter

Type: Character string

Character set: No restriction

Length: 256 bytes

The name of a field that contains a 256-byte data conversion table for the
target-to-source (EBCDIC to ASCII) data conversion. The byte offset into this
table corresponds to the character code from the target (EBCDIC) code page.
The data value at each offset is the converted source (ASCII) character code.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsettables service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsettables service stores the return code.
The tcsettables service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The tcsettables service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBADF File_descriptor is an incorrect open file descriptor.

tcsettables (BPX1TST)

Chapter 2. Callable services descriptions 861

Return_code Explanation
EINTR A signal interrupted the call.
EINVAL One of the following error conditions exists:

v The value of Termcp_length was not valid.
v An incorrect combination of multi-byte code page names was

specified in the Termcp_structure.

One of the following applies:
– The source code page that was specified in

TCCPSRCNAME specified a supported ASCI multi-byte
code page, and the TCCPTRGNAME did not specify a
supported EBCDIC multi-byte code page.

– The target code page that was specified in
TCCPTRGNAME specified a supported EBCDIC multi-byte
code page, and the TCCPSRCNAME did not specify a
supported ASCII multi-byte code page.

EIO The process group of the process that is issuing the function is
an orphaned, background process group, and the process that is
issuing the function is not ignoring or blocking SIGTTOU.

ENODEV The terminal device driver does not support the forward code
page names and tables CPCN capability.

ENOTTY The file that is associated with the file descriptor is not a terminal
device.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the tcsettables service stores the reason code.
The tcsettables service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
Attention: Use this service carefully. By changing the code pages for the data
conversion, you may cause unpredictable behavior in the terminal session if the
actual data that is used for the session is not encoded to the specified source
(ASCII) and target (EBCDIC) code pages.

1. Use the tcsettables callable service to send new code page names and data
conversion tables to the terminal session data conversion point to change the
data conversion environment.

The tcsettables callable service is used with terminal devices that support the
forward code page names and tables CPCN capability. Use the tcgetcp
(BPX1TGC) callable service to determine the terminal device CPCN capability.

2. The BPXYTCCP macro should be used to map the Termcp_structure and define
the equates for the flag byte values. Note the following about BPXYTCCP:

v BPXYTCCP can be used to define either a DSECT or an inline structure. This
is determined by the DSECT= keyword.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME must be terminated by a NUL (X’00’) character.

v The code page names that are contained in TCCPSRCNAME and
TCCPTRGNAME are case sensitive.

tcsettables (BPX1TST)

862 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

3. The OCS remote-tty (rty) device driver supports this function. For OCS terminal
sessions, the data conversion is performed by OCS outboard on the AIX®

server system. Use the tcsettables service to specify new code pages and
conversion tables that are to be used in the data conversion.

During its processing of the tcsettables service, the OCS rty device driver
applies the new code page names when the outbound data queue is drained.
When this occurs, the rty input data queue is also flushed, and the new
conversion environment takes effect.

The Srctable and Trgtable parameters are used as follows:

v If the code page names that are specified in the Termcp_structure are for
supported double-byte data conversion the SrcTable and TrgTable arguments
are not used. The following double-byte translation is supported for OCS
sessions:

Source (ASCII) Code Page Target (EBCDIC) Code Page
IBM-eucJP IBM-939
IBM-932 IBM-939

v If TCCPSRCNAME specifies ISO8859-1 and TCCPTRGNAME specifies
IBM-1047, OCS uses its own data conversion tables and the Srctable and
Trgtable parameters are not used.

v Otherwise the conversion tables in Srctable and Trgtable are used.

4. The data conversion for a terminal session is performed on a session (terminal
file) basis. If you change the data conversion characteristics for one file
descriptor, the new data conversion applies to all open file descriptors that are
associated with this terminal file.

5. Use the tcsettables callable service to notify the data conversion point to stop
data conversion. This is done by setting the TCCPBINARY flag. If this flag is
set, the source and target code page names (TCCPSRCNAME and
TCCPTRGNAME, respectively) are not changed; the Srctable and Trgtable
parameters are not used.

Note: Use this option carefully. When the data conversion is disabled, the z/OS
shell cannot be used until the data conversion is reenabled, using valid
code pages for the terminal session.

6. The TCCPFASTP flag is not used by the OCS rty device driver. The value of
this flag has no effect and is ignored.

7. The following table defines the processing of the SIGTTOU signal when
BPX1TST is called from a background process group against its controlling
terminal:

SIGTTOU Processing Expected Behavior
Default or signal handler The SIGTTOU signal is generated. The function is

not performed. Return_value is set to −1, and
Return_code is set to EINTR.

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1TST (tcsettables) Example”
on page 1295.

tcsettables (BPX1TST)

Chapter 2. Callable services descriptions 863

times (BPX1TIM) — Get Process and Child Process Times

Function
The times callable service gathers information about processor time used by the
current process or related processes.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TIM,(Time_data,
Return_value,
Return_code,
Reason_code)

Parameters
Time_data

Returned parameter

Type: Structure

Length: 16 bytes

The name of a data area where the times service returns information about
processor time used. This field is mapped by the BPXYTIMS macro. For the
structure of the data area, see “BPXYTIMS — Map the Response Structure for
times” on page 1049.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the service places its return value. The value
that is returned is the number of clock ticks (hundredths of a second) that have
elapsed since the current address space was last dubbed a process. If this
value cannot be determined, the service returns −1.

Return_code
Returned parameter

Type: Integer

Length: Fullword

times (BPX1TIM)

864 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of a fullword in which the times service stores the return code. The
times service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The times service can return one of the following values in the
Return_code parameter:

Return_code Explanation
ERANGE An overflow occurred while time values were being computed.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the times service stores the reason code. The
times service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
Processor times for a child process that has ended are not added to the
TIMSCUTIME and TIMSCSTIME of the parent process until the parent issues a
wait or waitpid for that child process. See “wait (BPX1WAT) — Wait for a Child
Process to End” on page 893 for more information on this subject.

Related services
v “exec (BPX1EXC) — Run a Program” on page 133
v “execmvs (BPX1EXM) — Run an MVS Program” on page 144
v “fork (BPX1FRK) — Create a New Process” on page 184
v “mvsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 408
v “wait (BPX1WAT) — Wait for a Child Process to End” on page 893

Characteristics and restrictions
There are no restrictions on the use of the times service.

Examples
For an example using this callable service, see “BPX1TIM (times) Example” on
page 1288.

MVS-related information
The TIMSSTIME value that is returned by the times service is a portion of the total
TCB time of the calling process—the portion that was spent processing z/OS UNIX
services in the kernel address space. This TCB time is accumulated from the most
recent time the MVS address space was dubbed a process (made eligible to issue
z/OS UNIX callable services).

The TIMSUTIME value consists of the total processor time that has been
accumulated by the calling address space in the current job-step. This includes all
job step TCB and SRB time that was accumulated before the address space
became a process, all SRB time that was accumulated after the address space
became a process, and all TCB time that was accumulated after the address space

times (BPX1TIM)

Chapter 2. Callable services descriptions 865

became a process, except for the TCB time that was accumulated while the
process was running in the kernel. The value of TIMSUTIME can be calculated as
follows:
TIMSUTIME = <job-step SRB time> + <job-step TCB time> - TIMSSTIME

Notes:

1. An MVS address space can be dubbed a process, undubbed (no longer a
process), and then dubbed a process again in the same job step. The
TIMSSTIME value for the address space in this case reflects only the kernel
TCB time since the address space was last dubbed. The TIMSUTIME value,
however, reflects TCB and SRB time for the entire life of the job step.

2. The exec service, BPX1EXC, and the execmvs service, BPX1EXM, cause new
substeps in the current address space. Address-space-level processor time
counters (in the address space control block) are reset. As long as the address
space remains a process, the values from previous substeps are retained, and
are included in values that are returned by the times service. However, if the
mvsprocclp service, BPX1MPC, is invoked to undub the process after the
BPX1EXC or BPX1EXM service has been issued, subsequent times service
invocations return processor times starting at the beginning of the new substep.

3. The times service reports an approximation of the usage by the system, and is
not a completely accurate representation of the time used on behalf of the
system and by the user. The function guarantees that the user time reported is
ever increasing; it does not do the same for the system time.

times (BPX1TIM)

866 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

truncate (BPX1TRU) — Change the Size of a File

Function
The truncate service changes the size of a file. The file is identified by a path name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TRU,(Pathname_length,
Pathname,
File_length,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the pathname of the file
whose size is to be changed.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the pathname of the file. This field has the
length that is specified in Pathname_length.

Pathnames can begin with or without a slash:

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

truncate (BPX1TRU)

Chapter 2. Callable services descriptions 867

File_length
Supplied parameter

Type: Integer

Length: Doubleword

The name of a doubleword that contains the number of bytes that are to be
contained in the file after the size is changed.

This field is a doubleword to accommodate large files. For normal processing
with a singleword value, the second word should be zero. The truncate service
accepts only positive values.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the truncate service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the truncate service stores the return code.
The truncate service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The truncate service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EACCES The calling process does not have permission to search some

component of the Pathname prefix; or write permission is denied
on the file.

EFBIG The File_length parameter is greater than the maximum file size
limit for the process. The following reason code can accompany
the return code: JRWriteBeyondLimit.

EINVAL The file is not a regular file; or the File_length that is specified is
either negative or greater than the maximum file size. The
following reason codes can accompany the return code:
JRTrNegOffset, JRTrNotRegFile.

EISDIR The file is a directory.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters, or a component of the
pathname is longer than 255 characters.

ENOENT No file named Pathname was found, or no pathname was
specified. The following reason code can accompany the return
code: JRFileNotThere.

ENOTDIR Some component of the Pathname prefix is not a directory.
EROFS The specified file is on a read-only file system. The following

reason code can accompany the return code: JRTrMountedRO.

truncate (BPX1TRU)

868 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the truncate service stores the reason code.
The truncate service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. The truncate service changes the file size to File_length bytes, beginning from

the first byte of the file. If the file was originally larger than File_length bytes, the
data from File_length to the original end of the file is removed. If the file was
originally shorter than File_length, bytes between the old and new lengths are
read as zeros.

2. If File_length is greater than the soft file size limit for the process, the request
fails with EFBIG, and the SIGXFSZ signal is generated for the process.

3. Full blocks are returned to the file system, so that they can be used again.

Related services
v “open (BPX1OPN) — Open a File” on page 434
v “ftruncate (BPX1FTR) — Change the Size of a File” on page 203

Characteristics and restrictions
The file that is specified must be a regular file to which the calling process has write
access.

Examples
For an example using this callable service, see “BPX1TRU (truncate) Example” on
page 1290.

truncate (BPX1TRU)

Chapter 2. Callable services descriptions 869

ttyname (BPX1TYN) (POSIX Version) — Get the Name of a Terminal

Function
The ttyname callable service obtains the pathname of the terminal that is
associated with the file descriptor.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1TYN,(File_descriptor,
Terminal_name_length,
Terminal_name)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor.

Terminal_name_length
Parameter supplied and returned

Type: Integer

Length: Fullword

The name of a fullword that contains the size, in bytes, of the buffer that is
referred to by Terminal_name. The size of this field should be less than 4096
bytes (4KB) in length. The size of the buffer that is specified should be the
maximum length that the terminal_name could be on output.

Terminal_name
Returned parameter

Type: Character string

Character set: No restriction

Length: Specified by the Terminal_name_length
parameter

ttyname (BPX1TYN)

870 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

The name of an area to which ttyname returns either the pathname of the
terminal, terminated by a X'00', or a single byte of X'00' (null string), if the file
descriptor is not valid or does not represent a terminal.

The length of Terminal_name should be 1024 bytes long (PATH_MAX+1),
unless the pathname is known to be shorter.

Usage notes
1. This service does not return −1 to indicate a failure. If the file descriptor is

incorrect, it returns a null string.

2. If Terminal_name is an area smaller than the actual pathname of the terminal,
the name is truncated.

Related services
v “ttyname (BPX2TYN) (X/Open Version) — Get the Name of a Terminal” on

page 872
v “isatty (BPX1ITY) (POSIX Version) — Determine Whether a File Descriptor

Represents a Terminal” on page 307
v “isatty (BPX2ITY) (X/Open Version) — Determine Whether a File Descriptor

Represents a Terminal” on page 309

Characteristics and restrictions
There are no restrictions on the use of the ttyname service.

Examples
For an example using this callable service, see “BPX1TYN (ttyname) Example” on
page 1296.

ttyname (BPX1TYN)

Chapter 2. Callable services descriptions 871

ttyname (BPX2TYN) (X/Open Version) — Get the Name of a Terminal

Function
The ttyname callable service obtains the pathname of the terminal that is
associated with the file descriptor.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX2TYN,(File_descriptor,
Terminal_name_length,
Terminal_name,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor.

Terminal_name_length
Parameter supplied and returned

Type: Integer

Length: Fullword

The name of a fullword that contains the size, in bytes, of the buffer that is
referred to by Terminal_name. The size of this field should be less than 4096
bytes (4KB) in length. The size of the buffer that is specified should be the
maximum length that the terminal_name could be on output.

Terminal_name
Returned parameter

Type: Character string

Character set: No restriction

ttyname (BPX2TYN)

872 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Specified by the Terminal_name_length
parameter

The name of an area to which ttyname returns either the pathname of the
terminal, terminated by a X'00', or a single byte of X'00' (null string), if the file
descriptor is not valid or does not represent a terminal.

The length of Terminal_name should be 1024 bytes long (PATH_MAX+1),
unless the pathname is known to be shorter.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ttyname service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ttyname service stores the return code.
The ttyname service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The ttyname service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EBADF The File_descriptor argument is not a valid open file descriptor.
ENOTTY The File_descriptor argument is not associated with a terminal.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the ttyname service stores the reason code.
The ttyname service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. This version of ttyname is XPG4 compliant.

2. If Terminal_name is an area smaller than the actual pathname of the terminal,
the name is truncated.

Related services
“isatty (BPX1ITY) (POSIX Version) — Determine Whether a File Descriptor
Represents a Terminal” on page 307

ttyname (BPX2TYN)

Chapter 2. Callable services descriptions 873

Characteristics and restrictions
There are no restrictions on the use of the ttyname service.

Examples
For an example using this callable service, see “BPX2TYN (ttyname) Example” on
page 1297.

ttyname (BPX2TYN)

874 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

umask (BPX1UMK) — Set the File Mode Creation Mask

Function
The umask callable service changes the file mode creation mask of a process. The
file mode creation mask is used by the security package to turn off permission bits
in the mode parameter that is specified. Bit positions that are set in the file mode
creation mask are cleared in the mode of the created file.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UMK,(File_mode_creation_mask,
Return_value)

Parameters
File_mode_creation_mask

Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword that contains the file mode creation mask. This mask
turns off permission bits in a file’s mode. File_mode_creation_mask is mapped
by the BPXYMODE macro (see “BPXYMODE — Map the Mode Constants of
the File Services” on page 986).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the umask service returns the previous value
of the file mode creation mask. This fullword has the same mapping as the
File_mode_creation_mask parameter.

Usage notes
1. The umask service changes the process’s file creation mask. This mask

controls file permission bits that are set whenever the process creates a file.
File permission bits that are turned on in the file creation mask are turned off in
the file permission bits of files that are created by the process. For example, if a

umask (BPX1UMK)

Chapter 2. Callable services descriptions 875

call to the open service, BPX1OPN, specifies a “mode” argument with file
permission bits, the process’s file creation mask affects that argument: Bits that
are on in the mask are turned off in the “mode” argument, and therefore in the
mode of the created file.

2. Only the file permission bits of the new mask are used. For example, the type of
file field in File_Mode cannot be masked.

Related services
v “mkdir (BPX1MKD) — Make a Directory” on page 349
v “open (BPX1OPN) — Open a File” on page 434

Characteristics and restrictions
There are no restrictions on the use of the umask service.

Examples
For an example using this callable service, see “BPX1UMK (umask) Example” on
page 1298.

umask (BPX1UMK)

876 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

umount (BPX1UMT) — Remove a Virtual File System

Function
The umount callable service unmounts a virtual file system; that is, it removes a
virtual file system from the file tree.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UMT,(File_system_name,
Flags,
Return_value,
Return_code,
Reason_code)

Parameters
File_system_name

Supplied parameter

Type: Character string

Character set: Printable characters

Length: 44 bytes

The name of a 44-character field that contains the file system that is to be
unmounted. The file system name must be left-justified and padded with blanks.

Flags
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword binary field that contains the unmount options.

This field is mapped by the BPXYMTM macro. See “BPXYMTM — Map the
Modes for mount and unmount” on page 989 for the contents of the macro.

Return_value
Returned parameter

Type: Integer

Length: Fullword

umount (BPX1UMT)

Chapter 2. Callable services descriptions 877

The name of a fullword in which the umount service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the umount service stores the return code. The
umount service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The umount service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBUSY Honoring the request would require unmounting a file system that

is still in use. The following reason codes can accompany the
return code: JRFileSysWasReset, JRFsForceUmount,
JRFsMustReset, JRFsParentFs, JRFsUnmountInProgress,
JRIsFsRoot, and JRQuiesced.

EINTR The call was interrupted by a signal. The following reason code
can accompany the return code: JRSigDuringWait.

EINVAL An incorrect parameter was specified. The file system name is
not the name of a file system; an incorrect combination of flags
was specified; a umount drain or remount request was specified
in a sysplex; or an umount force was specified before an
immediate umount was attempted. The following reason codes
can accompany the return code: JRFileSysNotThere,
JRInvalidParms, JRMustUmountImmed, JRQuiescing,
JRNotSupInSysplex.

EPERM The calling process is not a superuser. The following reason
code can accompany the return code: JRUserNotPrivileged.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the umount service stores the reason code.
The umount service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. A file system that has file systems mounted on it cannot be unmounted. Any

children file systems must be unmounted first.

2. A reset request can stop only an umount service drain request. It has no effect
if it is issued when there is no umount request outstanding. Currently, umount
service drain requests are not supported in a sysplex environment. If such a
request is issued in a sysplex, the following behavior is exhibited:

v If there is no activity in the file system, the drain request performs the
unmount, but it behaves like a umount normal. (Where a normal request
specifies that if no user is accessing any of the files in the specified file

umount (BPX1UMT)

878 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

system, the system processes the umount request. Otherwise, the system
rejects the umount request. This is the default.)

v If there is activity in the file system, the drain request returns a Return_value
of −1, with Return_code EINVAL and Reason_code JRNotSupInSysplex.

3. A umount service request with no other options specified succeeds only if the
unmount can be processed immediately. Otherwise, an EBUSY is returned.

4. MTMREMOUNT is specified to change the mount mode between read-only and
read/write. If neither MTMRO nor MTMRDWR is specified, the mode is set to
the opposite of its current state. If a mode is specified, it must be the opposite
of the current state.

MTMREMOUNT is currently not supported in a sysplex. An alternate way to
remount a file system in a sysplex is to unmount the file system and then mount
it again with a different mount mode.

5. If the file system that is to be unmounted is the root file system, the IMMED
option must be specified.

Related services
“mount (BPX1MNT) — Make a File System Available” on page 365

Characteristics and restrictions
In order to unmount a file system, the requester must be an authorized program, or
must be running for a user with appropriate privileges.

Examples
See “BPX1UMT (umount) Example” on page 1299 for an example using this
callable service.

umount (BPX1UMT)

Chapter 2. Callable services descriptions 879

uname (BPX1UNA) — Obtain the Name of the Current Operating
System

Function
The uname callable service obtains information about the z/OS UNIX system the
caller is running on.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UNA,(Data_area_length,
Data_area_address,
Return_value,
Return_code,
Reason_code)

Parameters
Data_area_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the data area that is pointed
to by Data_area_address. The area must be at least the length of
UTSN#LENGTH. For a mapping of this data area, refer to “BPXYUTSN — Map
the Response Structure for uname” on page 1053.

Data_area_address
Returned parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of the area in which the
system information is to be returned. For a mapping of this data area, refer to
“BPXYUTSN — Map the Response Structure for uname” on page 1053.

Return_value
Returned parameter

Type: Integer

uname (BPX1UNA)

880 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of a fullword in which the uname service returns a nonnegative value
if the request is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the uname service stores the return code. The
uname service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The uname service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EFAULT The pointer to the UTSN from the invoker is bad. The following

reason code can accompany the return code: JRBadAddress.
EINVAL The passed length of the invoker UTSN is not valid. The

following reason code can accompany the return code: JROK.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the uname service stores the reason code. The
uname service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Characteristics and restrictions
There are no restrictions on the use of the uname service.

Examples
For an example using this callable service, see “BPX1UNA (uname) Example” on
page 1300.

uname (BPX1UNA)

Chapter 2. Callable services descriptions 881

unlink (BPX1UNL) — Remove a Directory Entry

Function
The unlink service removes a directory entry. A directory entry can be identified by a
pathname to a file, a link name to a file, or a symbolic link.

If a link to a file is removed, and the link count becomes zero, and no other process
has the file open, the file itself is deleted.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UNL,(Name_length,
Name,
Return_value,
Return_code,
Reason_code)

Parameters
Name_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of Name.

Name
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Name_length parameter

The name of a field, of length Name_length, that contains the name of the
directory entry that is to be removed. Name can be a pathname to a file, a link
name to a file, or a symbolic link name. The pathname was specified when the
file was created (see “open (BPX1OPN) — Open a File” on page 434). The link
name was specified when a link to the file was created (see “link (BPX1LNK) —
Create a Link to a File” on page 319), or when the symbolic link was created
(see “symlink (BPX1SYM) — Create a Symbolic Link to a Pathname” on
page 817).

unlink (BPX1UNL)

882 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unlink service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unlink service stores the return code. The
unlink service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The unlink service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES One of the following conditions occurred:

v The calling process does not have permission to search some
component of Pathname, or does not have write permission for
the directory that contains the link that is to be removed.

v The S_ISVTX flag is set for the parent directory of the file that
is to be removed, and the caller is not the owner of the file or
of the parent directory; nor does the caller have appropriate
privileges.

EBUSY The file cannot be unlinked because it is being used by the
system.

EINVAL The Name parameter is incorrect. It contains a null character.
ELOOP A loop exists in symbolic links that were encountered during

resolution of the Name argument. This error is issued if more
than 24 symbolic links are detected in the resolution of Name.

ENAMETOOLONG Name is longer than 1023 characters, or some component of the
pathname is longer than 255 characters. Name truncation is not
supported.

ENOENT Name was not found, or no name was specified. The following
reason code can accompany the return code: JRUnlNoEnt.

ENOTDIR Some component of the pathname prefix is not a directory.
EPERM Name refers to a directory. Directories cannot be removed using

unlink. The following reason code can accompany the return
code: JRUnlDir.

EROFS The link that is to be removed is on a read-only file system. The
following reason code can accompany the return code:
JRUnlMountRO.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

unlink (BPX1UNL)

Chapter 2. Callable services descriptions 883

The name of a fullword in which the unlink service stores the reason code. The
unlink service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. If the name that is specified refers to a symbolic link, the symbolic link file that

is named by Name is deleted.

2. If the unlink service request is successful and the link count becomes zero, the
file is deleted. The contents of the file are discarded, and the space it occupied
is freed for reuse. However, if another process (or more than one) has the file
open or in use when the last link is removed, the file is not removed until the
last process closes it.

3. When the unlink service is successful in removing the directory entry and
decrementing the link count, whether or not the link count becomes zero, it
returns control to the caller with Return_value set to 0. It updates the change
and modification times for the parent directory and the change time for the file
itself (unless the file is deleted).

4. Directories cannot be removed using the unlink service. To remove a directory,
refer to “rmdir (BPX1RMD) — Remove a Directory” on page 610.

5. If the S_ISVTX flag is set for the parent directory of the file that is to be
unlinked, one of the following conditions must be true, or the request will fail
with EACCES:

v The caller is the owner of the file to be unlinked

v The caller is the owner of the parent directory

v The caller has appropriate privileges

Related services
v “close (BPX1CLO) — Close a File” on page 97

v “link (BPX1LNK) — Create a Link to a File” on page 319

v “open (BPX1OPN) — Open a File” on page 434

v “rename (BPX1REN) — Rename a File or Directory” on page 602

v “rmdir (BPX1RMD) — Remove a Directory” on page 610

Characteristics and restrictions
There are no restrictions on the use of the unlink service.

Examples
For an example using this callable service, see “BPX1UNL (unlink) Example” on
page 1301.

unlink (BPX1UNL)

884 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

unlockpt (BPX1UPT) — Unlock a Pseudoterminal Master/Slave Pair

Function
The unlockpt callable service unlocks the slave pseudoterminal device that is
associated with the master to which the file descriptor refers.

Note: Because access to pseudoterminals is granted by changing ownership
during the first slave open, and that caller must have the same UID as the
master opener, neither the grantpt nor the unlockpt services are functionally
required. They are provided in order to be compatible with XPG4, and for
ported programs that may use them.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UPT,(File_descriptor,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for the terminal.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unlockpt service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

unlockpt (BPX1UPT)

Chapter 2. Callable services descriptions 885

Length: Fullword

The name of a fullword in which the unlockpt service stores the return code.
The unlockpt service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The unlockpt service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EACCESS Either a grantpt has not yet been issued, or an unlockpt has

already been issued. An unlockpt must be issued after a grantpt,
and can only be issued once.

EBADF The File_descriptor parameter does not specify a file descriptor
that is open for writing.

EINVAL The file descriptor is not associated with a master pseudoterminal
device.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unlockpt service stores the reason code.
The unlockpt service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Characteristics and restrictions
There are no restrictions on the use of the unlockpt service.

Examples
For an example using this callable service, see “BPX1UPT (unlockpt) Example” on
page 1302.

unlockpt (BPX1UPT)

886 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

unquiesce (BPX1UQS) — Unquiesce a File System

Function
The unquiesce callable service unquiesces a file system, making the files in it
available for use again. The backup of the data in the file system is complete.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31
ASC mode: Primary mode
Serialization: Enabled for interrupts
Locks: No locks held
Control parameters: All parameters addressable in Primary

Format

CALL BPX1UQS,(File_system_name,
Unquiesce_parms,
Return_value,
Return_code,
Reason_code)

Parameters
File_system_name

Supplied parameter

Type: Character string

Character set: Printable characters

Length: 44 bytes

The name of a 44-character field that contains the file system name. The name
should be left-justified in the field and padded with blanks.

Unquiesce_Parms
Supplied parameter

Type: Structure

Length: Fullword

The name of a fullword binary field that contains the unquiesce service options.
This field is mapped by the BPXYMTM macro. Refer to “BPXYMTM — Map the
Modes for mount and unmount” on page 989 for the unquiesce service options
that are available.

Return_value
Returned parameter

Type: Integer

Length: Fullword

unquiesce (BPX1UQS)

Chapter 2. Callable services descriptions 887

The name of a fullword in which the unquiesce service returns 0 if the request
is successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unquiesce service stores the return code.
The unquiesce service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The unquiesce service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EBUSY The file system that was specified was not quiesced by this user,

and force was not specified in Unquiesce_parms. The following
reason code can accompany the return code:
JRInvalidRequester.

EINVAL An incorrect parameter was specified. Verify that only the force
bit in Unquiesce_ parms was specified, that File_system_name is
correct, and that File_system_name is for a quiesced file system.
The following reason codes can accompany the return code:
JRFileSysNotThere, JRInvalidParms, and JRNotQuiesced.

EPERM The user cannot request this service, because it lacks the
permission required to do so. The following reason code can
accompany the return code: JRUserNotPrivileged.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the unquiesce service stores the reason code.
The unquiesce service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
The unquiesce service makes a file system available for use again following a
previous quiesce request.

Related services
“quiesce (BPX1QSE) — Quiesce a File System” on page 564

Characteristics and restrictions
1. In order to unquiesce a file system, the requester must be a superuser. This is

the same authority that is required to mount or quiesce a file system.

2. In a sysplex, an unquiesce will result in the file system being mounted on any
system that did not have the file system mounted at that time. This situation
could occur if a system joined the sysplex during the period of time that the file
system was in a quiesced state.

unquiesce (BPX1UQS)

888 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Examples
For an example using this callable service, see “BPX1UQS (unquiesce) Example”
on page 1303.

unquiesce (BPX1UQS)

Chapter 2. Callable services descriptions 889

utime (BPX1UTI) — Set File Access and Modification Times

Function
The utime callable service sets the access and modification times of a file.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1UTI,(Pathname_length,
Pathname,
Newtimes,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the fully qualified name
(pathname) of the file. The pathname can be up to 1023 bytes long.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field of length Pathname_length that contains the pathname of
the file.

Pathnames can begin with or without a slash.

v A pathname that begins with a slash is an absolute pathname. The slash
refers to the root directory, and the search for the file starts at the root
directory.

v A pathname that does not begin with a slash is a relative pathname. The
search for the file starts at the working directory.

utime (BPX1UTI)

890 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Newtimes
Supplied parameter

Type: Structure

Length: Doubleword

The name of a doubleword that contains the access and modification times for
the file. The first fullword contains the new access time, and the second
contains the new modification time. These times can be retrieved with “stat
(BPX1STA) — Get Status Information about a File by Pathname” on page 808
or “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on
page 195.

v Times are specified as the number of seconds that have elapsed between
00:00 a.m. on January 1, 1970, and the desired time. The times must be
specified as nonnegative values other than −1 (see below for the special
case of −1).

v In order to request that the current time be used for both access and
modification times, specify X'FFFFFFFF' (−1) in either or both words of this
field. The current time in the file’s status is also updated.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the utime service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the utime service stores the return code. The
utime service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The utime service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EACCES One of the following is true:

v The process does not have search permission for some
component of the Pathname prefix.

v Newtimes equals the current time; the effective ID does not
match the file’s owner; the process does not have write
permission for the file; and the process does not have
appropriate privileges.

EINVAL The argument that was supplied is incorrect. The following
reason code can accompany the return code:
JRNegativeValueInvalid.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

utime (BPX1UTI)

Chapter 2. Callable services descriptions 891

Return_code Explanation
ENAMETOOLONG The length of the pathname is greater than 1023, or some

component of the fully qualified name is longer than 255 bytes.
This could be as a result of encountering a symbolic link during
resolution of Pathname, where the substituted string is longer
than 1023 characters.

ENOENT No file named Pathname was found; or Pathname was blank.
The following reason code can accompany the return code:
JRFileNotThere.

ENOTDIR Some component of the pathname prefix is not a directory.
EPERM The Newtimes value did not specify the current time; the effective

user ID of the calling process does not match the owner of the
file; and the calling process does not have appropriate privileges.

EROFS Pathname is on a read-only file system. The following reason
code can accompany the return code: JRReadOnlyFs.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the utime service stores the reason code. The
utime service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Related services
v “fstat (BPX1FST) — Get Status Information about a File by Descriptor” on

page 195
v “stat (BPX1STA) — Get Status Information about a File by Pathname” on

page 808

Characteristics and restrictions
There are no restrictions on the use of the utime service.

Examples
For an example using this callable service, see “BPX1UTI (utime) Example” on
page 1304.

utime (BPX1UTI)

892 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

wait (BPX1WAT) — Wait for a Child Process to End

Function
The wait callable service obtains the status of a child process that has ended or
stopped. You can use the wait service to obtain the status of a process that is being
debugged with the ptrace facilities. The term child refers to children that are created
by the fork service, as well as processes that are attached by ptrace.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1WAT,(Process_ID,
Options,
Status_field_address,
Return_value,
Return_code,
Reason_code)

Parameters
Process_ID

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the event that the
caller is waiting upon:

v A value greater than zero is assumed to be a process ID. The caller waits for
the child or debugged process with that specific process ID to end or to stop.

v A value of zero specifies that the caller is waiting for any children or
debugged processes with a process group ID equal to the caller’s to end or
to stop.

v A value of −1 specifies that the caller is waiting for any of its children or
debugged processes to end or to stop.

v If the value is negative and less than −1, its absolute value is assumed to be
a process group ID. The caller waits for any children or debugged processes
with that process group ID to end or to stop.

Options
Supplied parameter

Type: Integer

wait (BPX1WAT)

Chapter 2. Callable services descriptions 893

Length: Fullword

The name of a fullword that contains the wait options for this invocation of the
wait service. The wait options that are specified affect the actions that are taken
by the wait service, as described below. These options can be specified
separately or in combination. A zero value for the wait options implies that the
wait service performs its default processing; that is, it waits for a child process
to end. The following flags defined in the BPXYCONS macro are the allowable
wait options (see “BPXYCONS — Constants Used by Services” on page 956).

Constant Description
WNOHANG The wait service does not suspend execution of the

calling process if status is not immediately available for
one of the child processes that is specified by
Process_ID.

WUNTRACED The wait service also returns the status of any child
processes that are specified by Process_ID that are
stopped, and whose status has not yet been reported
since they stopped. If this option is not specified, the
wait service returns only the status of processes that
end.

WCONTINUED The wait service returns the status for any continued
child process that is specified by Process_ID whose
status has not yet been reported since it continued
from a job control stop.

Status_field_address
Returned parameter

Type: Address

Length: Fullword

The name of a fullword that contains the address of a fullword in which this
service is to place the status value for the child process that ended or stopped.
The status value can be analyzed with the status value map BPXYWAST. For a
description of this mapping, see “BPXYWAST — Map the Wait Status Word” on
page 1053. The status value is returned only if status is available for a child or
debugged process, and the address specified in this field is not zero.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the wait service returns the process ID of the
child that the status information applied to, if the request is successful, or −1 if it
is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the wait service stores the return code. The
wait service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return

wait (BPX1WAT)

894 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

code values. The wait service can return one of the following values in the
Return_code parameter:

Return_code Explanation
ECHILD The caller has no appropriate child process; that is, no child

process whose status has not already been obtained through
earlier calls to wait meets the criteria for waiting.

EFAULT One of the parameters that was specified contained the address
of a storage area that is not accessible to the caller. The
following reason code unique to this service can accompany this
return code: JRBadExitStatusAddr.

EINTR The calling process received a signal before the completion of an
event that would cause the wait service to return. The service
was interrupted by a signal. In this case, the value that is
contained in Status_field_address is undefined.

EINVAL The value of the option is not valid.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the wait service stores the reason code. The
wait service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The wait service suspends execution of the calling thread until one of the

requested child or debugged processes ends, or until it obtains information
about the process that ended. If a child or debugged process has already
ended, but its status has not been reported when wait is called, the routine
immediately returns with that status information to the caller.

If the WUNTRACED option is specified, the foregoing also applies for stopped
children and stopped debugged processes.

2. The wait service always returns status for stopped debugged processes, even if
WUNTRACED is not specified.

If status is available for one or more processes, the order in which the status is
reported is unspecified.

3. If the wait service is invoked simultaneously from multiple threads within the
same process, the following behavior should be noted:

v When multiple threads issue a fork call followed by a call to the wait service
to wait for any child process to end, the status that is received by each
thread may not be the status of the child that was created by that thread. If a
thread wishes to receive the status of the child that it created, the thread
should specify the returned child Process Id when it calls the wait service to
wait for the child process to end.

v If the wait service is called from multiple threads requesting status for the
same process, the thread that receives the status is not specified when the
process ends or stops. The thread that does not receive the status is
returned to with a return value of −1 and a return code of ECHILD.

wait (BPX1WAT)

Chapter 2. Callable services descriptions 895

Note: A debugged process is one that is being monitored for debugging
purposes with the ptrace service.

Related services
v “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 150
v “fork (BPX1FRK) — Create a New Process” on page 184
v “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 463
v “ptrace (BPX1PTR) — Control Another Process for Debugging” on page 530

Characteristics and restrictions
There are no restrictions on the use of the wait service.

Examples
For an example using this callable service, see “BPX1WAT (wait) Example” on
page 1305.

wait (BPX1WAT)

896 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

wait-extension (BPX1WTE) — Obtain Status Information for Children

Function
The wait-extension callable service allows the calling process to obtain status
information for its child processes.

Requirements

Authorization: Supervisor or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1WTE(Function_code,
Idtype,
Id,
Stat_loc_ptr,
Options,
Info_area_ptr,
Return_value,
Return_code,
Reason_code)

Parameters
Function_code

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the function to
perform. If the value is #wait3, the wait3() function is performed. If the value is
#waitid, the waitid() function is performed. The constants #wait3 and #waitid are
defined in macro BPXYCONS.

Idtype
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates what type of children
to wait for. This parameter is valid only when Function_code is #waitid. It can
be one of the following values:

wait-extension (BPX1WTE)

Chapter 2. Callable services descriptions 897

Table 12. Idtypes

Idtype Description

P_PID waitid() waits for the child with a process ID that is equal to
the value that is specified in the ’id’ parameter.

P_PGID waitid() waits for the child with a process group ID that is
equal to the value that is specified in the ’id’ parameter.

P_ALL waitid() waits for any children. The ’id’ parameter is ignored.

The P_ constants are defined in the BPXYCONS macro.

Id Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that contains the process id or
process group id of the children to wait for. This value is valid only when the
function_code is #waitid. Together with Idtype, Id is used to determine which
children are to be waited for.

Stat_loc_ptr
Supplied parameter

Type: Pointer

Length: Fullword

The name of a fullword that contains the address of a fullword in which this
service is to place the status value for the child process whose status is
available.

This parameter is valid only when the function_code is #wait3.

If BPX1WTE returns because the status of a child process is available, and if
Stat_loc_Ptr is not a null pointer, information is stored in the location that is
pointed to by Stat_loc_ptr. If this field is null, no information is returned. This
area is mapped by BPXYWAST.

Options
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the wait options for this invocation of the
BPX1WTE service.

If the function_code is #wait3, the possible values are as the same as the
’options’ parameter for BPX1WAT.

If the function_code is #waitid, this parameter is used to specify which state
changes to wait for. It is formed by ORing together one or more of the following
flags:

wait-extension (BPX1WTE)

898 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 13. Options

Option Description

WEXITED Wait for child processes that have exited.

WSTOPPED Return status for any child that has stopped upon receipt of
a signal.

WCONTINUED Return status for any child that has stopped and has been
continued.

WHOHANG Return immediately if there are no children to wait for.

WHOWAIT Keep the process whose status is returned in the
info_area_ptr parameter in a waitable state. This does not
affect the state of the process; the process may be waited
for again after this call completes.

These constants are defined in BPXYCONS.

Info_area_ptr
Supplied parameter

Type: Pointer

Length: Fullword

If Function_code is #wait3, Info_area_ptr is the name of a fullword that contains
the address of an rusage structure. If this field is null, no information is
returned. The rusage structure is defined in macro BPXYRLIM.

If Function_code is #waitid, Info_area_ptr is the name of a fullword that contains
the address of a siginfo_t structure. If the function returns because a child
process was found that satisfied the conditions that were indicated by the
arguments idtype and options, the structure that is pointed to by info_area_ptr is
filled in by the system with the status of the process. If this field is null, no
information is returned. The siginfo_t structure type is defined in macro
BPXYSINF.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the BPXWTE service returns −1 if it is not
successful.

If it is successful and the Function_code is #waitid, the wait-extension service
returns a value of zero.

If it is successful and the Function_code is #wait3, the wait-extension service
returns the process id of the child status is being reported for. If WNOHANG
was specified and status is not available for any children specified by the Id, the
wait-extension service returns a value of zero.

Return_code
Returned parameter

Type: Integer

Length: Fullword

wait-extension (BPX1WTE)

Chapter 2. Callable services descriptions 899

The name of a fullword in which the wait-extension service stores the return
code. The wait-extension service returns Return_code only if Return_value is
−1. For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The wait-extension service can return one of
the following values in the Return_code parameter:

Return_code Explanation
ECHILD The calling process has no existing unwaited-for child processes.
EFAULT The address of a returned parameter is incorrect. The following

reason codes can accompany the return code:
JrBadExitStatusAddr, JrBadSiginfoAddr, or JrBadRusageAddr.

EINTR The function was interrupted because the calling process
received a signal.

EINVAL An incorrect Option, Idtype, or Function_code was specified. The
following reason codes can accompany the return code:
JrBadOptions, JrBadIdType, or JrBadEntryCode.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the wait-extension service stores the reason
code. The wait-extension service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. When the siginfo_t structure is returned, the following applies:

v si_signo is always set to SIGCHLD.

v si_errno is always set to 0.

v si_code is set to CLD_EXITED, CLD_KILLED, CLD_DUMPED,
CLD_TRAPPED, CLD_STOPPED, or CLD_CONTINUED. The CLD_
constants are defined in macro BPXYSIGH.

v si_pid is set to the process ID of the child status is being returned for.

v si_uid is set to the user ID of the child status is being returned for.

v si_addr is set to the faulting instruction if the child process terminated
because of a SIGILL, SIGFPE, or SIGSEGV signal; otherwise, si_addr is set
to 0.

v si_status is set to the child’s exit status. The exit status is mapped by macro
BPXYWAST.

v si_band is always set to 0.

2. If the Options field is 0, BPX1WTE waits for processes that have exited.

Characteristics and restrictions
None.

Examples
For an example using this callable service, see “BPX1WTE (wait extension)
Example” on page 1309.

wait-extension (BPX1WTE)

900 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

w_getipc (BPX1GET) — Query Interprocess Communications

Function
The w_getipc service queries shared memory, messages, and semaphores for the
next or specified member to which the invoker has read access.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GET,(Ipc_Token | Ipc_Member_ID,
Buffer_Address,
Buffer_Length,
Command,
Return_value,
Return_code,
Reason_code)

Parameters
Ipc_Token

Supplied parameter

Type: Integer

Length: Word

Specifies a token that corresponds to a message queue, shared memory
segment, or semaphore member ID. Zero represents the first member ID. The
token to be used in the next invocation is passed back in Return_value.
Ipc_Token is ignored when Ipc_OVER is specified.

Ipc_Member_ID
Supplied parameter

Type: Integer

Length: Word

Specifies a message queue ID, semaphore ID, or shared member ID.

Buffer_address
Supplied parameter

Type: Address

Length: Fullword

w_getipc (BPX1GET)

Chapter 2. Callable services descriptions 901

Address of the buffer structure defined by IPCQ. For the structure describing
this buffer, see “BPXYIPCQ — Map w_getipc Structure” on page 978.

Buffer_Length
Supplied parameter

Type: Address

Length: Fullword

Length of the structure defined by IPCQ. Set to IPCQ#LENGTH. Field
IPCQLENGTH will differ from IPCQ#LENGTH when the system call is at a
different level than the included IPCQ. An error will be returned if this length is
less than 4. The buffer will be filled to the lesser of IPCQ#LENGTH or the value
specified here.

Command
Supplied parameter

Type: Integer

Length: Fullword

Command Description
Ipcq#ALL Retrieve next shared memory, message and

semaphore member.
Ipcq#MSG Retrieve next message member.
Ipcq#SEM Retrieve next semaphore member.
Ipcq#SHM Retrieve next shared memory member.
Ipcq#OVER Overview of system variables. Ignores the value of

the first operand (Ipc_Token).

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getipc service returns the next
Ipc_Token (a negative number), 0, or −1 (error). If Ipc_Token is specified, 0
indicates end of file. If Ipc_Member_ID is specified, 0 indicates success.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getipc service stores the return code.
The w_getipc service returns Return_code only if Return_value is −1. See z/OS
UNIX System Services Messages and Codes for a complete list of possible
return code values. The w_getipc service can return one of the following values
in the Return_code parameter:

Return_code Explanation
EACCES Operation permission (read) is denied to the calling process for

the Ipc_Member_ID specified. The following reason code can
accompany the return code: JRIpcDenied.

w_getipc (BPX1GET)

902 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL The Ipc_Member_ID is not valid for the command specified:

v The Command parameter is not a valid command.

v The buffer pointer was zero or the buffer length was less than
4.

The following reason codes can accompany the return code:
JRBuffTooSmall, JRIpcBadID, or JRBadEntryCode.

EFAULT An input parameter specified an address that caused the callable
service to program check. The following reason code can
accompany the return code: JRBadAddress.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getipc service stores the reason code.
The w_getipc service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. See z/OS UNIX System
Services Messages and Codes for the reason codes.

Usage notes
1. With Ipc_Token, return_values should be tested for 0 (end of file) or -1 (error).

Other values are negative and will be the next Ipc_Token.

2. With Ipc_Member_ID, return_values should be tested for -1 (error).

3. A member’s accessibility can change if the permissions are changed.

4. A given Ipc_Token may not always retrieve the same member.

5. If a specific member is desired and has been found using Ipc_Token,
subsequent requests may place it at that token or later (never earlier).

6. The Ipc_BINSEM, Ipc_MEGA, Ipc_RcvTypePID, Ipc_SndTypePID, Ipc_PLO1,
and Ipc_PLO2 bits in the S_MODE field in IpcqIpcp show the values that were
requested on the original get request.

7. The Ipc_PLOinUse bit in the S_MODE field in IpcqIpcp shows actual usage of
the PLO (Perform Lock Operation) instruction for serialization.

8. When the message queue serialization uses latches, all activity is stopped for
the duration of the w_getipc request, and the values that are returned show a
snapshot in time.

9. When the message queue serialization uses the PLO instruction (see
Ipc_PLOinUse), msgsnd and msgrcv activity continues during the w_getipc
request. This can cause misleading results. For example, while the w_getipc
service is counting messages on the queue, elements can be added and
removed, causing a number that is too high or too low. In the same way, with
the msgrcv and msgsnd waiters, a waiter’s PID could appear twice in the list.

Related services
v “shmget (BPX1MGT) — Create/Find a Shared Memory Segment” on page 738
v “msgget (BPX1QGT) — Create or Find a Message Queue” on page 380
v “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 633

w_getipc (BPX1GET)

Chapter 2. Callable services descriptions 903

Characteristics and restrictions
There are no restrictions on the use of the w_getipc service.

Examples
For an example using this callable service, see “BPX1GET (w_getipc) Example” on
page 1119.

w_getipc (BPX1GET)

904 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

w_getmntent (BPX1GMN) — Get Information on Mounted File Systems

Function
The w_getmntent callable service gets information about mounted file systems.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary address space control (ASC) mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GMN,(Buffer_length,
Buffer,
Return_value,
Return_code,
Reason_code)

Parameters
Buffer_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the size of the specified buffer.

Buffer
Parameter supplied and returned

Type: Structure

Length: Specified by the Buffer_length parameter

The name of the buffer where the information about the mount entries is stored.
The area consists of a header followed by a series of entries describing the file
systems, all of which are mapped by BPXYMNTE. For information on the
content of this area, see “BPXYMNTE — Map Response and Element Structure
of w_getmntent” on page 983.

Return_value
Returned parameter

Type: Integer

Length: Fullword

w_getmntent (BPX1GMN)

Chapter 2. Callable services descriptions 905

The name of a fullword in which the w_getmntent service returns the number of
mount entries that were written to the buffer, or −1 if unsuccessful. A 0 indicates
that no more mount entries were found.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getmntent service stores the return
code. The w_getmntent service returns Return_code only if Return_value is −1.
For a complete list of possible return code values, see z/OS UNIX System
Services Messages and Codes. The w_getmntent service can return one of the
following values in the Return_code parameter:

Return_code Explanation
EINVAL Parameter error; for example, the buffer is too short to hold one

entry, or the mount header portion of the buffer was not cleared
before the first call. The following reason codes can accompany
the return code: JRBuffTooSmall, JRInvalidCursor,
JRInvalidParms, and JRFilesysNotThere.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getmntent service stores the reason
code. The w_getmntent service returns Reason_code only if Return_value is
−1. Reason_code further qualifies the Return_code value. For the reason
codes, see z/OS UNIX System Services Messages and Codes.

Usage notes
1. With the exception of the situation described in Usage Note 5 or in Usage Note

7, before a program calls w_getmntent for the first time, the header part of the
buffer must be cleared to zeros. For information on the format and length of this
header, refer to “BPXYMNTE — Map Response and Element Structure of
w_getmntent” on page 983.

2. If more than one call is made to w_getmntent, use the same buffer on each call,
because part of the information returned in the buffer tells the file system where
to continue retrieving its information.

3. The w_getmntent call normally returns information about as many file systems
as are mounted, or as many as fit in the passed buffer. The number of entries
contained in the buffer is returned. The caller must have a buffer large enough
to receive information about at least a single mount entry with each call. If a
zero-length buffer is passed, no information is returned, but the return value
contains the total number of mounted file systems. This value could then be
used to get enough storage to retrieve information on all these file systems in
one additional call.

If no parameter was specified when the file system was mounted,
MNTENTPARMLEN and MNTENTPARMOFFSET are each zero. If a parameter
was specified, its address is the sum of the address of MNTE and the contents
of MNTENTPARMOFFSET.

w_getmntent (BPX1GMN)

906 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

If an entry together with its mount parameter will not fit in the buffer, the entry is
returned without the mount parameter. In this case, MNTENTPARMLEN
contains the length of the mount parameter, and MNTENTPARMOFFSET is
zero. To ensure that at least one entry, including the mount parameter, is
returned, you should allocate space for at least two entries.

4. You could also retrieve all mount entries by setting up a loop that continues to
call w_getmntent until a return value of either −1 (in an error) or 0 (no more
entries found) is returned.

5. Information about a specific file system can be obtained if the device number of
that file system is known. In this case, the device number can be filled into the
header of the buffer along with the eye catcher for the buffer, and the
w_getmntent call will return a single entry with information about that file
system.

6. If the caller of w_getmntent lacks search authorization to one or more of the
directories in the mount point, or if the file system is being mounted
asynchronously, MNTENTMOUNTPOINT is returned empty. That is,
MNTENTPATHLEN is zero and MNTENTMOUNTPOINT contains a null as the
first character.

7. If the caller of w_getmntent is requesting the additional information that is
available in the expanded MNTE data structure, MNT2, the caller must construct
the buffer according to the following rules:

a. The buffer must be an appropriate size to hold the additional data that will
be returned with the MNT2 version of the control block.

b. The eye-catcher in the MNTE header must be filled in with the MNT2 value.

c. The bodylength field, also in the header, must be set to the length of the
MNTE2 body.

8. If an entry together with its system list will not fit in the buffer, the entry is
returned without the system list. In this case, the MNTENTSYSLISTOFFSET is
zero, and MNTENTSYSLISTLENGTH contains the length of the system list.

9. When an aggregate name is present for a file system, it is included in the output
if there is room for it. The offset field is set to the offset of the name from the
beginning of this mount entry, and the length field is set to the length of the
name. If the offset is zero and the length is nonzero, this indicates that there is
an aggregate name, but there was not enough space left in the output buffer to
hold it. In this case, the length field tells the program how much more space is
needed.

Aggregate names are present for zFS file systems. They may be up to 44
characters long, and are returned in a null-terminated string. The returned
length does not include the null-terminator byte.

Related services
v “mount (BPX1MNT) — Make a File System Available” on page 365
v “umount (BPX1UMT) — Remove a Virtual File System” on page 877

Characteristics and restrictions
There are no restrictions on the use of the w_getmntent service.

Examples
For an example using this callable service, see “BPX1GMN (w_getmntent)
Example” on page 1130.

w_getmntent (BPX1GMN)

Chapter 2. Callable services descriptions 907

|
|
|

|
|
|
|
|
|
|

|
|
|

w_getpsent (BPX1GPS) — Get Process Data

Function
The w_getpsent callable service provides data describing the status of a process.
This data includes, but is not limited to, running time, user IDs (UIDs), groups IDs
(GIDs), and invocation parameters. Data is returned for the processes that the
caller can access.

Consider using “__getthent (BPX1GTH) — Get Thread Data” on page 285.

Requirements

Authorization: Problem program or supervisor state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: No latches should be held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1GPS,(Process_token,
Buffer_length,
Buffer_address,
Return_value,
Return_code,
Reason_code)

Parameters
Process_token

Returned parameter

Type: Integer

Length: Fullword

The name of the fullword containing the process token that identifies the relative
position of a process in the system. Zero represents the first process in the
system.

Buffer_length
Supplied parameter

Type: Integer

Length: Fullword

The name of the fullword containing the value PGPS#LENGTH.

Buffer_address
Supplied parameter

Type: Address

w_getpsent (BPX1GPS)

908 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Fullword

The name of the fullword containing the address of the buffer. For the mapping
of these options, see “BPXYPGPS — Map the Response Structure for
w_getpsent” on page 996. Several fields in this buffer should be initialized:
PGPSCONTTYBLEN Length of PGPSCONTTYBUF
PGPSCONTTYPTR Address of PGPSCONTTYBUF(Len¬=0)
PGPSPATHBLEN Length of PGPSPATHBUF
PGPSPATHPTR Address of PGPSPATHBUF (Len¬=0)
PGPSCMDBLEN Length of PGPSCMDBUF
PGPSCMDPTR Address of PGPSCMDBUF (Len¬=0)

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getpsent service returns the process
token or 0 if the request is successful, or −1 if it is not successful.

Value Explanation
Process Token The process token of the next logical process in the system.
0 End of file. There are no active processes at or following the

requested process which the user is allowed access.
−1 Error. See Return_code for an explanation.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getpsent service stores the return code.
The w_getpsent service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The w_getpsent service can return one of the following
values in the Return_code parameter:

Value Explanation
EFAULT An input parameter contained the address of storage where the

invoker is not authorized.
EINVAL The process_token is not in the valid range.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_getpsent service stores the reason code.
The w_getpsent service returns Reason_code only if Return_value is −1
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

w_getpsent (BPX1GPS)

Chapter 2. Callable services descriptions 909

Usage notes
1. Only those processes are returned for which RACF allows the user access

based on its EUid, RUid, or SUid.

2. The normal user starts with Process_token at zero, and continues calling
BPX1GPS with the process token returned in Return_value until the value of 0,
end of file, is reached.

3. PGPSSTARTTIME is in seconds since the Epoch (00:00:00 on 1 January 1970).

4. PGPSUSERTIME and PGPSSYSTIME are task-elapsed times in 1/100ths of
seconds.

5. The CONTTY, PATH, and CMD input fields are initialized by the BPXYPGPS
macro when it is expanded in the program CSECT for a non-reentrant program.

6. If Buffer_length does not match that used by the callable service, the task sets
PGPSLENERR on. This can reflect a change in BPXYPGPS caused by the
addition of functions in later releases. This could be intentional: data is returned
up to the length specified in Buffer_length. If the length specified is less than the
offset of PGPSCONTTYBLEN, BPX1GPS treats the request as if the three
BLEN fields were zero.

7. PGPSSYSTIME reports the system CPU time consumed for the address space
that the process is running in. When only one process is running in the address
space, this time represents the accumulated system CPU time for that process.
However, when more than one process is running in an address space, the
information that is returned is actually the accumulated system CPU time
consumed by all of the work running in the address space.

Characteristics and restrictions
None.

Examples
The following example starts with the first process (relative process zero) and
reports the status for all processes for which the invoker is allowed access (by the
security access facility).

The program is reentrant and should be link-edited with RENT in the IEWL PARM.
BOOKSAM4 CSECT , Reentrant linkage
BOOKSAM4 AMODE 31
BOOKSAM4 RMODE ANY

USING *,R15 Program addressability
@BEGIN0 B @BEGIN1 Branch around program header

DROP R15
DC C’Sequential w_getpsent’
DS 0H

@BEGIN1 STM R14,12,12(13) Save caller’s registers
LR R2,13 Hold address of caller’s area
LR R3,R1 Hold parameter register
LR 12,R15 R12 program base register
USING @BEGIN0,12 Program addressability
L R0,@SIZEDAT Size this program’s dynamic area
GETMAIN RU,LV=(0) Getmain dynamic storage
LR 13,R1 R13 -> this program’s dynamic/save
USING @DYNAM,13 Dynamic addressability
ST R2,@BACK Save caller’s save area pointer
ST 13,8(,R2) Give caller out save area
LR R1,R3 Restore parameter register

@BEGIN2 EQU * * * * * * * End of the entry linkage code
SPACE ,
MVC WTOHEAD,WTOCONS Initialize WTO line
MVI DOT,C’.’

w_getpsent (BPX1GPS)

910 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|
|
|
|
|

* If BPX1GPS has been link-edited with this program, the V-CON will be
* resolved; if not, BPX1GPS must be loaded. In either case, the address
* of the module is stored.

ICM R0,B’1111’,GPSVCON BPX1GPS address if link edited
BNZ STGPSEP Branch to store GPS entry point
LOAD EP=BPX1GPS Load w_getpsent stub

STGPSEP ST R0,GPSENTRY Store BPX1GPS entry point
* Initialize the variables and enter the loop.

XC PROCTOKEN,PROCTOKEN Start with 1st process
MVC PGPSCONTTYBLEN,=A(L’PGPSCONTTYBUF) Controlling TTY
LA R2,PGPSCONTTYBUF
ST R2,PGPSCONTTYPTR
MVC PGPSPATHBLEN,=A(L’PGPSPATHBUF) Path name
LA R2,PGPSPATHBUF
ST R2,PGPSPATHPTR
MVC PGPSCMDBLEN,=A(L’PGPSCMDBUF) Command
LA R2,PGPSCMDBUF
ST R2,PGPSCMDPTR
LA R2,PGPS Address of PGPS buffer
ST R2,PGPSA
SPACE ,

GETPS L R15,GPSENTRY Address of BPX1GPS load module
CALL (15), Get process data +

(PROCTOKEN, Relative process token +
PGPSL, Length of buffer +
PGPSA, Buffer, mapped by BPXYPGPS +
RETVAL, Return value (next, eof or error) +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE , * * * * * * Test for end of file
ICM R2,B’1111’,RETVAL Load return value, set CCode
BZ RETURN 0 is end of file
BL RETURNRC -1 is error
ST R2,PROCTOKEN Store the next process token
SPACE , * * * * * * Initialize WTO area & message
MVI XPID,C’ ’ Blank variable portion of line
MVC XPID+1(WTO#BLANK-1),XPID

* Convert the process ID to printable hex.
L R8,PGPSPID R8 = process ID
LA R9,XPID To be placed at message start
LA R15,8 8 nibbles to convert (4 bytes)
LA R10,9 For 0-9 / A-F compare

NIBBLE LR R11,R8 Target bits in 0-3 XYYYYYYZ
SRL R11,28 Bits 0-3 to 28-31 0000000X
SLL R8,4 Drop bits 0-3 off end YYYYYYZ0
CLR R11,R10 Are 4 bits 0-9 or A-F
BC B’0010’,AF Branch if A-F
LA R11,57(,R11) Add for 0-9 (57+183=240 or F0)

AF LA R11,183(,R11) Add for 0-F (183+10=193 or C1)
STC R11,0(,R9) Store to results location
LA R9,1(,R9) Increment R9 to next location
BCT R15,NIBBLE Decrement half byte counter, loop

* Go after the state of the process
MVI THREAD,C’1’ Assume single task thread
TM PGPSSTATUS1,PGPSMULTHREAD if multithread process
BZ NOTMULT
MVI THREAD,C’M’

NOTMULT TM PGPSSTATUS1,PGPSPTHREAD if pthread_create task(s)
BZ NOTIPT
MVI THREAD,C’H’

NOTIPT MVC STATE,PGPSSTATUS3 Z, W, X, S, C, F, K, R
TM PGPSSTATUS0,PGPSSWAP if swapped out
BZ NOTSWAP
MVC SWAPA,=CL4’SWAP’

NOTSWAP TM PGPSSTATUS1,PGPSSTOPPED if stopped
BZ NOTSTOP

w_getpsent (BPX1GPS)

Chapter 2. Callable services descriptions 911

MVC STOPA,=CL4’STOP’
NOTSTOP TM PGPSSTATUS1,PGPSTRACE if ptrace

BZ NOTTRAC
MVC TRACA,=CL4’TRAC’

NOTTRAC EQU *
SPACE , * * * * * * Display message to operator
WTO MF=(E,WTOAREA) Write to Operator
SPACE , * * * * * * Loop back
B GETPS for the next Process data
SPACE ,

* * * * *.* * *.* * * * * * * * * * *.* * * * * * * * * * * * * * * * *
RETURN XR R15,R15 Zero return code
RETURNRC L R0,@SIZEDAT Size this program’s dynamic area

LR R1,13 R1 -> this program’s dynamic arae
L 13,@BACK R2 -> caller’s save area
DROP 13
FREEMAIN RU,LV=(0),A=(1)
L R14,12(,13) Restore caller’s R14
LM R0,12,20(13) Restore caller’s R0-R12
BSM 0,R14 Branch back to caller

@SIZEDAT DC A(@ENDYN-@DYNAM) Size of dynamic storage
SPACE , * * * * * * * * * *.* Program constants * * * * * * *

PGPSL DC A(PGPS#LENGTH) Length of process data buffer
WXTRN BPX1GPS Weak to allow link edit or not

GPSVCON DC V(BPX1GPS) Get Process data module
WTOCONS DS 0CL8 Constant value for WTOHEAD

DC AL2(WTO#LENGTH) Length of area
DC AL2(0) WTO flags
DC CL4’PID=’ Process ID =
SPACE , * * * * * * Dynamic storage variables

@DYNAM DSECT ,
@SAVE00 DS 0D Standard save area - 72 Bytes

DS A
@BACK DS A Backwards savearea pointer
@FORWARD DS A Forwards savearea pointer

DS 15A Regs 14,15,0-12
SPACE ,

WTOAREA DS 0F WTO message
WTOHEAD DS CL8 Mapped by WTOCONS
XPID DS CL8 Hex of process ID

DS CL1
THREAD DS CL1 1, M or H

DS CL1
STATE DS CL1 Z, W, X, S, C, F, K, R

DS CL1
SWAPA DS CL4 SWAP or blank

DS CL1
STOPA DS CL4 STOP or blank

DS CL1
TRACA DS CL4 TRAC or blank
WTO#BLANK EQU *-XPID Length to blank
DOT DS CL1
WTO#LENGTH EQU *-WTOAREA Length of WTO area

SPACE ,
GPSENTRY DS A Address of BPX1GPS
PROCTOKEN DS F Relative process token
PLIST DS 6A Calling parameter list
RETVAL DS F Return value - next PROCTOKEN
RETCODE DS F Return code
RSNCODE DS F Reason code

SPACE ,
PGPSA DC A(PGPS) ->Process data buffer

BPXYPGPS DSECT=NO, Place in current dsect +
VARLEN=(0,0,0) ConTty=0,Path=0,Cmd=0

@ENDYN EQU * End of dynamic storage
SPACE 3 * * * * * * * * * *.* Register equates * * * * * * *

R0 EQU 0

w_getpsent (BPX1GPS)

912 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
* 12 Program base register
* 13 Savearea & dynamic storage base
R14 EQU 14 Return address
R15 EQU 15 Branch location

SPACE ,
END

w_getpsent (BPX1GPS)

Chapter 2. Callable services descriptions 913

w_ioctl (BPX1IOC) — Control I/O

Function
The w_ioctl callable service conveys a command to a device. The specific actions
that are specified by the w_ioctl callable service vary by device and physical file
system, and are defined by the device driver or physical file system.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1IOC,(File_descriptor,
Command,
Argument_length,
Argument,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of an open file or a
socket descriptor.

Command
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the ioctl command that is to be passed to
the device driver or physical file system.

See “BPXYIOCC — Ioctl Command Definitions” on page 973 for a complete list
of the commands that are supported.

Argument_length
Parameter supplied and returned

w_ioctl (BPX1IOC)

914 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword containing the length of the argument. The length of the
argument is specified as an integer value in the range 0–51 200.

Argument
Parameter supplied and returned

Type: Defined by the device driver or physical file
system

Character set: No restriction

Length: Specified by the Argument_length parameter

Specifies the name of a buffer, of length Argument_Length, containing the
argument to be passed to the device driver or physical file system.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_ioctl service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_ioctl service stores the return code. The
w_ioctl service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The w_ioctl service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF The fildes parameter is not a valid file or socket descriptor. The

following reason code can accompany the return code:
JrFileNotOpen.

EFAULT The address is incorrect. The following reason codes can
accompany the return code: JrReadUserStorageFailed,
JrWriteUserStorageFailed.

EINVAL One of the following occurred:

v The w_ioctl service specified an incorrect length for the
argument. The correct argument length range is 0–51 200.

v An invalid command was encountered.

The following reason codes can accompany the return code:
JRInvIoctlCmd, JrNotSupportedForFileType, JrFileNotOpen,
JrBadSubField.

w_ioctl (BPX1IOC)

Chapter 2. Callable services descriptions 915

Return_code Explanation
EIO One of the following occurred:

v The process group of the process that is issuing the function is
an orphaned, background process group, and the process that
is issuing the function is not ignoring or blocking SIGTTOU.

v There has been a network or transport failure.

The following reason codes can accompany the return code:
JRSingleTDRegd, JRPrevSockError.

EMVSPARM Incorrect parameters were passed to the service. The following
reason codes can accompany the return code: JRNoStorage and
JRInvParmLength.

ENOBUFS Insufficient buffer space available. The following reason code can
accompany the return code: JrNoArea.

ENODEV The device is incorrect. The function is not supported by the
device driver. The following reason code can accompany the
return code: JRFuncNotSupported.

ENOTTY The w_ioctl service specified an incorrect file descriptor. The file
type was not character special. The following reason code can
accompany the return code: JRNotSupportedForFileType.

EALREADY An attempt was made to unregister a file that is not registered.
E2BIG The argument_length passed on a SetfACL or GetfACL request

was not large enough to contain even the minimum amount of
data. The size specified must be large enough to hold a
RACL_Edit, followed by an FACL and as many FACL_Entry(s) as
needed.

EIBMBADTCPNAME The command passed was IOCC#DIRIOCTL, and the stack
name was not found attached to this socket. The specific error is
determined by the reason code that accompanies this return
code:

JrNoCINET
Common INET is not configured, or this is not a socket
and the name did not match the PFS name. This error
may not be critical to the application, because the
imbedded ioctl can be sent directly to the one and only
stack or PFS as a regular ioctl.

JrCINETBadName
CINET is configured, and this name does not match any
stack.

JrCINETNotAttached
CINET is configured and this name matches a stack, but
that stack is not attached to this socket.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_ioctl service stores the reason code. The
w_ioctl service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

w_ioctl (BPX1IOC)

916 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

Usage notes
1. z/OS UNIX domain sockets support the following commands:
v FIONBIO
v FIONREAD
v SECIGET
v SIOCATMARK

2. Inet sockets pass the ioctl command to TCP/IP. Refer to z/OS Communications
Server: IP Application Programming Interface Guide for the commands that are
supported.

3. Pseudoterminals (ptys) and remote terminals (rtys) support TIOCGWINSZ and
TIOCSWINSZ to get and set window size. Ptys also support TIOCNOTIFY
begin (IOCC#PWBEGIN) and TIOCNOTIFY end (IOCC#PWEND) secure data
mode.

TIOCGWINSZ and TIOCSWINSZ retrieve and store the winsize structure
(BPXYWNSZ). TIOCNOTIFY sets the TIOCXPKT_PWBEGIN and
TIOCXPKT_PWEND bits on master read() when in extended packet mode.

4. The pipe file system does not support ioctl.

5. The IOCC#UPDTOFTE command updates a 100-byte state area that is
associated with an Open File Table Entry (OFTE). OFTEs are created by the
socket, open, and pipe functions, and are shared by child processes.

This function is intended for use by run-time libraries.

The Argument buffer contains an UPDTOFTE subcommand and the offset,
length, and value of the data to be updated. Refer to the BPXYIOCC macro for
the mapping of this structure.

Data written to or read from the state area is addressed by offset and length
within the state area. The state area is initialized to all zeros when it is
allocated.

Three subcommands are available:

v IocUo#Write

The specified data value is written to the specified offset in the state area.
This subcommand also initially allocates the area and must be the first
UPDTOFTE subcommand issued.

v IocUo#Read

The data at the specified offset in the state area is returned.

v IocUo#CS

This is used for a ″compare and swap″ type write to the state area. The
specified old_value is compared to what is currently in the state area at the
old_offset. If they match, the new_value is written to the new_offset. If they
do not match, the current data at the old_offset in the state area is returned
in the old_value along with a Return_Value of 1. The old data and the new
data do not have to be at the same offset within the state area.

All of the subcommand operations are atomic with respect to other tasks
attempting to access the same OFTE state area.

6. The Iocc#RegFileInt command registers interest in a file and allows the
program to be notified when a change to that file occurs.

The program creates one or more IPC message queues and specifies a
Queue Id on each registration, along with a message type and a user token
that identifies the file to the program. These are specified in the Rfis structure
in the BPXYRFIS macro. See “BPXYRFIS — Map the Register File Interest

w_ioctl (BPX1IOC)

Chapter 2. Callable services descriptions 917

Structures” on page 1018. A Registered File Token, RfTok, is returned from the
registration; this can be used later to unregister the file.

You can register files by descriptor with the w_ioctl service, or by pathname
with the w_pioctl service.

When a change occurs to a registered file, a message is sent on the
registered IPC Message Queue. The message content is described by the
Rfim structure in the BPXYRFIS macro, and contains:

v The message type specified on registration

v The user token specified on registration

v The type of change that occurred

The types of file changes that generate a message are:

v File write, including truncate and open(O_TRUNC)

v Any attribute change, such as a chmod or chown request

v Renaming, removal, or unlinking of any of the file’s names

v Attempts to unmount the containing file system

Because a registered file is implicitly unregistered when a message is sent,
only one message is sent for any given registration.

A file can be explicitly unregistered with the w_ioctl or the w_pioctl service. An
Rfis structure is passed on these calls that contains the RfTok that was
returned when the file was registered. The file descriptor or pathname that is
used on the call is not important, but it must be valid. If the registered file is no
longer open, and its file descriptor is therefore not readily available, you can
use the w_pioctl service with a pathname of “/”.

If you try to unregister a file that has already been implicitly or explicitly
unregistered, the call fails with EALREADY. If you receive this return code,
there may be a message waiting for you on the queue, so you should
coordinate the freeing of any file-related control blocks that might be
referenced when that message is read.

All file registrations are removed if the registering process terminates or issues
an exec-type call and no messages are sent.

To receive a change message, the queue must be writable by anyone who
might change the files, so we recommend that you create the queue with
permission bits of 622.

The queue must be large enough to accommodate the expected number of
unprocessed messages, and the messages must be processed fast enough so
that the system limit on total outstanding messages is not exceeded.
Messages that cannot be queued immediately are discarded, but the fact that
messages were lost is remembered. This information is communicated to the
application in one of two ways: (1) the Rfim_LostMsgs flag is set on
subsequent change messages sent to this process until a message is
successfully queued; or (2) the Rfis_LostMsgs flag is returned on the next
successful registration or unregistration.

When an application is informed that messages have been lost, it should do
the following:

v Unregister all registered files, ignoring any EALREADY return codes

w_ioctl (BPX1IOC)

918 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v Drain the message queue, ignoring any change messages received

v Start over

Program errors can also prevent messages from being delivered; for example,
if a bad queue id is specified on registration. When a message cannot be
delivered, a Ctrace entry is written for component SYSOMVS of type FILE.
The trace entry contains the character string “RFIPCERR”, the returned failure
codes from the msgsnd service, the queue id used, and the message that was
being sent. You can use this information during program development to
diagnose simple bugs.

A registered file does not have to be open to be, or to remain, registered.

A file can be registered multiple times, and by different processes. Each
registration causes a separate message when the file is changed.

Any file type can be registered, but some change events only apply to regular
files. In particular, writes to a directory (that is, file creation and deletion) do not
generate a change message for a registered directory.

No special authority is required to register a file. Any file that the caller has
open or is allowed to make stat() calls to can be registered.

Registration and file change notification are intended for use by programs that
would otherwise issue periodic stat() or fstat() calls to monitor a file’s time
stamps in order to detect changes to the file.

7. The HFS accepts the following commands in support of access control lists
(ACLs):

SetfACL Sets information into an access control list. The Argument
parameter specifies the user buffer containing the input:
a. A structure of type RACL_EDIT, defined in IRRPCOMP,

followed by
b. A structure of type FACL, defined in IRRPFACL.

Argument_length specifies the combined length of the
RACL_EDIT and FACL structures.

GetfACL Retrieves information from an access control list. The
Argument parameter specifies the user buffer into which the
requested ACL will be returned. The data is mapped by
IRRPFACL. Argument_length specifies the length of the user
buffer.

On a successful return, this buffer will be updated to contain
as many FACL_Entry(s) as will fit into the buffer, and these
entries will follow the FACL. The FACL_Len field will be
updated to reflect the length of the FACL and all of the entries
returned.

8. The IOCC#DIRIOCTL (Directed Ioctl) command sends an imbedded ioctl
command and argument to a specified stack. The input argument for this
command is the IocDirIoctl structure, from the BPXYIOCC macro (“BPXYIOCC
— Ioctl Command Definitions” on page 973), with the following fields:

Field Description

IocDirName The name of the stack

IocDirCmd The ioctl command to be sent to IocDirName

w_ioctl (BPX1IOC)

Chapter 2. Callable services descriptions 919

|
|
|
|

||

||

||

IocDirArgLen The length of IocDirArg, which follows

IocDirArg The ioctl argument to be sent to IocDirName

The imbedded ioctl is passed to the specified stack, if that stack is attached to
this socket, without any examination or processing by the system. Any errors
that are returned are usually returned by the stack. Directed Ioctl is not strictly
restricted to socket stacks. The name should match the PFS name for the
descriptor that is used.

If the imbedded ioctl generates output in its argument buffer, the output is
returned in the IocDirArg buffer.

A unique error can be returned by z/OS UNIX System Services for this ioctl
command, EIBMBADTCPNAME, when the stack name is not found attached to
this socket.

9. The IOCC#GETSTACKS (Get TCPIP Stack Names) command returns the
names of all the transport stacks that are attached to a socket, and information
related to those stacks. The output argument for this command is the
IocStackInfo structure, from the BPXYIOCC macro (“BPXYIOCC — Ioctl
Command Definitions” on page 973), with the following fields:

Field Description

IocStackEntries The number of IocStackName array entries
that have been returned. With CINET, one or
more entries may be returned, depending on
how many stacks have been configured under
CINET, how many are or have been active,
and any stack affinity that may have been
established for the socket or process.

IocStackName The name of the stack.

IocStackCINET Indicates that this is a CINET socket. When
this bit is on, the IocStack_IPv6_Interfaces and
IocStack_IPv4_Interfaces flags indicate
whether the specified stack has configured
interfaces of each type. Without CINET, use
the SIOCGIFVERSION ioctl to obtain this
information directly from the Inet stack. Refer
to z/OS UNIX System Services File System
Interface Reference for information about the
SIOCGIFVERSION ioctl command.

IocStack_IPv6_Support Indicates that this stack supports IPv6
protocols and sockets created with AF_INET6.
CINET supports IPv6 sockets over stacks that
do not themselves support IPv6, as long as
IPv4-mapped addresses can be used.

IocStackTdIndex The CINET TdIndex for this stack. This value
is used in the upper halfword of Interface
Indices when CINET is configured.

IocStack_Active Indicates that this stack is active. When used
with this ioctl command, this bit is usually on,
because inactive stacks are not usually
attached to a socket, unless the stack has
recently terminated.

w_ioctl (BPX1IOC)

920 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||

||

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

||

||
|
|
|
|
|
|

||

||
|
|
|
|
|
|
|
|
|

||
|
|
|
|

||
|
|

||
|
|
|
|

This ioctl is not strictly restricted to socket stacks; however, with any other type
of Physical File System, all of the socket-related flags would be off.

Tip: You can use the PC#TdNames pfsctl command function of the BPX1PCT
service to obtain a complete list of all the stack names, active or inactive,
that are configured under CINET.

10. The IOCC#GRTRSELECT (Get CINET PreRouter Selections) command
returns the CINET stack that would be chosen for each of a list of destination
IP addresses. This ioctl is passed an array of IP addresses, and returns for
each address the CINET stack that would be chosen for that destination. This
is the stack over which a connect() or sendto(), for instance, would be routed if
that address were specified on the call at this time. If CINET is not configured,
the socket’s one and only stack is returned. The input and output argument for
this command is the IocRtrSelect structure, from the BPXYIOCC macro
(“BPXYIOCC — Ioctl Command Definitions” on page 973), with the following
fields in each array entry:

Field Description

IocRtrIpAddr Specifies the IP address to test. This is an
IPv6 address or an IPv6-mapped IPv4
address.

IocRtrStack Returns the name of the stack that would be
chosen.

IocRtrErrTest When equal to B'0', this indicates that there
was an error with this one IP address. The
following two fields are also returned:
IocRtrErrno, which contains the failing return
code (errno), and IocRtrRsn, which contains
the failing reason code.

11. The SIOCGIFNAMEINDEX (Get Interface Name/Index Table) command returns
the Interface Name/Index table for every stack that is attached to a socket. The
output argument for this command is the If_NameIndex structure, from the
BPXYIOCC macro (“BPXYIOCC — Ioctl Command Definitions” on page 973),
with the following fields:

Field Description

If_NITotalIF Contains the total number of interfaces that
have indices assigned on the stacks that are
attached to this socket.

If_NIEntries Contains the number of interfaces that have
been returned. When the total is greater than
the number of entries returned, the supplied
buffer was not large enough to hold all of the
required information. In that case, If_NITotalIF
can be used to calculate the amount of space
needed and the call can be repeated. When all
the interfaces can be returned, the two values
are equal.

If_NITable Contains an array of If_NameIndexEntry
structures.

Each interface is described by an If_NameIndexEntry structure consisting of:

Structure Description

w_ioctl (BPX1IOC)

Chapter 2. Callable services descriptions 921

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

||

||
|
|

||
|

||
|
|
|
|
|

|
|
|
|
|

||

||
|
|

||
|
|
|
|
|
|
|
|

||
|

|

||

If_NIIndex Contains the Interface Index, as described
below.

If_NIName Contains the Interface Name, as a 1- to
16-byte character string, left-justified, and
padded with blanks. When there is more than
one stack, these names may not be unique,
because the names are defined to each stack
individually with their own configuration
procedures.

If_NINameTerm A null character supplied to terminate the
name string for the convenience of C routines.

Tip: To query for the total number of interfaces, you can specify an argument
length of 8, just large enough for the first two fields, and the total will be
returned in If_NITotalIF, with an If_NIEntries value of 0.

This output is similar to the output of the if_nameindex() C/C++ function. For a
CINET socket with more than one stack attached, the tables from each stack
are concatenated into one output table. For a CINET socket, in general, a
Transport Driver Index, TdIndex, value will be inserted into the Interface
Indices to uniquely identify the interfaces. For example, with two stacks (1)
TCPA, with interfaces IFA1 and IFA2, whose interface indices are 1 and 2,
respectively, within TCPA, and (2) TCPB, with interfaces IFB1 and IFB2, whose
interface indices are 1 and 3, respectively, within TCPB, the output of this ioctl
would be something like:
(’00010001’x, IFA1),(’00010002’x, IFA2),(’00020001’x, IFB1),(’00020003’x, IFB2)

The first halfword of the index value indicates which stack under CINET the
interface belongs to. The second halfword contains that stack’s interface index
for this interface.

Without CINET, if TCPA, above, were configured as the only stack, and it were
IPv6-enabled, the output of this ioctl would be:
(’00000001’x, IFA1),(’00000002’x, IFA2)

Interface indices are used in various places in IPv6, such as for the scope_id
of the IPv6 sockaddr structure and within the in6_pktinfo structure. In a CINET
configuration, the first halfword of an interface index is used to route a call to
the corresponding numbered stack. The upper halfword is cleared before the
data is passed to the stack, so that one could use interface indices of the form
X'000N0000' as a way to route a call to stack number N without actually
specifying an interface index to that stack. The specified stack must be
attached to the current socket. The stacks under CINET are numbered in the
order of the SUBFILESYSTYPE statements in the BPXPRMxx parmlib member
that defined the configuration. These values can be determined from the
IocStackTdIndex field of the Iocc#GetStacks ioctl, or from the order of the
names returned by the PC#TdNames pfsctl.

Refer to the C/C++ functions if_nameindex(), if_nametoindex(), and
if_indextoname() for more information about interface names and indices. (See
z/OS C/C++ Run-Time Library Reference.)

Characteristics and restrictions
The argument is limited to 51 200 bytes.

w_ioctl (BPX1IOC)

922 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||
|

||
|
|
|
|
|
|

||
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Examples
For an example using this callable service, see “BPX1IOC (w_ioctl) Example” on
page 1150.

w_ioctl (BPX1IOC)

Chapter 2. Callable services descriptions 923

__wlm (BPX1WLM) — WLM Interface Service

Function
The __wlm callable service invokes a wide variety of Work Load Manager (WLM)
functions.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1WLM,(FunctionCode,
ParmListPtr,
Return_value,
Return_code,
Reason_code)

Parameters
FunctionCode

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains a value that indicates the type of WLM
function that the caller is requesting. The following are the supported values:

Value Description

WLM_QUERY_METRICS Query WLM System Information

WLM_QUERY_SCHEDENV Query WLM Scheduling Environment

WLM_CHECK_SCHEDENV Check WLM Scheduling Environment

WLM_DISCONNECT Disconnect from WLM

WLM_DELETE_WORKUNIT Delete a WLM Work Unit

WLM_JOIN_WORKUNIT Join a WLM Work Unit

WLM_LEAVE_WORKUNIT Leave a WLM Work Unit

WLM_CONNECT_WORKMGR Connect to WLM as a work manager

WLM_CONNECT_SERVERMGR Connect to WLM as a server manager

WLM_CREATE_WORKUNIT Create a WLM work unit (this function
creates an independent WLM enclave)

__wlm (BPX1WLM)

924 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Value Description

WLM_CONTINUE_WORKUNIT Continue WLM work unit (this function
creates a dependent WLM enclave)

WLM_EXTRACT_WORKUNIT Extract the WLM work unit token (this
function returns the WLM enclave token)

WLM_EXPORT_WORKUNIT Export a WLM work unit

WLM_UNDOEXPORT_WORKUNIT Undo a prior export request for a WLM
work unit

WLM_IMPORT_WORKUNIT Import a WLM work unit

WLM_UNDOIMPORT_WORKUNIT Undo a prior import request for a WLM
work unit

WLM_QUERY_ENCLAVECLASS Query enclave class information for a
WLM work unit

WLM_CONNECT_EXPORTIMPORT Connect a subsystem to WLM to export
and import work units, but not to create
them

These constants are defined in the BPXYWLM macro; see “BPXYWLM — WLM
Constants and Parameter List DSECTs” on page 1054.

ParmListPtr
Supplied parameter

Type: Address

Length: 4 bytes

The name of a 4-byte field that contains the address of the parameter list for
the WLM function that is to be performed. See “BPXYWLM — WLM Constants
and Parameter List DSECTs” on page 1054 for the mapping of the parameter
lists for the various WLM functions.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __wlm service returns the return value for
the WLM function that was requested.

For the following set of WLM functions, the service returns 0 if the request is
successful, or −1 if it is not successful:

v WLM_CHECK_SCHEDENV

v WLM_DISCONNECT

v WLM_DELETE_WORKUNIT

v WLM_JOIN_WORKUNIT

v WLM_LEAVE_WORKUNIT

v WLM_CREATE_WORKUNIT

v WLM_CONTINUE_WORKUNIT

v WLM_QUERY_METRICS

v WLM_QUERY_SCHEDENV

__wlm (BPX1WLM)

Chapter 2. Callable services descriptions 925

v WLM_EXTRACT_WORKUNIT

v WLM_EXPORT_WORKUNIT

v WLM_UNDOEXPORT_WORKUNIT

v WLM_IMPORT_WORKUNIT

v WLM_UNDOIMPORT_WORKUNIT

v WLM_QUERY_ENCLAVECLASS

If the WLM_QUERY_METRICS, WLM_QUERY_SCHEDENV, or
WLM_QUERY_ENCLAVECLASS function fails with an error that indicates that
the supplied buffer was too small, the supplied length field in the input
parameter list is updated to contain the length that is required for the function to
succeed.

For the following set of WLM functions, the service returns a WLM connect
token if the request is successful, or −1 if it is not successful:

v WLM_CONNECT_WORKMGR

v WLM_CONNECT_SERVERMGR

v WLM_CONNECT_EXPORTIMPORT

Return_Code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the __wlm service stores the return code. The
__wlm service returns Return_code only if Return_value is −1. For a complete
list of possible return code values, see z/OS UNIX System Services Messages
and Codes. The __wlm service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EFAULT An argument of this service contained an address that was not

accessible to the caller.
EINVAL The FunctionCode parameter contains a value that is not correct;

or the function parameter list data is not correct.
EMVSWLMERROR A WLM service failed.

Consult Reason_code to determine the WLM service that failed
and the reason for the error. See z/OS MVS System Messages,
Vol 9 (IGF-IWM) for a list of WLM services (IWM*) error reason
codes.

EPERM The calling thread’s address space is not permitted to the
BPX.WLMSERVER FACILITY class profile. The caller’s address
space must be permitted to the BPX.WLMSERVER FACILITY
class profile. If BPX.WLMSERVER is not defined, the calling
process is not defined as a superuser (UID=0).

EMVSSAF2ERR An error occurred in the security product.
ESRCH A WLM_EXTRACT_WORKUNIT request was issued, but the

WLM enclave token was not returned. Consult Reason_code to
determine the exact reason it was not returned. Most likely, the
unit of work is not in an enclave.

Reason_code
Returned parameter

__wlm (BPX1WLM)

926 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Type: Integer

Length: Fullword

The name of a fullword in which the __wlm service stores the reason code. The
__wlm service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. The WLM_CONNECT_WORKMGR and WLM_CONNECT_EXPORTIMPORT

functions both enable use of the export and import functions, but only the former
enables use of the create function.

2. For a WLM_CREATE_WORKUNIT function invocation, some of the
classification data that is pointed to by the supplied IWMCLSFY parameter list is
truncated if it exceeds the maximum supported length, as follows:

Data Maximum Length
ACCTINFO 143 bytes
SUBSYSPM 255 bytes
SOURCELU 17 bytes
COLLECTION 18 bytes
CORRELATION 12 bytes

Related services
None.

Characteristics and restrictions
Certain __wlm functions require that the caller have read access to the
BPX.WLMSERVER FACILITY class profile, or a UID of 0 if the BPX.WLMSERVER
FACILITY class profile is not defined. The following table shows the authorization
required for each __wlm function:

Table 14. Authorization requirements for __wlm functions

Function Authorization

WLM_QUERY_METRICS

WLM_CONNECT_SERVERMGR

WLM_EXTRACT WORKUNIT

WLM_CONNECT_EXPORTIMPORT

No authorization required

__wlm (BPX1WLM)

Chapter 2. Callable services descriptions 927

Table 14. Authorization requirements for __wlm functions (continued)

Function Authorization

WLM_QUERY_SCHEDENV

WLM_CHECK_SCHEDENV

WLM_DISCONNECT

WLM_DELETE_WORKUNIT

WLM_JOIN_WORKUNIT

WLM_LEAVE_WORKUNIT

WLM_CONNECT_WORKMGR

WLM_CREATE WORKUNIT

WLM_IMPORT_WORKUNIT

WLM_QUERY_ENCLAVECLASS

WLM_UNDOIMPORT_WORKUNIT

Read access to the BPX.WLMSERVER
FACILITY class profile, or a UID of 0 if the
BPX.WLMSERVER FACILITY class profile is
not defined.

WLM_CONTINUE WORKUNIT A process can have one dependent enclave
active at a time without authorization. If a
process needs to have more than one
dependent enclave active at the same time,
it must have read access to the
BPX.WLMSERVER FACILITY class profile,
or a UID of 0 if the BPX.WLMSERVER
FACILITY class profile is not defined.

WLM_EXPORT_WORKUNIT A process can export the enclave it created
using WLM_CONTINUE_WORKUNIT without
authorization. To export some other enclave,
the process must have read access to the
BPX.WLMSERVER FACILITY class profile,
or a UID of 0 if the BPX.WLMSERVER
FACILITY class profile is not defined.

WLM_UNDOEXPORT_WORKUNIT A process can undo its prior
WLM_EXPORT_WORKUNIT request without
authorization. To export some other enclave,
the process must have read access to the
BPX.WLMSERVER FACILITY class profile,
or a UID of 0 if the BPX.WLMSERVER
FACILITY class profile is not defined.

Examples
For an example using this callable service, see “BPX1WLM (__WLM) Example” on
page 1306.

__wlm (BPX1WLM)

928 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

w_pioctl (BPX1PIO) — Pathname I/O Control

Function
The w_pioctl callable service conveys a command to the Physical File System that
owns the specified file.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1PIO,(Pathname_length,
Pathname,
Command,
Argument_length,
Argument,
Return_value,
Return_code,
Reason_code)

Parameters
Pathname_length

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the length of the Pathname of the file.

Pathname
Supplied parameter

Type: Character string

Character set: No restriction

Length: Specified by the Pathname_length parameter

The name of a field that contains the name of the file to be acted upon.

Command
Supplied parameter

Type: Integer

Length: Fullword

w_pioctl (BPX1PIO)

Chapter 2. Callable services descriptions 929

The name of a fullword that contains the command to be passed to the Physical
File System.

Argument_length
Parameter supplied and returned

Type: Integer

Length: Fullword

The name of a fullword containing the length of the argument. The length of the
argument is specified as an integer value in the range 0–51 200.

Argument
Parameter supplied and returned

Type: Defined by the Physical File System

Character set: No restriction

Length: Specified by the Argument_length parameter

Specifies the name of a buffer that contains the argument to be passed to the
Physical File System.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_pioctl service returns 0 if the request is
successful, or −1 if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_pioctl service stores the return code.
The w_pioctl service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The w_pioctl service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EINVAL An incorrect Command or Argument_length was specified; or the

function was directed against a character special file. The
following reason codes can accompany the return code:
JRInvIoctlCmd, JRIOBufLengthInvalid and
JRNotSupportedForFiletype.

EMVSPARM Incorrect parameters were passed to the service. The following
reason codes can accompany the return code: JRNoStorage and
JRInvParmLength.

ENODEV The device is incorrect. The function is not supported for this file.
The following reason code can accompany the return code:
JRFuncNotSupported.

EACCES The calling process does not have search permission for some
component of the Pathname prefix; or does not have permission
to perform the requested function against the specified file.

w_pioctl (BPX1PIO)

930 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
ENOENT No file named Pathname was found; or no pathname was

specified. The following reason code can accompany the return
code: JrFileNotThere.

ELOOP A loop exists in symbolic links that were encountered during
resolution of the Pathname argument. This error is issued if more
than 24 symbolic links are detected in the resolution of
Pathname.

ENAMETOOLONG Pathname is longer than 1023 characters; or some component of
the pathname is longer than 255 characters. Name truncation is
not supported.

ENOTDIR A component of the Pathname prefix is not a directory.
EALREADY An attempt was made to unregister a file that is not registered.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_pioctl service stores the reason code.
The w_pioctl service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. This form of ioctl may not be used with character special files. Refer to w_ioctl

(BPX1IOC) for these files.

2. One of the uses of this function is to edit the access control lists of DFS remote
files, and to register interest in files by pathname.

3. This function can also be used to set or get the access options for HFS files
and directories. See “w_ioctl (BPX1IOC) — Control I/O” on page 914 for
descriptions of the SetfACL and GetfACL commands.

Characteristics and restrictions
The argument is limited to 51 200 bytes.

w_pioctl (BPX1PIO)

Chapter 2. Callable services descriptions 931

w_statvfs (BPX1STF) — Get the File System Status

Function
The w_statvfs callable service obtains status information about a specified file
system. You specify the file system by its file system name.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1STF,(File_system_name,
Status_area_length,
Status_area,
Return_value,
Return_code,
Reason_code)

Parameters
File_system_name

Supplied parameter

Type: Character string

Character set: Printable characters

Length: 44 bytes

The name of 44-character field that identifies the file system whose status is to
be returned. The name must be left-justified and padded on the right with
blanks.

This is the file system name as specified on the mount.

Status_area_length
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword containing the length of the area to which the service
returns status information.

Status_area
Parameter supplied and returned

Type: Structure

w_statvfs (BPX1STF)

932 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Length: Specified by the Status_area_length parameter

The name of an area of length Status_area_length to which the service returns
the status information for the file system. The BPXYSSTF macro maps this
area. For information on this macro, see “BPXYSSTF — Map Response
Structure for File System Status” on page 1033.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_statvfs service returns the length of the
status written to the Status_area if the request is successful, or −1 if it is not
successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_statvfs service stores the return code.
The w_statvfs service returns Return_code only if Return_value is −1. For a
complete list of possible return code values, see z/OS UNIX System Services
Messages and Codes. The w_statvfs service can return one of the following
values in the Return_code parameter:

Return_code Explanation
EAGAIN Information is temporarily unavailable. This can occur because

the mount process for the file system is incomplete.
EINVAL Parameter error; for example, File_system_name was not found.

The following reason code can accompany the return code:
JRFileSysNotThere.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the w_statvfs service stores the reason code.
The w_statvfs service returns Reason_code only if Return_value is −1.
Reason_code further qualifies the Return_code value. For the reason codes,
see z/OS UNIX System Services Messages and Codes.

Usage notes
1. It is not considered an error if the passed Status_area_length is not sufficient to

hold all the returned information. (That is, future expansion is allowed for.) As
much information as will fit is written to Status_area, and this amount is
returned.

2. If a buffer of length of zero is passed to this service, no data is returned and the
return value is zero. You can check for the existence of a file system by passing
such a length.

w_statvfs (BPX1STF)

Chapter 2. Callable services descriptions 933

3. The amount of valid data returned in the Status_area is indicated by the
Return_value. This allows for differences in the release levels of z/OS UNIX and
the physical file systems.

Related services
v “fstatvfs (BPX1FTV) — Get the File System Status” on page 198
v “statvfs (BPX1STV) — Get the File System Status” on page 812

Characteristics and restrictions
There are no restrictions on the use of the w_statvfs service.

Examples
For an example using this callable service, see “BPX1STF (w_statvfs) Example” on
page 1268.

w_statvfs (BPX1STF)

934 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

write (BPX1WRT) — Write to a File or a Socket

Function
The write callable service writes data from a buffer to an open file or socket.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1WRT,(File_descriptor,
Buffer_address,
Buffer_ALET,
Write_count,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor of the file or socket to
write to.

Buffer_address
Supplied parameter

Type: Address

Length: Fullword

The name of a fullword that contains the starting address of the data that is to
be written.

Buffer_ALET
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the ALET for Buffer_address, which
identifies the address space or data space the buffer resides in.

write (BPX1WRT)

Chapter 2. Callable services descriptions 935

You should specify a Buffer_ALET of 0 for the normal case of a buffer in the
user’s address space (current primary address space). If a value other than 0 is
specified for the Buffer_ALET, the value must represent a valid entry in the
dispatchable unit access list (DUAL).

Write_count
Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the number of bytes that are to be written.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the write service returns the number of actual
bytes that were written, if the request is successful, or −1, if it is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the write service stores the return code. The
write service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The write service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EAGAIN Blocking is not in effect for the specified file, and output cannot

be written immediately.
EBADF The File_descriptor parameter does not contain the descriptor of

an open file; or that file is not opened for write services. The
following reason codes can accompany the return code:
JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can
accompany the return code: JRSocketNotCon.

EFBIG Writing to the specified file would exceed either the file size limit
for the process or the maximum file size that is supported by the
physical file system.

EINTR The service was interrupted by a signal before it could write any
data. The following reason code can accompany the return code:
JRSockRdwrSignal.

EINVAL The Write_Count parameter contains a value that is less than
zero.

EIO The process is in a background process group and is attempting
to write to its controlling terminal. However, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU signals, and
the process group of the process is orphaned. This can happen,
for example, if a background job tries to write to the terminal after
the user has logged off.

write (BPX1WRT)

936 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EMSGSIZE The message is too large to be sent all at once, as the socket

requires. The following reason code can accompany the return
code: JRSockBufMax.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN The socket was not connected. The following reason code can
accompany the return code: JRSocketNotCon.

EPIPE The request is for a write to a pipe that is not open for reading by
any other process; or an attempt was made to write to a socket
that is shut down or closed. This error also generates a SIGPIPE
signal. The following reason code can accompany the return
code: JRSocketClosed.

EWOULDBLOCK A write was requested that would have caused a nonblocking
socket to block. The following reason code can accompany the
return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the write service stores the reason code. The
write service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. Write_Count : The value of Write_count is not checked against any system limit.

A limit can be imposed by a high-level-language POSIX implementation.

The value of Write_count is checked against the file size limit for the process. If
no data can be written without exceeding this limit, an error of EFBIG is
returned and the SIGXFSZ signal is generated for the process. If at least one
byte can be written before exceeding the file size limit, the write is considered
successful. Refer to the usage notes below for more information.

2. File offset : If File_descriptor specifies a regular file or any other type of file on
which you can seek, the write service begins writing at the file offset that is
associated with that file descriptor. A successful write operation increments the
file offset by the number of bytes that are written. If the incremented file offset is
greater than the previous length of the file, the file is extended; the length of the
file is set to the new file offset.

If the file descriptor refers to a file on which you cannot seek, the service begins
writing at the current position. No file offset is associated with such a file.

If the file was opened with the “append” option, the write routine sets the file
offset to the end of the file before it writes output.

3. Number of bytes written : Ordinarily, the number of bytes written to the output
file is the number you specify in the Write_count parameter. (This number can
be zero. If you ask to write zero bytes, the service simply returns a return value
of zero without attempting any other action.)

If the write count that you specify is greater than the remaining space on the
output device, or greater than the file size limit for the process, fewer bytes than
you requested are written. When at least 1 byte is written, the write is
considered successful. If you are not using a pseudoterminal, an attempt to

write (BPX1WRT)

Chapter 2. Callable services descriptions 937

append to the same file causes an error. An error of ENOSPC is returned when
there is no remaining space on the output device. An error of EFBIG is returned
when the file size limit for the physical file system is exceeded. An error of
EFBIG is also returned if the file size limit for the process is exceeded, at which
time the write service also generates a SIGXFSZ signal for the process. With a
pseudoterminal, if there is not enough room in the buffer for the whole write, the
number of bytes that fit are written, and the number of bytes written is returned.
However, on the next write (assuming the buffer is still full), there is a block or
EAGAIN is returned, depending on whether the file was opened blocking or
nonblocking.

Similarly, fewer bytes are written if the service is interrupted by a signal after
some, but not all, of the specified number of bytes are written. The return value
shows the number of bytes that are written. But if no bytes were written before
the routine was interrupted, the return value is −1, and an EINTR error is
reported.

4. The write service causes signal SIGTTOU to be sent if all the following
conditions are met:

v The process is attempting to write to its controlling terminal.

v TOSTOP is set as a terminal attribute (see “tcgetattr (BPX1TGA) — Get the
Attributes for a Terminal” on page 837 or “tcsetattr (BPX1TSA) — Set the
Attributes for a Terminal” on page 850).

v The process is running in a background process group.

v The SIGTTOU signal is not blocked or ignored.

v The process is not an orphan.

Related services
v “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174
v “lseek (BPX1LSK) — Change a File’s Offset” on page 332
v “open (BPX1OPN) — Open a File” on page 434
v “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 475
v “read (BPX1RED) — Read from a File or Socket” on page 567

Note: The write service is not related to the write shell command.

Characteristics and restrictions
If the file was opened by an authorized program, all subsequent reads and writes
against the file must be issued from an authorized state.

BPX1RED and BPX1WRT do not support simultaneous reading or writing of the
same shared open file by different threads when both of the following are true:

1. Automatic conversion is enabled.

2. Each thread has set up conversion using a different character set (CCSID).

This restriction is not applicable if each thread opens the file independently, or if
each thread coordinates its reads and writes so that simultaneous I/O does not
occur.

Examples
For an example using this callable service, see “BPX1WRT (write) Example” on
page 1307.

write (BPX1WRT)

938 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

writev (BPX1WRV) — Write Data from a Set of Buffers

Function
The writev callable service writes data from a set of buffers.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = HASN
AMODE: 31-bit
ASC mode: Primary mode
Interrupt status: Enabled for interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL BPX1WRV,(File_descriptor,
Iov_count,
Iov_struct,
Iov_alet,
Iov_buffer_alet,
Return_value,
Return_code,
Reason_code)

Parameters
File_descriptor

Supplied parameter

Type: Integer

Length: Fullword

The name of a fullword that contains the file descriptor for which the writev is to
be done.

Iov_count
Supplied and returned parameter

Type: Integer

Length: Fullword

The name of a field that contains the number of buffers that are pointed to by
Iov_struct.

Iov_struct
Supplied parameter

Type: Character

Length: iov_count × length(iov)

writev (BPX1WRV)

Chapter 2. Callable services descriptions 939

The name of a field that contains pointers to buffers from which data is to be
retrieved for the purpose of writing to the file or socket. See “BPXYIOV — Map
the I/O Vector Structure” on page 978 for more information about the format of
this field.

Iov_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for Iov_struct.

Iov_buffer_alet
Supplied parameter

Type: Integer

Length: Fullword

The name of a field that contains the ALET for buffers that are pointed to by
Iov_struct.

Return_value
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the writev service returns one of the following:

v The number of bytes that were written from the buffers, if the request is
successful.

v −1, if the request is not successful.

Return_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the writev service stores the return code. The
writev service returns Return_code only if Return_value is −1. See z/OS UNIX
System Services Messages and Codes for a complete list of possible return
code values. The writev service can return one of the following values in the
Return_code parameter:

Return_code Explanation
EBADF An incorrect file descriptor was specified. The following reason

codes can accompany the return code: JRFileDesNotInUse,
JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can
accompany the return code: JRSocketNotCon.

EFBIG Writing to the specified file would exceed either the file size limit
for the process, or the maximum file size supported by the
physical file system.

EINTR A signal interrupted the writev service before any data was
written. The following reason code can accompany the return
code: JRSockRdwrSignal.

writev (BPX1WRV)

940 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Return_code Explanation
EINVAL An incorrect value was specified on one of the input parameters.

The following reason code can accompany the return code:
JRSocketCallParmError.

EIO The process is in a background process group and is attempting
to write to its controlling terminal. However, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU signals, and
the process group of the process is orphaned. This can happen,
for example, if a background job tries to write to the terminal after
the user has logged off.

EMSGSIZE The message is too large to be sent all at once, as the socket
requires. The following reason code can accompany the return
code: JRSockBufMax.

ENOBUFS A buffer could not be obtained. The following reason code can
accompany the return code: JROutofSocketCells.

ENOTCONN The socket was not connected. The following reason code can
accompany the return code: JRSocketNotCon.

ENOTSOCK Socket_descriptor does not refer to a valid socket descriptor. The
following reason code can accompany the return code:
JRMustBeSocket.

EPIPE An attempt was made to write to a socket that is shut down or
closed. The following reason code can accompany the return
code: JRSocketClosed.

This error also generates a SIGPIPE signal.
EPROTOTYPE An incorrect socket type was supplied. The following reason code

can accompany the return code: JRIncorrectSocketType.
EWOULDBLOCK A write was requested that would have caused a nonblocking

socket to block. The following reason code can accompany the
return code: JRWouldBlock.

Reason_code
Returned parameter

Type: Integer

Length: Fullword

The name of a fullword in which the writev service stores the reason code. The
writev service returns Reason_code only if Return_value is −1. Reason_code
further qualifies the Return_code value. For the reason codes, see z/OS UNIX
System Services Messages and Codes.

Usage notes
1. This callable service works with any open file descriptor, including files and

sockets.

2. Number of bytes written : If the number of bytes to be written is greater than
the remaining space on the output device, or greater than the file size limit for
the process, not all of the data can be written. When at least 1 byte is written,
the writev is considered successful. The return value shows the number of bytes
that were written. An attempt to writev again to the same file causes an EFBIG
error, and if the process file size limit has been exceeded, the writev service
generates a SIGXFSZ signal for the process.

3. Bytes written : The number of bytes that are requested for writing is not
checked against any system limit. A limit can be imposed by a
high-level-language POSIX implementation.

writev (BPX1WRV)

Chapter 2. Callable services descriptions 941

The number of bytes that are requested for writing is checked against the file
size limit for the process. If no data can be written without exceeding this limit,
an error of EFBIG is returned and the SIGXFSZ signal is generated for the
process. If at least one byte can be written before exceeding the file size limit,
the write is considered successful. Refer to the usage notes below for more
information.

4. File offset : If File_descriptor specifies a regular file or any other type of file on
which you can seek, the write service begins writing at the file offset that is
associated with that file descriptor. A successful write operation increments the
file offset by the number of bytes that are written. If the incremented file offset is
greater than the previous length of the file, the file is extended; the length of the
file is set to the new file offset.

If the file descriptor refers to a file on which you cannot seek, the service begins
writing at the current position. No file offset is associated with such a file.

If the file was opened with the “append” option, the write routine sets the file
offset to the end of the file before writing output.

5. Number of bytes written : Ordinarily, the number of bytes that are written to the
output file is the number requested for writing. (This number can be zero. If you
ask to write zero bytes, the service simply returns a return value of zero without
attempting any other action.)

If the write count that you specify is greater than the remaining space on the
output device, or greater than the file size limit for the process, fewer bytes than
you requested are written. When at least 1 byte is written, the write is
considered successful. If you are not using a pseudoterminal, an attempt to
append to the same file causes an error. An error of ENOSPC is returned when
there is no remaining space on the output device. An error of EFBIG is returned
when the file size limit for the physical file system is exceeded. An error of
EFBIG is also returned if the file size limit for the process is exceeded, at which
time the write service also generates a SIGXFSZ signal for the process. With a
pseudoterminal, if there is not enough room in the buffer for the whole write, the
number of bytes that fit are written, and the number of bytes that were written is
returned. However, on the next write (assuming the buffer is still full) there is a
block or EAGAIN is returned, depending on whether the file was opened
blocking or nonblocking.

Similarly, fewer bytes are written if the service is interrupted by a signal after
some, but not all, of the specified number of bytes are written. The return value
shows the number of bytes that were written. But if no bytes were written before
the routine was interrupted, the return value is −1 and an EINTR error is
reported.

6. The writev service causes signal SIGTTOU to be sent if all the following
conditions are met:

v The process is attempting to write to its controlling terminal.

v TOSTOP is set as a terminal attribute (see “tcgetattr (BPX1TGA) — Get the
Attributes for a Terminal” on page 837 or “tcsetattr (BPX1TSA) — Set the
Attributes for a Terminal” on page 850).

v The process is running in a background process group.

v The SIGTTOU signal is not blocked or ignored.

v The process is not an orphan.

Related services
v “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 584
v “write (BPX1WRT) — Write to a File or a Socket” on page 935

writev (BPX1WRV)

942 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Characteristics and restrictions
There are no restrictions on the use of the writev service.

Examples
For an example using this callable service, see “BPX1WRV (writev) Example” on
page 1308.

writev (BPX1WRV)

Chapter 2. Callable services descriptions 943

writev (BPX1WRV)

944 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix A. System control offsets to callable services

An alternative to loading or link-editing the service stub is to include in the code the
system control offset to the callable service. For example, use decimal 52 for the
offset of access (BPX1ACC).

When using the offsets, set the registers up as follows:

Register 1 To contain the address of your parameter list. Set bit 0 of the last
address in the list on.

Register 14 To contain the return address in the invoking module.

Register 15 To contain the address of the callable service code.

Example
The following is an example of code that specifies the offset. The example assumes
that register 1 is set up with the address of the parameter list. Replace offset with
the appropriate value from the following offset table.
L 15,16 CVT - common vector table
L 15,544(15) CSRTABLE
L 15,24(15) CSR slot
L 15,offset(15) Address of the service
BALR 14,15 Branch and link

List of offsets
Table 15. System control offsets to callable services
Service Offset Function
BPX1ACC 52 access
BPX1ACK 972 auth_check_rsrc_np
BPX1ACP 508 accept
BPX1AIO 988 asyncio
BPX1ALR 224 alarm
BPX1ANR 1060 accept_and_recv
BPX1ASP 1088 aio_suspend
BPX1ATM 668 attach_execmvs
BPX1ATX 664 attach_exec
BPX1BND 512 bind
BPX1CCA 480 cond_cancel
BPX1CCS 1012 console_np
BPX1CHA 84 chaudit
BPX1CHD 56 chdir
BPX1CHM 60 chmod
BPX1CHO 64 chown
BPX1CHP 764 chpriority
BPX1CHR 500 chattr
BPX1CID 968 convert_id_np
BPX1CLD 68 closedir
BPX1CLO 72 close
BPX1CON 516 connect
BPX1CPL 1132 __cpl
BPX1CPO 484 cond_post
BPX1CRT 872 chroot
BPX1CSE 488 cond_setup

© Copyright IBM Corp. 1996, 2002 945

Table 15. System control offsets to callable services (continued)
Service Offset Function
BPX1CTW 492 cond_timed_wait
BPX1CWA 496 cond_wait
BPX1DEL 888 deletehfs
BPX1DSD 1124 sw_signaldelv
BPX1ENV 960 oe_env_np
BPX1EXC 228 exec
BPX1EXI 232 _exit
BPX1EXM 236 execmvs
BPX1EXT 200 extlink_np
BPX1FAI 1168 FreeAddrInfo
BPX1FCA 140 fchaudit
BPX1FCD 852 fchdir
BPX1FCM 88 fchmod
BPX1FCO 92 fchown
BPX1FCR 504 fchattr
BPX1FCT 96 fcntl
BPX1FPC 100 fpathconf
BPX1FRK 240 fork
BPX1FST 104 fstat
BPX1FSY 108 fsync
BPX1FTR 112 ftruncate
BPX1FTV 848 FstatVfs
BPX1GAI 1164 GetAddrInfo
BPX1GCL 1024 getclientid
BPX1GCW 116 getcwd
BPX1GEG 244 getegid
BPX1GEP 860 getpgid
BPX1GES 864 getsid
BPX1GET 736 w_getipc
BPX1GEU 248 geteuid
BPX1GGE 772 getgrent
BPX1GGI 252 getgrgid
BPX1GGN 256 getgrnam
BPX1GGR 260 getgroups
BPX1GHA 1160 gethostbyaddr
BPX1GHN 1156 gethostbyname
BPX1GID 264 getgid
BPX1GIV 1028 givesocket
BPX1GLG 268 getlogin
BPX1GMN 76 w_getmntent
BPX1GNI 1172 GetNameInfo
BPX1GNM 524 getpeername
BPX1GPE 776 getpwent
BPX1GPG 272 getpgrp
BPX1GPI 276 getpid
BPX1GPN 280 getpwnam
BPX1GPP 284 getppid
BPX1GPS 428 w_getpsent
BPX1GPT 916 grantpt
BPX1GPU 288 getpwuid
BPX1GPY 744 getpriority
BPX1GRL 820 getrlimit
BPX1GRU 824 getrusage
BPX1GTH 1056 __getthent

System control offsets

946 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|||

|||

|||

Table 15. System control offsets to callable services (continued)
Service Offset Function
BPX1GTR 752 getitimer
BPX1GUG 292 getugrps
BPX1GUI 296 getuid
BPX1GWD 936 getwd
BPX1HST 520 gethostid
BPX1IOC 120 w_ioctl
BPX1IPT 396 MvsIptAffinity
BPX1ITY 12 isatty
BPX1KIL 308 kill
BPX1LCO 832 lchown
BPX1LNK 124 link
BPX1LOD 880 loadhfs
BPX1LSK 128 lseek
BPX1LSN 532 listen
BPX1LST 132 lstat
BPX1MAT 720 shmat
BPX1MCT 724 shmctl
BPX1MDT 728 shmdt
BPX1MGT 732 shmget
BPX1MKD 136 mkdir
BPX1MKN 144 mknod
BPX1MMI 1136 __map_init
BPX1MMP 796 mmap
BPX1MMS 1140 __map_service
BPX1MNT 148 mount
BPX1MP 688 MVSpause
BPX1MPC 408 mvsprocclp
BPX1MPI 680 MVSpauseInit
BPX1MPR 800 mprotect
BPX1MSD 336 mvsunsigsetup
BPX1MSS 312 mvssigsetup
BPX1MSY 804 msync
BPX1MUN 808 munmap
BPX1NIC 748 nice
BPX1OPD 152 opendir
BPX1OPN 156 open
BPX1OPT 528 getsockopt
BPX1OSE 1100 __osenv
BPX1PAF 1072 __pid_affinity
BPX1PAS 316 pause
BPX1PCF 160 pathconf
BPX1PCT 768 pfsctl
BPX1PIO 984 w_pioctl
BPX1PIP 164 pipe
BPX1POL 932 poll
BPX1PQG 1152 pthread_quiesce_and_get_np
BPX1PSI 460 pthread_setintr
BPX1PST 472 pthread_setintrtype
BPX1PTB 448 pthread_cancel
BPX1PTC 432 pthread_create
BPX1PTD 444 pthread_detach
BPX1PTI 476 pthread_testintr
BPX1PTJ 440 pthread_join
BPX1PTK 464 pthread_kill

System control offsets

Appendix A. System control offsets to callable services 947

Table 15. System control offsets to callable services (continued)
Service Offset Function
BPX1PTQ 412 pthread_quiesc
BPX1PTR 320 ptrace
BPX1PTS 452 pthread_self
BPX1PTT 1016 pthread_tag_np
BPX1PTX 436 pthread_xandg
BPX1PWD 788 __passwd
BPX1QCT 692 msgctl
BPX1QDB 948 querydub
BPX1QGT 696 msgget
BPX1QRC 700 msgrcv
BPX1QSE 388 quiesce
BPX1QSN 704 msgsnd
BPX1RCV 540 recv
BPX1RDD 168 readdir
BPX1RDL 172 readlink
BPX1RDV 536 readv
BPX1RDX 940 read_extlink
BPX1RD2 856 readdir2
BPX1RED 176 read
BPXB1REL 600 v_rel
BPX1REN 180 rename
BPX1RFM 544 recvfrom
BPX1RMD 188 rmdir
BPX1RMG 8 resource
BPX1RMS 548 recvmsg
BPX1RPH 884 realpath
BPX1RW 1108 Pread() and Pwrite()
BPX1RWD 184 rewinddir
BPX1SA2 1084 __sigactionset
BPX1SCT 708 semctl
BPX1SDD 300 set_dub_default
BPX1SEC 1044
BPX1SEG 424 setegid
BPX1SEL 552 select
BPX1SEU 420 seteuid
BPX1SF 1064 send_file PC-only
BPX1SGE 780 setgrent
BPX1SGI 328 setgid
BPX1SGQ 1104 sigqueue
BPX1SGR 792 setgroups
BPX1SGT 712 semget
BPX1SHT 572 shutdown
BPX1SIA 324 sigaction
BPX1SIN 1004 server_init
BPX1SIP 340 sigpending
BPX1SLK 1068 __shm_lock
BPX1SLP 344 sleep
BPX1SMF 1036 __smf_record
BPX1SMS 560 sendmsg
BPX1SND 556 send
BPX1SOC 576 socket_pair
BPX1SOP 716 semop
BPX1SPB 416 sigputback
BPX1SPE 784 setpwent

System control offsets

948 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 15. System control offsets to callable services (continued)
Service Offset Function
BPX1SPG 348 setpgid
BPX1SPM 352 sigprocmask
BPX1SPN 760 spawn
BPX1SPR 568 setpeer
BPX1SPW 1008 server_pwu
BPX1SPY 740 setpriority
BPX1SRG 896 setregid
BPX1SRL 816 setrlimit
BPX1SRU 892 setreuid
BPX1SRX 1080 srx_np
BPX1SSI 356 setsid
BPX1SSU 360 sigsuspend
BPX1STA 192 stat
BPX1STE 1076 set_timer_event
BPX1STF 80 w_statfs
BPX1STL 684 set_limits
BPX1STO 564 sendto
BPX1STR 756 setitimer
BPX1STV 844 StatVfs
BPX1STW 1096 sigtimedwait
BPX1SUI 364 setuid
BPX1SWT 468 sigwait
BPX1SYC 368 sysconf
BPX1SYM 196 symlink
BPX1SYN 868 sync
BPX1TAF 1148 MvsThreadAffinity
BPX1TAK 1032 takesocket
BPX1TDR 24 tcdrain
BPX1TFH 20 tcflush
BPX1TFW 28 tcflow
BPX1TGA 32 tcgetattr
BPX1TGC 900 tcgetcp
BPX1TGP 36 tcgetpgrp
BPX1TGS 912 tcgetsid
BPX1TIM 372 times
BPX1TLS 964 tsk_lvl_sec_np
BPX1TRU 828 truncate
BPX1TSA 40 tcsetattr
BPX1TSB 44 tcsendbreak
BPX1TSC 904 tcsetcp
BPX1TSP 48 tcsetpgrp
BPX1TST 908 tcsettables
BPX1TYN 16 ttyname
BPX1UMK 204 umask
BPX1UMT 208 umount
BPX1UNA 376 uname
BPX1UNL 212 unlink
BPX1UPT 920 unlockpt
BPX1UQS 392 unquiesce
BPX1UTI 216 utime
BPX1VAC 944 v_access
BPX1VCR 620 v_create
BPX1VEX 876 v_export
BPX1VGA 632 v_getattr

System control offsets

Appendix A. System control offsets to callable services 949

Table 15. System control offsets to callable services (continued)
Service Offset Function
BPX1VGT 596 v_get
BPX1VLK 604 v_lookup
BPX1VLN 640 v_link
BPX1VLO 660 v_lockctl
BPX1VMD 624 v_mkdir
BPX1VPC 1040 v_pathconf
BPX1VRA 616 v_readlink
BPX1VRD 612 v_readdir
BPX1VRE 644 v_rmdir
BPX1VRG 584 v_reg
BPX1VRL 600 v_rel
BPX1VRM 648 v_remove
BPX1VRN 652 v_rename
BPX1VRP 588 v_rpn
BPX1VRW 608 v_rdwr
BPX1VSA 636 v_settatr
BPX1VSF 656 v_fstatfs
BPX1VSY 628 v_symlink
BPX1WAT 380 wait
BPX1WLM 1048 __wlm
BPX1WRT 220 write
BPX1WRV 580 writev
BPX1WTE 840 waitid/wait3
BPX2ITY 928 isatty2
BPX2MNT 1128 __mount
BPX2OPN 1052 openstat
BPX2RMS 976 recvmsg2
BPX2SMS 980 sendmsg2
BPX2TYN 924 ttyname2

System control offsets

950 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix B. Mapping macros

Mapping macros map the parameter options in many callable services. The fields
with the comment “Reserved for IBM use” are not programming interfaces. A
complete list of the options for each macro is listed in the macro in Macros Mapping
Parameter Options.

Most of the mapping macros can be expanded with or without a DSECT statement.
The invocation operand DSECT=YES (default) can be used with either reentrant or
nonreentrant programs with the appropriate rules governing the storage backed by
the USING statement.

Many of the mapping macros exploit the fact that DC expands as a DS in a DSECT
and as a DC with its initialized value in a CSECT. When these fields are expanded
as or within DSECTs, the program is responsible for initializing the necessary fields.

Macros Mapping Parameter Options
Specifying DSECT=YES (the default for all macros) creates a DSECT.
Addressability requires a USING and a register pointing to storage.

Specifying DSECT=NO (exceptions are listed when this is not allowed) allocates
space in the current DSECT or CSECT. In reentrant programs, programmers can
place these macros in the DSECT with DSECT=NO, and addressability is
accomplished without the individual USING required by DSECT=YES. Nonreentrant
programs can place their macros in the program’s CSECT and addressability is
obtained through the program base register(s).

Specifying LIST=YES (the default for most macros) causes the expansion of the
macro to appear in the listing. You can override this by using PRINT OFF.

Specifying LIST=NO removes the macro expansion from the listing.

Additional keywords VARLEN and PREFIX are described in the individual sections
where they apply.

BPXYACC — Map Flag Values for access
BPXYACC ,

** BPXYACC: Access intent flags
** Used by: ACC
ACC DSECT ,
ACCRSRV DS CL2 Reserved
ACCFLAGS DS XL1 Flags
ACCEFFID EQU X’04’ check effective ids
ACCDEVNO EQU X’02’ return devno if exists
ACCWAIT EQU X’01’ Wait for Async Mount
ACCINTENTFLAGS DS XL1 Access Intent Flags
* EQU X’F0’ Reserved
ACC_F_OK EQU X’08’ Check for file existence
ACC_R_OK EQU X’04’ Check for read access to file
ACC_W_OK EQU X’02’ Check for write access to file
ACC_X_OK EQU X’01’ Check for execute access to file
ACC#LENGTH EQU *-ACC Length of this structure
** BPXYACC End

© Copyright IBM Corp. 1996, 2002 951

BPXYAIO — Map asyncio Parameter List
BPXYAIO ,

** BPXYAIO: Asyncio parameter block
** Used by: AIO
AIO DSECT ,
AIOFD DS F File Descriptor
AIOBUFFDW DS 0CL8 Eight byte addresses
AIOBUFFALET DS F Alet for AioBuffPtr
AIOBUFFPTR DS F Buffer Pointer
AIOBUFFSIZE DS F Buffer Length or Iov count
AIOOFFSETDW DS 0CL8 Offset in File
AIOOFFSETH DS F Offset in File highword
AIOOFFSET DS F Offset in File lowword
AIOSIGEVENT DS CL20 POSIX Signals
AIOREQPRIO DS F REQUEST PRIORITY
AIOLIOOPCODE DS F LIO_LISTIO() OP
*

ORG AIOLIOOPCODE
AIOCMD DS F Command Code
AIONOTIFYTYPE DS H Notification Type
AIOCFLAGS DS XL1 Control Flags
AIOOK2COMPIMD EQU X’80’ Ok to complete immediately
AIOCALLB4 EQU X’40’ Call exit before redrive
AIOSYNC EQU X’10’ Do synchronously
AIOEXITMODETCB EQU X’08’ 0=SRB, 1=TCB
AIOCANCELNOWAIT EQU X’04’ Nowait option on cancel
AIOCANCELNONOTIFY EQU X’02’ NoNotify option on cancel
AIOTCBAFFINITY EQU X’01’ TCB Affinity I/O
AIOCFLAGS2 DS XL1 Control Flags2
AIOUSERKEY EQU X’F0’ Caller’s User’s Key bit positions
AIOUSEUSERKEY EQU X’08’ Use User’s Key for moves
AIOTHLICOMECB EQU X’04’ AioEcbPtr points tp ThliComEcb
AIOMSGIOVALET DS F Alet for recvmsg/sendmsg IOV
AIOIOVBUFALET DS F Alet for all IOV buffers
*
AIORV DS F Return value
AIORC DS F Return code
AIORSN DS F Reason code
*
AIOPOSIXFLAGS DS XL4 Posix flags
AIOEXITPTR DS F Pointer to user exit
AIOEXITDATA DS CL8 User Data for exit program
AIOECBPTR DS F ECB address
AIOSOCKADDRLEN DS F Sockaddr length
AIOSOCKADDRPTR DS F Sockaddr pointer
AIOTIMEOUT DS F TimeOut Value in Milli-seconds
AIORTLAREA DS XL4 RTL state area
AIORES06 DS CL16 Reserved
*
AIO#LENGTH EQU *-AIO Length of this structure
*
** AIO command values
AIO#ACCEPT EQU 126
AIO#CONNECT EQU 128
AIO#READ EQU 43
AIO#WRITE EQU 54
AIO#READV EQU 133
AIO#WRITEV EQU 144
AIO#RECV EQU 134
AIO#SEND EQU 138
AIO#RECVFROM EQU 135
AIO#SENDTO EQU 140
AIO#RECVMSG EQU 243
AIO#SENDMSG EQU 244
AIO#SELPOLL EQU 2
AIO#CANCEL EQU 1

BPXYAIO

952 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
** AIO notify type
AIO#POSIX EQU 0
AIO#MVS EQU 1
*
** AIO Signal Event
SIGEVENT DSECT ,
SIGEV_NOTIFY DS F NOTIFICATION TYPE
SIGEV_SIGNO DS F SIGNAL NUMBER
SIGEV_VALUE DS F SIG VALUE

ORG SIGEV_VALUE
SIVAL_INT DS F

ORG SIGEV_VALUE
SIVAL_PTR DS F
SIGEV_NOTIFY_FUNCTION DS F NOTIF. FUNCTION
SIGEV_NOTIFY_ATTRIBUTES DS F NOTIF. ATTRIBUTES
*
SIGEV_SIGNAL EQU 0 GENERATE A SIGNAL
SIGEV_NONE EQU 1 DON’T GENERATE SIGNAL
SIGEV_THREAD EQU 2 Call Notif. function
*
** AIOTIMEOUT VALUES
AIO#FOREVER EQU 0 NO TIMEOUT, JUST WAIT
AIO#NOWAITING EQU X’FFFFFFFF’ NO WAITING, JUST CHECK
** AIO CANCEL RETURN VALUES
AIO_CANCELED EQU 1 ALL CANCELS SUCCESSFUL
AIO_NOTCANCELED EQU 2 AT LEAST 1 CANCEL FAILED
AIO_ALLDONE EQU 3 NONE CANCELED, ALL COMP
*
** BPXYAIO End

BPXYATT — Map File Attributes for chattr and fchattr
BPXYATT ,

** BPXYATT: File attributes for chattr system call
** Used By: CHR FCR
ATT DSECT ,
ATTBEGIN DS 0D
*
ATTID DC C’ATT ’ Eye Catcher
ATTVERSION DC AL2(ATT#VER)
* Version of this structure
ATTRES01 DS CL2 Reserved
ATTSETFLAGS DS 0XL4 Flags - which fields to set
ATTSETFLAGS1 DS X Flag byte 1
ATTMODECHG EQU X’80’ 1 = Change to the mode indicated
ATTOWNERCHG EQU X’40’ 1 = Change to Owner indicated
ATTSETGEN EQU X’20’ 1 = Set General attributes
ATTTRUNC EQU X’10’ 1 = Truncate size
ATTATIMECHG EQU X’08’ 1 = Change the Atime
ATTATIMETOD EQU X’04’ 1 = Change to the Current Time
ATTMTIMECHG EQU X’02’ 1 = Change the Mtime
ATTMTIMETOD EQU X’01’ 1 = Change to the Current Time
ATTSETFLAGS2 DS X Flag byte 2
ATTMAAUDIT EQU X’80’ 1 = Modify auditor audit info
ATTMUAUDIT EQU X’40’ 1 = Modify user audit info
ATTCTIMECHG EQU X’20’ 1 = Change the Ctime
ATTCTIMETOD EQU X’10’ 1 = Change Ctime to the Current
* Time
ATTREFTIMECHG EQU X’08’ 1 = Change the RefTime
ATTREFTIMETOD EQU X’04’ 1 = Change RefTime to Current Time
ATTFILEFMTCHG EQU X’02’ 1 = Change File Format
ATTRES04 EQU X’01’ Reserved
ATTSETFLAGS3 DS X Reserved
ATTRES05 EQU X’80’ Reserved
ATTCHARSETIDCHG EQU X’40’ 1 = Change File tag
ATTSETFLAGS4 DS X Reserved

BPXYAIO

Appendix B. Mapping macros 953

ATTMODE DS F File Mode, mapped by BPXYMODE
ATTUID DS F User ID of the owner of the file
ATTGID DS F Group ID of the Group of the file
ATTGENMASK DS 0XL4 Mask to indicate which General
* attributes bits to modify
* --Must match AttGenValue
ATTOPAQUEMASK DS XL3 Opaque attribute flags - Reserved
* for ADSTAR use
ATTVISIBLEMASK DS X Visible attribute flags
ATTNODELFILESMASK EQU X’20’ Files should not be deleted
ATTSHARELIBMASK EQU X’10’ Shared Library
ATTNOSHAREASMASK EQU X’08’ No shareas flag
ATTAPFAUTHMASK EQU X’04’ APF authorized flag
ATTPROGCTLMASK EQU X’02’ Program controlled flag
ATTGENVALUE DS 0XL4 General attribute values
* --Must match AttGenMask
ATTOPAQUE DS XL3 Opaque attribute flags - Reserved
* for ADSTAR use
ATTVISIBLE DS X Visible attribute flags
ATTNODELFILES EQU X’20’ Files should not be deleted
ATTSHARELIB EQU X’10’ Shared Library
ATTNOSHAREAS EQU X’08’ No shareas flag
ATTAPFAUTH EQU X’04’ APF authorized flag
ATTPROGCTL EQU X’02’ Program controlled flag
ATTSIZE DS 0D File Size in bytes, for regular
* files. Unspecified, for others
ATTSIZE_H DS F First word of size
ATTSIZE_L DS F Second word of size
ATTATIME DS F Time of last access
ATTMTIME DS F Time of last data modification
ATTAUDITORAUDIT DS F Area for auditor audit info
ATTUSERAUDIT DS F Area for user audit info
ATTCTIME DS F Time of last file status change
* Time is in seconds since
* 00:00:00 GMT, Jan. 1, 1970
ATTREFTIME DS F Reference time
ATTENDVER1 DS 0D End of Version 1
ATTFILEFMT DS XL1 File Format
ATTRES02 DS XL3 Reserved for future
ATTFILETAG DS F File tag (see BPXYSTAT)
ATTRES03 DS CL8 Reserved for future
ATTENDVER2 DS 0D End of Version 2
*
* Constants
*
ATT#VER EQU ATT#VER02 Current version
ATT#VER01 EQU 1 Version 1 of this structure
ATT#VER02 EQU 2 Version 2 of this structure
ATT#LENGTH EQU *-ATTBEGIN X

Length of ATT
ATT#VER1LEN EQU ATTENDVER1-ATTBEGIN X

Length of Version 1 ATT
ATT#VER2LEN EQU ATTENDVER2-ATTBEGIN X

Length of Version 2 ATT
** BPXYATT End

BPXYAUDT — Map Flag Values for chaudit and fchaudit
BPXYAUDT ,

** BPXYAUDT: External audit flags
** Used By: CHA, FCA
AUDT DSECT ,
AUDTREADACCESS DS XL1 Read Access Auditing Flags
AUDTREADFAIL EQU X’02’ 1 = audit failing read accesses
AUDTREADSUCC EQU X’01’ 1 = audit successful read accesses
AUDTWRITEACCESS DS XL1 Write Access Auditing Flags
AUDTWRITEFAIL EQU X’02’ 1 = audit failing write accesses

BPXYATT

954 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

AUDTWRITESUCC EQU X’01’ 1 = audit successful write accesses
AUDTEXECACCESS DS XL1 Execute/Search Auditing Flags
AUDTEXECFAIL EQU X’02’ 1 = audit failing exec or search
AUDTEXECSUCC EQU X’01’ 1 = audit successful exec or search
AUDTRSRV DS XL1 Flag byte 4 -Reserved
AUDT#LENGTH EQU *-AUDT Length of this structure
** BPXYAUDT End

BPXYBRLK — Map Byte Range Lock Request for fcntl
BPXYBRLK ,

** BPXYBRLK: External Byte Range Locking interface control block
** Used By: FCT
BRLK DSECT ,
L_TYPE DS H Requested lock type:
F_RDLCK EQU 1 Shared or read lock
F_WRLCK EQU 2 Exclusive or write lock
F_UNLCK EQU 3 Unlock
L_WHENCE DS H Flag for starting offset
L_START DS 0CL8 Relative offset in bytes
L_START_H DS F High word of relative offset
L_START_L DS F Low word of relative offset
L_LEN DS 0CL8 Size of lock in bytes
L_LEN_H DS F High word of size of lock in bytes
L_LEN_L DS F Low word of size of lock in bytes
L_PID DS F Process ID of process holding lock
BRLK#LENGTH EQU *-BRLK Length of this area
** BPXYBRLK End

BPXYCCA — Map Input/Output Structure for __console()
BPXYCCA ,

** BPXYCCA: Msg Attributes for console_np service
** Used By: CCS
CCA DSECT ,
CCABEGIN DS 0D
*
CCAVERSION DC AL2(CCA#VER)
* Version of this structure
CCARES01 DS CL2 Reserved
CCAMSGLENGTH DS F Length of msg pointed to by CCAMSGPTR
CCAMSGPTR DS A Pointer to Msg text
CCARES02 DS CL8 Reserved
CCAENDVER1 DS 0C End of Version 1
CCASTARTVER2 DS 0C Start of Version 2
CCARES03 DS F Reserved
CCAWTOPARMS DS 0C Start of WTO message attributes
CCAROUTCDELIST DS A Pointer to list of message routing X

codes
CCARES04 DS F Reserved
CCADESCLIST DS A Pointer to list of message X

descriptor codes
CCARES05 DS F Reserved
CCAWMCSFLAGS DS 0C WTO MCS Flags
CCAMCSFLAGB1 DS XL1 MCS flags byte 1
CCAHRDCPY EQU X’80’ Send message to hard copy log only
CCAMCSFLAGB2 DS XL1 MCS flags byte 2
CCAMCSFLAGB3 DS XL1 MCS flags byte 3
CCAMCSFLAGB4 DS XL1 MCS flags byte 4
CCAWTOTOKEN DS F Token for message to be issued
CCAMSGIDPTR DS A Pointer to location where message X

is is stored by BPX1CCS
CCARES06 DS F Reserved
CCARES07 DS F Reserved
CCADOMPARMS DS 0C Delete message parameters
CCADOMTOKEN DS F Token of message(s) to be deleted

BPXYAUDT

Appendix B. Mapping macros 955

CCAMSGIDLIST DS A Pointer to list of message ids to X
be deleted

CCARES08 DS F Reserved
CCAENDVER2 DS 0D End of version 2
*
* Constants
*
CCA#VER EQU CCA#VER01 Current version
CCA#VER01 EQU 1 Version 1 of this structure
CCA#VER02 EQU 2 Version 2 of this structure
CCA#LENGTH EQU *-CCABEGIN X

Length of CCA
CCA#VER1LEN EQU CCAENDVER1-CCABEGIN X

Length of Version 1 CCA
CCA#VER2LEN EQU CCAENDVER2-CCABEGIN X

Length of Version 2 CCA
** BPXYCCA End

BPXYCID — Map the Returning Structure for getclientid()
BPXYCID ,

*

** BPXYCID: OpenMVS ClientId Structure *
** Used By: Sockets LFS *

*
CID DSECT , ClientId structure
CIDBEGIN DS 0D
*
CIDDOMAIN DS F Domain
CIDNAME DS CL8 Address space name
CIDTASK DS CL8 Subtask name
CIDRESERVED DS CL20 Reserved
*
CID#LENGTH EQU *-CID Constant - Fixed length of CID
*

ORG CIDNAME
CIDNAMEUPPER DS F Binary zeroes
CIDPID DS F Process Id
*

ORG CIDRESERVED
CIDTYPE DS X Type of request
CIDSPECIFIC DS CL19
*

ORG CIDSPECIFIC
DS CL3

CIDSOCKTOKEN DS F Returned token
ORG ,

*
CID#CLOSE EQU 1 Close socket
CID#SELECT EQU 2 Giver will do select
*
*
*
** BPXYCID End

BPXYCONS — Constants Used by Services
BPXYCONS is composed only of EQUates. DSECT= is allowed but ignored.

BPXYCONS ,
** BPXYCONS: Syscall constants
** Used By: Many syscalls
DFLT_ARG_MAX EQU 1048576 Constant for default ARG_MAX (1 MEG)
DFLT_CHILD_MAX EQU 6 Constant for default CHILD_MAX
* (_POSIX_CHILD_MAX)

BPXYCCA

956 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

DFLT_CLK_TCK EQU 100 Constant for default CLK_TCK
* (100 ticks per second)
DFLT_NGROUPS_MAX EQU 8191 Constant for default NGROUPS_MAX
* (RACF Maximum value)
DFLT_OPEN_MAX EQU 16 Constant for default OPEN_MAX
* (_POSIX_OPEN_MAX)
DFLT_TZNAME_MAX EQU 9 Constant for default TZNAME_MAX
DFLT_JOB_CONTROL EQU 1 Constant for default JOB_CONTROL
DFLT_SAVED_IDS EQU 1 Constant for default SAVED_IDS
DFLT_VERSION EQU 199009 Constant for default VERSION
DFLT_THREAD_TASKS_MAX_NP EQU 50 Constant default THREAD_TASKS_MAX_NP
DFLT_USERIDLEN_MAX EQU 8 Max characters for a userid
DFLT_PASSWDLEN_MAX EQU 8 Max characters for a password
DFLT_2_CHAR_TERM EQU 1 Constant default SC_2_CHAR_TERM
* items from sysconf()
SC_ARG_MAX EQU 1 Constant for querying ARG_MAX
SC_CHILD_MAX EQU 2 Constant for querying CHILD_MAX
SC_CLK_TCK EQU 3 Constant for querying CLK_TCK
SC_JOB_CONTROL EQU 4 Constant for querying JOB_CONTROL
SC_NGROUPS_MAX EQU 5 Constant for querying NGROUPS_MAX
SC_OPEN_MAX EQU 6 Constant for querying OPEN_MAX
SC_SAVED_IDS EQU 7 Constant for querying SAVED_IDS
SC_TZNAME_MAX EQU 9 Constant for querying TZNAME_MAX
SC_VERSION EQU 10 Constant for querying VERSION
SC_THREAD_TASKS_MAX_NP EQU 11 Constant to query THREAD_TASKS_MAX_NP
SC_2_CHAR_TERM EQU 12 Constant for querying VERSION
SC_THREADS_MAX_NP EQU 13 Constant to query THREADS_MAX_NP
SC_MMAP_MEM_MAX_NP EQU 14 Constant to query MMAP_MEM_MAX_NP
SC_TTY_GROUP EQU 15 Constant to query TTY GROUP
* wait function code
#WAIT3 EQU 1 wait3() function code
#WAITID EQU 2 waitid() function code
* items from waitf()
WNOHANG EQU 1 Wait, do not suspend execution
WUNTRACED EQU 2 Wait, return status of stopped child
WCONTINUED EQU 4 Wait, return status of continued child
*
WEXITED EQU 8 Wait for process that have exited
*
WSTOPPED EQU 16 Wait, return status of stopped child
*
WNOWAIT EQU 32 Wait, return status of a child without
* changing the state. The child can be
* waited for again.
* waitid() id type options
P_PID EQU 0 Wait for the child with a process ID
*
P_PGID EQU 1 Wait for any child with a process
* group ID
P_ALL EQU 2 Wait for any child
* BPX1PTX Options
PTEXITTHREAD EQU 0 Pthread exit
PTGETNEWTHREAD EQU 1 Pthread get new
PTFAILIFLASTTHREAD EQU 2 Pthread fail if last thread
QUIESCE_TERM EQU 1 Quiesce threads type = term
QUIESCE_FORCE EQU 2 Quiesce threads type = force
QUIESCE_QUERY EQU 3 Alias of pthread_query
PTHREAD_QUERY EQU 3 Quiesce threads type = query
QUIESCE_FREEZE EQU 4 Quiesce threads type = freeze
QUIESCE_UNFREEZE EQU 5 Quiesce threads type = unfreeze
FREEZE_THIS_THREAD EQU 6 Quiesce threads type = freezeme
* Skip 7 because of collision with BPXZCONS Freeze_Force
FREEZE_EXIT EQU 8 Quiesce threads type = freeze_exit
QUIESCE_SRB EQU 9 Quiesce threads type = SRBs
* Skip 10 and 11 due to collision with BPXZCONS Freeze/Unfreeze Fast
*
PTHREAD_INTR_ENABLE# EQU 0 Cancel request type = enabled

BPXYCONS

Appendix B. Mapping macros 957

PTHREAD_INTR_DISABLE# EQU 1 Cancel request type = disabled
PTHREAD_INTR_CONTROLLED# EQU 0 Cancel request type = controlled
PTHREAD_INTR_ASYNCHRONOUS# EQU 1 Cancel request type = Asynchronous
STDIN_FILENO EQU 0 Standard input value, file descriptor
STDOUT_FILENO EQU 1 Standard output value, file descriptor
STDERR_FILENO EQU 2 Standard error value, file descriptor
DUBTHREAD EQU 0 Dub a thread default setting
DUBPROCESS EQU 1 Dub a process default setting
DUBTASKACEE EQU 2 Dub a task ACEE setting
DUBPROCESSDEFER EQU 4 Dub a process - but defer dub
DUBNOSIGNALS EQU 8 Dub a process - no signals
DUBJOBPERM EQU 16 Dub as a permanent Job
DUBNOJSTUNDUB EQU 32 Dub process such that jobstep does not
*
DUBABENDCALLS EQU 64 Dub process such that system calls
* abend during a shutdown/restart window
*
STL_MAX_TASKS EQU 1 Replace MaxThreadTask only
STL_MAX_THREADS EQU 2 Replace MaxThreads only
STL_SET_BOTH EQU 3 Replace both limits
NICE_ZERO EQU 20 Default Process Scheduling Priority
PRIO_PROCESS EQU 1 Looking for a specific process ID
PRIO_PGRP EQU 2 Looking for processes in a process grp
PRIO_USER EQU 3 Looking for processes for a user ID
CPRIO_ABSOLUTE EQU 1 Priority value is an absolute value
CPRIO_RELATIVE EQU 2 Priority value is a relative value
* Define equates for memory map
PROT_READ EQU 1 Mapped data can be read
PROT_WRITE EQU 2 Mapped data can be written
PROT_NONE EQU 4 Mapped data cannot be accessed
PROT_EXEC EQU 8 Mapped data can be executed (treated
* as PROT_READ)
MAP_PRIVATE EQU 1 Changes to the mapped data are private
MAP_SHARED EQU 2 Changes to the mapped data are shared
MAP_FIXED EQU 4 Interpret map address exactly
MAP_MEGA EQU 8 Use megabyte allocations
MS_SYNC EQU 1 Performs synchronous writes
MS_ASYNC EQU 2 Performs asynchronous writes
MS_INVALIDATE EQU 4 Invalidate the cached memory mapped
* pages
* Define equates for spawn
SPAWN_FDCLOSED EQU -1 Do not inherit this file desc
RLIMIT_CORE EQU 4 Limit size of core dump
RLIMIT_CPU EQU 0 Limit CPU time per process
RLIMIT_FSIZE EQU 1 Limit file size
RLIMIT_NOFILE EQU 6 Limit number of open files
RLIMIT_AS EQU 5 Limit address space size
RLIM_INFINITY EQU 2147483647 No limit value
RUSAGE_SELF EQU 0 Rusage for current process
RUSAGE_CHILDREN EQU -1 Rusage for terminated children
* Define equates for querydub output status
QDB_DUBBED_FIRST EQU 1 Task has already been dubbed.
* This task and this RB caused the
* dub.
QDB_DUBBED EQU 2 Task has already been dubbed.
* Other task or other RB caused
* the dub
QDB_DUB_MAY_FAIL EQU 4 Task has not been dubbed, but may
* fail if attempted. Most likely
* reason for failure will be a missing
* or incomplete user security profile,
* or OMVS segment not defined
QDB_DUB_OKAY EQU 8 Task has not been dubbed, and should
* succeed if attempted
QDB_DUB_AS_PROCESS EQU 16 Task has not been dubbed, but its
* address space has. New task will dub
* as another process within the address

BPXYCONS

958 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* space
QDB_DUB_AS_THREAD EQU 32 Task has not been dubbed, but its
* address space has. New task will dub as
* a thread within the process
* Define equates for oe_env_np syscall function codes
ENQWAIT_PROCESS EQU 1 Examine/Change ENQ wait interruption
* state
FREEZE_EXIT_REG EQU 2 Register/deregister an exit
* for pthread_quiesce(freeze_exit)
MVS_USERID EQU 3 Retrieve MVS userid of invoker
ENV_TOGGLE_SEC EQU 4 Toggle btw task/process security
DFP_CLEANUP_EXIT_REG EQU 5 Register DFP Close cleanup exit
BPXK_PARAMETER EQU 6 Env Vars to Kernel
ENV_STOR_SERVICE EQU 7 Swappable or Non-Swappable
* address space
QUICK_FREEZE_EXIT_REG EQU 8 Register/deregister an exit for
* fast pthread_quiesce_and_get
SHUTDOWN_REG EQU 9 Register/block for shutdown
* processing
* Define equates for possible options of ENV_STOR_SERVICE
* For future additions, make equates multiples of 2
* 4
BPX_SWAP EQU 1 Make the address space swappable
BPX_NONSWAP EQU 2 Make the address space non-swappable
*
* Define equates for possible options of ENV_SHUTDOWN_REG
*
ENV_REGISTERBLOCK EQU 1 Register to Block Shutdown
ENV_REGISTERPERMP EQU 2 Register as a Permanent job/proc
ENV_DEREGISTERBLOCK EQU 3 Dereg as a blocking job/proc
ENV_DEREGISTERPERM EQU 4 Dereg as a permanent job/proc
ENV_REGISTERNOTIFY EQU 5 Register as a notify job/proc
ENV_DEREGISTERNOTIFY EQU 6 Dereg as a notify job/proc
ENV_REGISTERJOB EQU 1 Register Job
ENV_REGISTERPROC EQU 2 Register Process
*
* Define equates for versions of OSMF on BPXESMF syscall
OSMF_VER_HOM1110 EQU 1 Version 1 of OSMF, for HOM1110
OSMF_VER_HOM1120 EQU 2 Version 2 of OSMF, for HOM1120
OSMF_VER_HOM1130 EQU 3 Version 3 of OSMF, for HOM1130
* Define equates for task ecurity syscall function codes
TLS_CREATE_THREAD_SEC# EQU 1 Build Task Security
TLS_DELETE_THREAD_SEC# EQU 2 Delete Task Security
TLS_TASK_ACEE# EQU 3 set posix identity from task ACEE
TLS_IDENTITY_USERID# EQU 1 User identity: 1-8 char userid
TLS_IDENTITY_UID# EQU 2 User identity: 4-byte uid
TLS_IDENTITY_CERT# EQU 4 User identity: CERT structure
* Define equates for __Security syscall
* __Security function code
SECURITY_CREATE# EQU 1 Create new security environment
SECURITY_CERTREG# EQU 2 Register certificate with caller
SECURITY_CERTDEREG# EQU 3 DeReg certificate from caller
SECURITY_CERTAUTH# EQU 4 Authorize certificate from caller
* __Security user identity
SECURITY_USERID# EQU 1 User identity is 1-8 char userid
SECURITY_CERTIFICATE# EQU 2 User identity is a certificate
* Define equates for convert_id_np (BPX1CID) syscall function codes
CID_GET_UUID# EQU 1 Retrieve UUID
CID_GET_USERID# EQU 2 Retrieve userid
* Define equates for __pid_affinity (BPX1PAF) syscall function codes
PAF_ADD_PID# EQU 1 Add PID to affinity list
PAF_DELETE_PID# EQU 2 Delete PID from affinity list
* Define equates for auth_check_resource_np syscall access types
ACK_READ# EQU 1 Test READ access
ACK_UPDATE# EQU 2 Test UPDATE access
ACK_CONTROL# EQU 3 Test CONTROL access
ACK_ALTER# EQU 4 Test ALTER access

BPXYCONS

Appendix B. Mapping macros 959

* The high order two bytes of the reason codes returned by
* OpenMVS services contains a value that is used to qualify
* the contents of the low order two bytes. If the contents of
* the high-order two bytes are within the range of #CMID_LO to
* #CMID_HI, the error represented by the reason code is defined
* by OpenMVS. If the contents of the high order two bytes lie
* outside the range, the error represented by the reason code
* is not an OpenMVS reason code.
#CMID_LOW EQU 0000 Low range
#CMID_HI EQU 8447 High range
* Define equates for console cmd
CC_MAX_MSG_LENGTH EQU 17850 Max Wto string length for SUs
CC_MAX_MSG_LENGTH_NONSU EQU 17780 Max Wto string length for nonSU
CC_MODIFY_BUFFER_LENGTH EQU 128 Length of Modify Buffer
CONSOLE_MODIFY EQU 1 Service interrupted by Modify
CONSOLE_STOP EQU 2 Service interrupted by Stop
* Define equates for server_init syscall ManagerType parameter
SRV_WORKMGR EQU 1 Work Manager services requested
SRV_QUEUEMGR EQU 2 Queue Mgr services requested
SRV_SERVERMGR EQU 4 Server Mgr services requested
SRV_SERVERMGRDYNAMIC EQU 8 Server Mgr With Dynamic mngt
* Define equates for server_pwu syscall FcnCode parameter
SRV_PUT_NEWWRK EQU 1 Put new work function requested
SRV_PUT_SUBWRK EQU 2 Put sub work function requested
SRV_TRANSFER_WRK EQU 4 Transfer work function requested
SRV_GET_WRK EQU 8 Get work function requested
SRV_REFRESH_WRK EQU 16 Refresh work fcn requested
SRV_END_WRK EQU 32 End work function requested
SRV_DEL_ENC EQU 64 Delete Enclave Fcn requested
SRV_DISCONNECT EQU 128 Disconnect from WLM
SRV_DISCONNECT_COND EQU 256 Disconnect conditional from WLM
* EQU 512 Reserved for internal use
* See BPXZCONS
* Define equates for BPX1SLK syscall LockFcnCode parameter
SLK_OBTAIN EQU 1 Obtain function request
SLK_OBTAIN_COND EQU 2 Obtain conditional function req
SLK_INIT EQU 4 Initialization function request
SLK_DESTROY EQU 8 Destroy function request
SLK_RELEASE EQU 16 Release function request
* Define equates for BPX1SLK syscall LockReqType parameter
SLK_NORMAL EQU 1 Normal request type
SLK_ERRORCHECK EQU 2 Errorcheck request type
SLK_RECURSIVE EQU 4 Recursive request type
* Define equates for BPX1SLK syscall LockType parameter
SLK_EXCLUSIVE EQU 1 Exclusive lock type
SLK_SHARED EQU 2 Shared lock type
* Constants for BPXVRCAC - LFS Cache
PC#ADDFILE EQU X’80000007’ Filecache cmd ’80000007’x
PC#DELETEFILE EQU X’80000008’ Filecache cmd ’80000008’x
PC#PURGECACHE EQU X’8000000A’ Filecache cmd ’8000000A’x
PC#REFRESHCACHE EQU X’80000009’ Filecache cmd ’80000009’x
PC#SHUTDOWNFILESYS EQU X’8000000B’ Soft Shutdown ’8000000B’x
*
PC#SETIBMASYIO EQU X’C0000006’ SetIbm AsyncIO ’C0000006’x
PC#SETIBMOPTCMD EQU X’C0000005’ SetIBMOpt TCP ’C0000005’x
PC#ERRORTEXT EQU X’C000000B’ Get error text ’C000000B’x
* -1073741813
PC#SYSNAMES EQU X’C000000E’ Get sysnames ’C000000C’x
PC#TDNAMES EQU X’C000000F’ GET CINET TDNAMES
PC#HFSSTATS EQU X’C0000010’ GET HFS Stats
PC#BRLMSRVR EQU X’C0000011’ GET brlm server name
PC#SFSDIAG EQU X’80000012’ Shared-FS Diagnose
PC#ETDESC EQU X’0000’ Get description text
PC#ETACTION EQU X’0001’ Get action text
PC#ETMODNAME EQU X’0002’ Get module name
PC#ETREASON EQU X’0000’ Reason code input
PC#ETERRNO EQU X’0001’ Errno code input

BPXYCONS

960 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
* Constants for BPXPRLOD - HFS load - options
*
LOD_ERROR_ST_EXLINK EQU X’80000000’ Error if sticky/ext lnk
LOD_IGNORE_STICKY EQU X’40000000’ Skip sticky check
*
* Constants for BPX1DSD
*
SW_SIGDLV_ENABLE# EQU 1
SW_SIGDLV_DISABLE# EQU 2
*
* Define equates for BPX1OSE syscall function_code parameter
OSENV_GET EQU 1 get function
OSENV_SET EQU 2 set function
OSENV_UNSET EQU 4 unset function
OSENV_PERSIST EQU 8 persist function
OSENV_UNPERSIST EQU 16 unpersist function
* Define equates for BPX1OSE syscall Request_Flags parameter
OSENV_WLM EQU 1 WLM Enclave membership
OSENV_SECURITY EQU 2 pthread security environment
*
* Define equates for BPX1PQG syscall RequestType parameter
THDQ_FREEZE EQU 2 Freezes the threads identified in
* the THDQ Data List array (BPXYTHDQ)
*
THDQ_UNFREEZE_ALL EQU 8 Unfreezes all threads that are frozen
* in the caller process
THDQ_GET_STATE EQU 1 Retrieves the state data for the
* threads identified in the THDQ data
* list array or for all threads.
* This value can only be specified with
* THDQ_FREEZE
*
** BPXYCONS End

BPXYCW — Serialization Constants Used by Many Services
BPXYCW is composed only of EQUates. DSECT= is allowed but ignored.

BPXYCW ,
** BPXYCW: Serialization Constants
CW_INTRPT EQU 1 Thread interrupted by a signal
* (x’0000 0001’)
CW_CONDVAR EQU 32 Thread notified that some condition
* has been met (x’0000 0020’)
CW_TIMEOUT EQU 64 Timeout occurred (x’0000 0040’)
*
** BPXYCW End

BPXYDIRE — Map Directory Entries for readdir
DSECT=NO is not allowed; the basing for the PFSOTHER data is not known, as it
depends on the length of the name.

BPXYDIRE ,
** BPXYDIRE: Mapping of directory entry
** Used By: RDD
* LA RegOne,buffer RegOne->BPX1RDD buffer and 1st DIRE
* USING DIRE,RegOne Addressability to DIRE
DIRE DSECT ,
DIRENTINFO DS 0X Fixed length information
DIRENTLEN DS H Entry length
DIRENTNAML DS H Name length
DIRENTNAME DS 0C Name
* LR RegTwo,RegOne RegTwo->DIRE
* LA RegTwo,4(RegTwo) RegTwo->start of name
* SLR RegThree,RegThree Clear register

BPXYCONS

Appendix B. Mapping macros 961

* ICM RegThree,3,DIRENTNAML Load name length
* ALR RegTwo,RegThree RegTwo->end of name+1
* USING DIRENTPFSDATA,RegTwo Addressability to DIRENTPFSDATA
DIRENTPFSDATA DSECT , Physical file system-specific data
DIRENTPFSINO DS CL4 File Serial Number = st_ino
DIRENTPFSOTHER DS 0C Other PFS specific data

ORG DIRENTPFSDATA
DIRENTPLUSATTR DS 0C ReaddirPlus Attr
*
* ICM RegThree,3,DIRENTLEN Load entry length
* ALR RegOne,RegThree RegOne->Next DIRE in buffer
* BCT Return_Value,Back_to_process_next_DIRE
** BPXYDIRE End

BPXYDCOR — dbx cordump cache information
BPXYDCOR contains the mapping of dump related information use by dbx when a
dump is being formatted.

BPXYDCOR ,
**/ BPXYDCOR_1:;
*/****START OF SPECIFICATIONS**
*
* $MAC (BPXYDCOR) COMP(SCPX1) PROD(BPX):
*
01 MACRO NAME: BPXYDCOR
*
01 DSECT NAME: BPXYDCOR
*
01 DESCRIPTIVE NAME: dbx cordump cache information
*
02 ACRONYM: DCOR
* */
*/*01* PROPRIETARY STATEMENT= */
*/***PROPRIETARY_STATEMENT**/
/ */
/ */
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */
/ 5647-A01 (C) COPYRIGHT IBM CORP. 2000,2001 */
/ */
/ STATUS= HBB7705 */
/ */
*/***END_OF_PROPRIETARY_STATEMENT*************************************/
/
*
01 EXTERNAL CLASSIFICATION: GUPI
01 END OF EXTERNAL CLASSIFICATION:
*
01 FUNCTION:
*
* This file contains the mapping of dump related information use
* by dbx when a dump is being formatted.
*
*
01 METHOD OF ACCESS:
*
02 PL/X:
*
* %INCLUDE SYSLIB(BPXYDCOR)
*
* By default, the DCOR is based on DCORPtr pointer. If
* other basing is desired, use %DCORBASE=’BASED(xxxxxx)’.
*
02 ASM:
*
* None

BPXYDIRE

962 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
01 SIZE: xxx bytes
* PARMS -- X’0020’ bytes
* ASIDLIST_MAP -- X’0028’ bytes
* PIDLIST_MAP -- X’0040’ bytes
* CONDINFO_MAP -- X’0010’ bytes
*
01 POINTED TO BY:
*
*
01 CREATED BY: BPXGMPTR
*
01 DELETED BY: Process Termination (BPXGMCDE)
*
01 STORAGE ATTRIBUTES:
02 SUBPOOL:
02 KEY: 0
02 RESIDENCY: SYSZBPX1 data space
*
01 FREQUENCY:
*
01 SERIALIZATION: CS instruction
*
01 DEPENDENCIES: None
*
01 NOTES: None
*
01 COMPONENT: (SCPX1)
*
01 DISTRIBUTION LIBRARY: AINTLIB
*
01 EYE-CATCHER: DCOR
02 OFFSET: 0
02 LENGTH: 64
*
*
01 CHANGE-ACTIVITY:
*
* $01=OW44571, HBB7703 000609 PDZJ: dbx post mortem services
* $D1=TXV0414, HBB7704 000613 PDZJ: IPCS/SHAREAS tolerance OW44412
* $P1=PXV0307, HBB7704 001003 PDZJ: Report dump type HFS/SEQ
*
****END OF SPECIFICATIONS***/
% /
*
* **
* * *
* * Level information *
* * *
* **
*
*
DCOR_LEVEL1 EQU 65536 65536=’00010000’x. Version 1 (’0001xxxx’x), X

change level 0 (’xxxx0000’x)
*
* **
* * *
* * Function codes for BPXGMCDE routine *
* * *
* **
*
*
DCOR_OPEN# EQU 1
DCOR_CLOSE# EQU 2
DCOR_STATUS# EQU 3
*
* ***

BPXYDCOR

Appendix B. Mapping macros 963

* * *
* * Open return codes *
* * *
* ***
*
*
DCOR_CDERC_OK EQU 0 The specified function completed successfully
DCOR_CDERC_PARMERR EQU 4 A parmeter error was detected. See return X

value 1 for more detail
DCOR_CDERC_PROCERR EQU 8 A DCORE processing error occurred. See return X

value 1 for more detail
DCOR_CDERC_IKJTSOEVERR EQU 12 An error was encountered trying to X

establish a TSO environment with the IKJTSOEV X
service. See return values for more X
information

DCOR_CDERC_IKJEFTSRERR EQU 16 An error was encountered trying to run X
the REXX EXEC with the IKJEFTSR service. See X
return values for more information

DCOR_CDERC_ALLOCATEERR EQU 20 An error was encountered trying to X
allocate one of the user specified data sets.

DCOR_CDERC_IRXINITERR EQU 28 An error was encountered trying to X
establish a REXX environment

*
* ***
* * *
* * Status return codes *
* * *
* ***
*
*
DCOR_CDERC_STATUS_OPENCOMPLETE EQU 0
DCOR_CDERC_STATUS_OPENCONTINUING EQU 1
DCOR_CDERC_STATUS_OPENTERMINATED EQU 2
DCOR_CDERC_STATUS_INVALIDTOKEN EQU 3
*
* ***
* * *
* * Status Rc values when Status return code is *
* * Dcor_CDErc_Status_OpenContinuing *
* * *
* ***
*
*
DCOR_STATUS_CONT_STARTTSOENV EQU 0 Starting the TSO environment
DCOR_STATUS_CONT_EXECSTARTED EQU 1 BPXTIPCS started
DCOR_STATUS_CONT_EXECCLIST EQU 2 BPXTIPCS allocating CLIST data set
DCOR_STATUS_CONT_DUMPDDIR EQU 3 BPXTIPCS allocating/creating dump X

directory via BLSCDDIR
DCOR_STATUS_CONT_ALLOCDUMPDS EQU 4 BPXTIPCS allocating the dump data X

set
DCOR_STATUS_CONT_INVOKEIPCS EQU 5 BPXTIPCS invoking IPCS
DCOR_STATUS_CONT_INVOKEVERBX EQU 6 BPXTIPC2 invoking VERBX routine
DCOR_STATUS_CONT_ANALYSISSTART EQU 7 Dump analysis started
DCOR_STATUS_CONT_ANALYSISPROCASIDS EQU 8 Analysis processing Asids
DCOR_STATUS_CONT_EXECEXITING EQU 9 BPXTIPCS exiting
*
* ***
* * *
* * R1 values when return code is Dcor_CDErc_ParmErr *
* * *
* ***
*
*
DCOR_R1_PARMERR_DUMPDSNREQ EQU 1 The name of a dump data set is X

required
DCOR_R1_PARMERR_HFSDSNREQ EQU 2 The name of a dump data set in X

the HFS could not be found

BPXYDCOR

964 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
* ***
* * *
* * R1 values when return code is Dcor_CDErc_ProcErr *
* * *
* ***
*
*
DCOR_R1_PROCERR_SYSTEMERRATC EQU 1 An unexpected system error has X

occured while trying to establish the IPCS X
environment. The R2 value contains an ABEND X
reason code

*
* ***
* * *
* * R1 values when return code is Dcor_CDErc_AllocateErr *
* * *
* ***
*
*
DCOR_R1_ALLOCATEERR_LOGDSN EQU 1 Error allocating the log data set. X

The R2 field is the return code from X
allocation and the R3 field is the reason X
code.

DCOR_R1_ALLOCATEERR_EXECDSN EQU 2 Error allocating the EXEC data set. X
The R2 field is the return code from X
allocation and the R3 field is the reason X
code.

*
* **
* * *
* * Function codes for BPXGMPTR Ptrace Dump Access Routine *
* * *
* **
*
*
DCOR_ASID_LIST# EQU 1
DCOR_SET_ASID# EQU 2
DCOR_PID_LIST# EQU 3
DCOR_SET_PID# EQU 4
DCOR_LDINFO# EQU 5
DCOR_THREAD_LIST# EQU 6
DCOR_THREAD_CURRENT# EQU 7
DCOR_SET_THREAD# EQU 8
DCOR_PSW# EQU 9
DCOR_GPR_LIST# EQU 10
DCOR_THREAD_STATUS# EQU 11
DCOR_READ_D# EQU 12
DCOR_ERROR_PSW# EQU 13
DCOR_CAPTURE# EQU 14
DCOR_ERROR_GPR_LIST# EQU 15
DCOR_FLT_LIST# EQU 16
DCOR_ERROR_FLT_LIST# EQU 17
DCOR_CONDINFO# EQU 18
DCOR_PTRRC_OKVALUE EQU 0 The specified function completed successfully
DCOR_PTRRC_ASIDNOTFOUND EQU 1 The requested asid(s) not in dump
DCOR_PTRRC_ASIDNOTSET EQU 2 An ASID or PID has not been established X

for this session
DCOR_PTRRC_REQTYPENOTDEFINED EQU 3 The function type provided on this X

request is not supported by BPXGMPT2
DCOR_PTRRC_REQINVALIDTOKEN EQU 4 The open token provided on this X

request is not not valid
DCOR_PTRRC_REQDCORTERMINATED EQU 5 Dcor dump access services are not X

available
DCOR_PTRRC_THREADNOTFOUND EQU 6 The request thread(s) were not in the X

dump
DCOR_PTRRC_THREADNOTSET EQU 7 The current thread has not been X

BPXYDCOR

Appendix B. Mapping macros 965

established
DCOR_PTRRC_PIDNOTSET EQU 9 The request PID(s) were not in the dump
DCOR_PTRRC_PIDNOTFOUND EQU 10 The current process has not been X

established
DCOR_PTRRC_STORAGENOTINDUMP EQU 11 The requested storage was not X

dumped
DCOR_PTRRC_NASTANDALONEDUMP EQU 12 Not supported in a standalone dump
DCOR_PTRRC_ABENDOCCURRED EQU 13 Not supported in a standalone dump
DCOR_PTRRC_STORAGELENGTHBAD EQU 14 The requested storage length was X

zero
RSNOKVALUE EQU 0
RSNDCORERROR EQU 1 See Dcor return codes
RSNMVSERROR EQU 2 Ususally an out of storage condition or an X

abend
RSNIPCSERROR EQU 3 When An IPCS error occurs use the DCOR log to X

view the messages generated by IPCS (normally X
suppress)

RSNCSVERROR EQU 4
RSNCSVMODI12ERR EQU 1
RSNCSVMODI3ERR EQU 2
RSNCSVTOOMANYEXTENTS EQU 3
*
* **
* * parameter definitions for BPXGMPTR Ptrace Dump Access Routine *
* * 1. Parm 1 function code *
* * 2. Parms 2 Token returned from DCOR_OPEN# *
* * 3. Parms 3-5 Function parameters *
* * 3. Parms 6-8 retvalue, retcode, rsncode *
* **
*
*
PARMS DSECT
PARMS_FUNCTYPEPTR DS 1AL4
PARMS_DCOMTOKENPTR DS 1AL4
PARMS_INTERFACE DS 0CL0012

ORG PARMS_INTERFACE
PARMS_CAPTURE DS 0CL0012
PARMS_CAPTURE_PSTORADR DS 1AL4
PARMS_CAPTURE_PSTORLEN DS 1AL4
PARMS_CAPTURE_PDATAADR DS 1AL4 Address output buffer

ORG PARMS_INTERFACE
PARMS_READD DS 0CL0012
PARMS_READD_PSTORADR DS 1AL4
PARMS_READD_PSTORLEN DS 1AL4
PARMS_READD_PDATAADR DS 1AL4 user provided buffer

ORG PARMS_INTERFACE
PARMS_LDINFO DS 0CL0004
PARMS_LDINFO_OUTBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_THREADLIST DS 0CL0008
PARMS_THREADLIST_OUTBUFPTR DS 1AL4
PARMS_THREADLIST_OUTBUFCNT DS 1AL4

ORG PARMS_INTERFACE
PARMS_PIDLIST DS 0CL0008
PARMS_PIDLIST_OUTBUFPTR DS 1AL4
PARMS_PIDLIST_OUTBUFCNT DS 1AL4

ORG PARMS_INTERFACE
PARMS_ASIDLIST DS 0CL0008
PARMS_ASIDLIST_OUTBUFPTR DS 1AL4
PARMS_ASIDLIST_OUTBUFCNT DS 1AL4

ORG PARMS_INTERFACE
PARMS_THREADCURRENT DS 0CL0004
PARMS_THREADCURRENT_OUTBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_SETASID DS 0CL0004
PARMS_SETASID_INBUFPTR DS 1AL4

ORG PARMS_INTERFACE

BPXYDCOR

966 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PARMS_SETPID DS 0CL0004
PARMS_SETPID_INBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_SETTHREAD DS 0CL0004
PARMS_SETTHREAD_INBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_PSW DS 0CL0004
PARMS_PSW_OUTBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_ERROR_PSW DS 0CL0004
PARMS_ERROR_PSW_OUTBUFPTR DS 1AL4

ORG PARMS_INTERFACE
PARMS_THREADSTATUS DS 0CL0008
PARMS_THREADSTATUS_OUTBUFPTR DS 1AL4
PARMS_THREADSTATUS_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE
PARMS_GPRLIST DS 0CL0008
PARMS_GPRLIST_OUTBUFPTR DS 1AL4
PARMS_GPRLIST_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE
PARMS_ERROR_GPRLIST DS 0CL0008
PARMS_ERROR_GPRLIST_OUTBUFPTR DS 1AL4
PARMS_ERROR_GPRLIST_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE
PARMS_FLTLIST DS 0CL0008
PARMS_FLTLIST_OUTBUFPTR DS 1AL4
PARMS_FLTLIST_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE
PARMS_ERROR_FLTLIST DS 0CL0008
PARMS_ERROR_FLTLIST_OUTBUFPTR DS 1AL4
PARMS_ERROR_FLTLIST_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE
PARMS_CONDITIONINFO DS 0CL0008
PARMS_CONDITIONINFO_OUTBUFPTR DS 1AL4
PARMS_CONDITIONINFO_OUTBUFLEN DS 1AL4

ORG PARMS_INTERFACE+X’0000000C’
PARMS_XRVPTR DS 1AL4 Return Value
PARMS_XRCPTR DS 1AL4 Return Code
PARMS_XRSNPTR DS 1AL4 Reason Code
PARMS_LEN EQU *-PARMS
ASIDLIST_MAP DSECT
ASID_NEXTOFF DS 1FL4 Offset to the next ASID in DcomAsidList
ASID_NUM DS 1FL2
ASID_CPU DS 1FL1 CPUID
ASID_FLAGS DS 0BL1 Status flags
ASID_HOME EQU X’80’ Current HOMEAsid
ASID_PRIM EQU X’40’ Current PRIMARY ASID
ASID_SEC EQU X’20’ Current SECONDARY ASID

ORG ASID_FLAGS+X’00000001’
ASID_JOBNAME DS 1CL0009

DS 1CL0003 Reserved
ASID_PIDCNT DS 1FL4 Number of Pids in this Asid
ASID_ASCB DS 1AL4 Pointer to ASCB

DS 1CL0004 Reserved
ASID_PIDLISTPTR DS 1AL4 Pointer to the pidlist for This Asid

DS 1CL0004 Reserved
ASID_MAPEND DS 0C end of block
ASIDLIST_MAP_LEN EQU *-ASIDLIST_MAP
PIDLIST_MAP DSECT
PID_NEXTOFF DS 1FL4 Offset to the next Pid in DcomPidList
PID_ DS 1FL4 Process id
PID_ASID DS 1FL2 Asid of this Pid
PID_THIDCNT DS 1FL2 Count of thids in this pid
PID_FOCUSTHREAD DS 1CL0008 Ptrace focus thread
PID_ERRORTHREAD DS 1CL0008 Ptrace error thread
PID_LOGINNAME DS 1CL0009 Tso logon

DS 1CL0003 Reserved

BPXYDCOR

Appendix B. Mapping macros 967

PID_THIDLISTPTR DS 1AL4 list info for each THID
DS 1CL0004 Reserved

PID_PENDINGSIGMASK DS 1BL8 Signals pending at the process that could X
not be delivered to any thread

PID_BLOCKEDSIGMASK DS 1BL8 Signals blocked on all thread
PID_MAPEND DS 0C end of block
PIDLIST_MAP_LEN EQU *-PIDLIST_MAP
CONDINFO_MAP DSECT
COND_CURABENDINFO DS 0CL0016 If current task abended
COND_CURINTCODE DS 1FL2 Interrupt code
COND_CURSIGNUMBER DS 1FL2 Signal number raised
COND_CURABENDCODE DS 0BL4 Abend code
COND_CURABENDFLAGS DS 1BL1 System or user
COND_CURABENDCC DS 1BL3 Abend Number
COND_CURABENDREASON DS 1BL4 Abend Reason
COND_CURILC DS 1FL2 Instruction length

DS 1CL0002 Reserved
CONDINFO_MAPEND DS 0C end of block
CONDINFO_MAP_LEN EQU *-CONDINFO_MAP

BPXYENFO — ENF Signal Constants
BPXYENFO is composed only of EQUates for listeners of kernel ENF signals.
DSECT= is allowed but ignored.

BPXYENFO ,
** BPXYENFO: OMVS ENF constants
** Used By: OMVS ENF Listeners and OMVS ENF Signallers
* OMVS ENF QUALifier values
BPXYENFOACT EQU X’80000000’ OMVS Active
** BPXYENFO End

BPXYERNO — Component Return and Reason Codes
BPXYERNO is composed only of EQUates. DSECT= is allowed but ignored.
Because the return codes and reason codes that are in this macro are in z/OS
UNIX System Services Messages and Codes, the expansion of this macro is
suppressed.

BPXYERNO LIST=NO
PUSH PRINT BPXYERNO: OpenMVS Component return/reason codes
PRINT OFF
POP PRINT

BPXYFCTL — Command Values and Flags for fcntl
BPXYFCTL ,

** BPXYFCTL: File descriptor flags and command values
** Used By: FCT
FCTL DSECT ,
* External file descriptor flags
FCTLFDFL1 DS B
FCTLRS01 EQU X’80’ Reserved-DO NOT USE THIS BIT!
* FCTLFDFLAGS must never be < 0
FCTLFDFL2 DS B Reserved
FCTLFDFL3 DS B Reserved
FCTLFDFL4 DS B
FCTLCLOFORK EQU X’02’ 1= close_on_fork
FCTLCLOEXEC EQU X’01’ 1= close_on_exec
* Command value definitions
F_CVT DSECT , F_CONTROL_CVT section
FCVT_CMD DS F Sub-Command
SETCVTOFF EQU 0 Set Off
SETCVTON EQU 1 Set On
SETAUTOCVTON EQU 2 Set On if AUTOCVT(YES)
QUERYCVT EQU 3 Query current mode

BPXYDCOR

968 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

FCVT_PCCSID DS H Program CCSID
FCVT_FCCSID DS H File CCSID
* External file descriptor flags
F_DUPFD EQU 0 Duplicate file descriptor
F_GETFD EQU 1 Get file descriptor flags
F_SETFD EQU 2 Set file descriptor flags
F_GETFL EQU 3 Set file status flags
F_SETFL EQU 4 Set file status flags
F_GETLK EQU 5 Get record locking information
F_SETLK EQU 6 Set record locking information
F_SETLKW EQU 7 Set record locking information -
* wait if blocked
F_DUPFD2 EQU 8 Duplicate file descriptor, option 2
F_CLOSFD EQU 9 Close file descriptors
F_GETOWN EQU 10 Get process id or process group
F_SETOWN EQU 11 Set process id or process group
F_SETTAG EQU 12 Set File Tag
F_CONTROL_CVT EQU 13 Control conversion
FCTL#LENGTH EQU *-FCTL Length of this structure
** BPXYFCTL End

BPXYFDUM — Logical File System Dump Parameter List
DSECT=YES is required.

BPXYFDUM DSECT=YES
** BPXYFDUM: FDUM - LFS dump list passed to PFS initialization
FDUM DSECT ,
FDUMBEGIN DS 0D
*
FDUMPHDRINFO DS 0F
FDUMPENTS DS F NUMBER OF ENTRIES
FDUMPID DC C’FDUM’ EYE CATCHER
FDUMPHRES1 DS CL8 SPACE RESERVED FOR EXPANSION
*
FDUM#LENH EQU *-FDUMBEGIN
*
FDUMPDATA DSECT ,

DS 0F ONE SET FOR EACH AREA TO DUMP
FDUMPSTOKEN DS CL8 STOKEN FOR DUMP
FDUMPRES1 DS CL8 RESERVED
FDUMPSTART DS F FIRST BYTE TO DUMP
FDUMPEND DS F LAST BYTE TO DUMP
*
FDUM#LENENT EQU *-FDUMPDATA
*
* To access the FDUM header (dumpptr must be a copy of pfsi_dumpptr):
* L RegOne,dumpptr RegOne->pfsi_dumpents from BPXYPFSI
* USING FDUM,RegOne Addressability to FDUM
*
* To access the first FDUMPDATA:
* LR RegTwo,RegOne RegTwo->FDUM
* LA RegTwo,FDUM#LENH(RegTwo) RegTwo->FDUMPDATA
* USING FDUMPDATA,RegTwo Addressability to FDUMPDATA fields
*
* To access the next FDUMPDATA:
* LA RegTwo,FDUM#LENENT(RegTwo) RegTwo-> next FDUMPDATA
*
** BPXYFDUM End

BPXYFTYP — File Type Definitions
BPXYFTYP is composed only of EQUates. DSECT= is allowed but ignored.

BPXYFTYP ,
** BPXYFTYP: File type definitions
** Used By: FST MKD MKN OPN

BPXYFCTL

Appendix B. Mapping macros 969

FT_DIR EQU 1 Directory File
FT_CHARSPEC EQU 2 Character Special File
FT_REGFILE EQU 3 Regular File
FT_FIFO EQU 4 Named Pipe (FIFO) File
FT_SYMLINK EQU 5 Symbolic link
* EQU 6 Reserved for Block Special
FT_SOCKET EQU 7 Socket File
*
** File format definitions (for chattr) 9
FTFFNA EQU 0 Not specified 7
FTFFBINARY EQU 1 Binary data
* Text data delimiters:
FTFFNL EQU 2 New Line
FTFFCR EQU 3 Carrage Return
FTFFLF EQU 4 Line Feed
FTFFCRLF EQU 5 CR & LF
FTFFLFCR EQU 6 LF & CR
FTFFCRNL EQU 7 CR & NL
** BPXYFTYP End

BPXYFUIO — Map File System User I/O Block
BPXYFUIO is used to map the user and file system I/O block.

BPXYFUIO ,
** BPXYFUIO: User I/O block
** Used By: VRW VRD VRA
FUIO DSECT ,
FUIOBEGIN DS 0D
FUIOHDR DS 0D
*
FUIOID DC C’FUIO’ X

EBCDIC ID - FUIO
FUIOLEN DC AL4(FUIO#LENGTH) X

Length of this FUIO
FUIOINFO DS 0D Note: The following fields must X

map to BPXZDDPL
FUIOBUFFERADDR64 DS 0CL8 64 Bit Real Buffer address
FUIOBUFFERADDR64P DS 0D 64 Bit Real Buffer address
FUIOBUFFERADDR DS F Buffer address for READ or X

WRITE, etc. Address of iov X
for READV and WRITEV

FUIOBUFFALET DS F Alet associated with Buffer
FUIOCURSOR DS 0F Current position in the file
FUIOCUR1 DS F Word 1 of cursor
FUIOCUR2 DS F Word 2 of cursor
FUIOIBYTESRW DS F Num of bytes to read or write X

(or iovcnt for READV and WRITEV)
FUIOASID DS H Address Space ID
*
*
FUIOFLAGS DS XL1 Flags
*
FUIORWIND EQU FUIOFLAGS X

Indicates if READ or WRITE X
0 - Read, 1 - Write

FUIO#RD EQU X’7F’ Read: AND with FUIORWIND
FUIO#WRT EQU X’80’ Write: OR with FUIORWIND
*
FUIOPSWKEY EQU FUIOFLAGS X

Describes bits 1 through 4 of X
byte FUIOFLAGS

FUIOPSWKEYMASK EQU X’78’ AND with FUIOPSWKEY to clear X
non-PSWKEY bits in FUIOFLAGS

*
FUIOSYNC EQU X’04’ Sync on write requested
FUIOSYNCDONE EQU X’02’ Sync on write was done

BPXYFTYP

970 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

FUIOCHKACC EQU X’01’ Perform access checking
FUIOFLAG2 DS XL1 More flags
FUIOREALPAGE EQU X’80’ Real page address provided
FUIOLIMITEX EQU X’40’ File size limit exceeded
FUIOIOVINUIO EQU X’20’ uio contains an iov struc
FUIOSHUTD EQU X’10’ Do shutdown after send
FUIOADDR64 EQU X’08’ 64 bit addressing
FUIOVSPECIFIC DS CL8 Vnop Specific Fields
FUIOFSSIZELIMIT DS 0CL8 Rlimit support
FUIOFSSIZELIMITHW DS F hiword - filesize limit
FUIONONEWFILES EQU X’80’ can’t create new files
FUIOFSSIZELIMITLW DS F loword - filesize limit
FUIOREL2SIZE DS 0F Fuio before Rel 3 expansion
*
FUIOINTERNAL DS 0CL16
FUIOCURRBUFFPTR DS F Buffer currently being processed
FUIOCURRBUFFLEN DS F Length of current buffer
FUIOCURRBUFFOFFSET DS F Offset into current buffer
FUIOCURRIOVENTRY DS F Iov entry being processed
*
FUIOIOVRESIDUALCNT DS F Num bytes remaining in iov str
FUIOTOTALBYTESRW DS F Total number of bytes to be moved X

If FuioIovinUio=on, X
this is the sum of all bytes X
in the iov. Otherwise, this is X
the same as FuioIBytesRW

FUIOBUFF64VADDR DS D 64 Bit Virtual Buffer address
FUIOEND DS 0F End of FUIO
*--
* ReadDir Specific Information
*--
FUIOREADDIR ORG FUIOVSPECIFIC
FUIORDINDEX DS F Readdir Index
FUIORDDFLAGS DS 0XL4 Readdir flags

DS XL3
FUIORDDFLAGS4 DS XL1 Readdir flags:
FUIOCVERRET EQU X’02’ Cookie Verifier Returned
FUIORDDPLUS EQU X’01’ ReaddirPlus requested
*--
* VN_ReadWriteV and VN_SRMsg Specific Information
*--
FUIOSOCKETALETS ORG FUIOVSPECIFIC
FUIOIOVALET DS F SRMsg IOV Alet
FUIOIOVBUFALET DS F All IOV’s Buff’s Alet
*
* Readdir and ReaddirPlus Output Cookie Verifier

ORG FUIOINTERNAL
FUIOCVER DS CL8 Cookie Verifier

ORG
*
* Constants
*
FUIO#LEN EQU FUIOEND-FUIOBEGIN X

Length of FUIO
FUIO#LENGTH EQU FUIO#LEN Length of FUIO
FUIO#REL2LEN EQU FUIOREL2SIZE-FUIOBEGIN X

Length of Release 2 FUIO
FUIO#SP EQU 3 Subpool for the FUIO
** BPXYFUIO End

BPXYGIDN — Map Data Returned for getpwnam and getpwuid
DSECT=NO is not allowed. The storage belongs to the service and a pointer is
returned to the invoker.

BPXYFUIO

Appendix B. Mapping macros 971

BPXYGIDN ,
** BPXYGIDN: getpwnam, getpwuid amd getpwent return structure
** Used By: GPN GPU GPE
GIDN DSECT , USING on GPN, GPU, GPE Return_value
GIDN_U_LEN DS F Length of GIDN_U_NAME 1-8
GIDN_U_NAME DS 0C User name (trailing blanks)
* Add GIDN_U_LEN to Index or base to access next field

DS F Length of user ID 4
GIDN_USERID DS F User ID

DS F Length of group ID 4
GIDN_GROUPID DS F Group ID
GIDN_D_LEN DS F Length of GIDN_D_NAME 0-1023
GIDN_D_NAME DS 0C Initial working directory name
* Add GIDN_D_LEN to Index or base to access next field
GIDN_P_LEN DS F Length of GIDN_P_NAME 0-1023
GIDN_P_NAME DS 0C Initial user program name
GIDN#LENGTH EQU *-GIDN Length less U_LEN, D_LEN and P_LEN
** BPXYGIDN End

BPXYGIDS — Map Data Returned for getgrnam and getgrpid
DSECT=NO is not allowed. The storage belongs to the service and a pointer is
returned to the invoker.

BPXYGIDS ,
** BPXYGIDS: getgrnam, getgrgid and getgrent return structure
** Used By: GGI GGN GGE
GIDS DSECT ,
GIDS_G_LEN DS F Length of GIDS_G_NAME 1-8
GIDS_G_NAME DS 0C Group name (trailing blanks)
* Add GIDS_G_LEN to index or base to access following fields

DS F Length of group ID, always 4
GIDS_GROUPID DS F Group ID
GIDS_COUNT DS F Count of array elements
* Make a local copy of GIDS_COUNT
* Test: if local copy of GIDS_COUNT zero, quit
GIDS_M_LEN DS F Length of GIDS_M_NAME 1-8
GIDS_M_NAME DS 0C Member name (trailing blanks)
* Add GIDS_M_LEN+4 to index or base
* Decrement local copy of GIDS_COUNT, goto test.
GIDS#LENGTH EQU *-GIDS Length less all variable fields
** BPXYGIDS End

BPXYINHE — Spawn Inheritance Structure
BPXYINHE ,

** BPXYINHE: Inheritance Area
** Used By: spawn() callable service
INHE DSECT ,
INHEBEGIN DS 0D
*
INHEEYE DC C’INHE’ Eye catcher
INHELENGTH DC AL2(INHE#LENGTH) X

Length of this structure
INHEVERSION DC AL2(INHE#VER)
INHE#VER EQU 2 Version of this structure
INHEFLAGS DS 0BL4 Flags indicating contents of structure
INHEFLAGS0 DS XL1 1st byte
INHESETPGROUP EQU X’80’ Set Process Group using INHEPGROUP
INHESETSIGMASK EQU X’40’ Set Signal Mask using INHESIGMASK
INHESETSIGDEF EQU X’20’ Set Signal Defaults using INHESIGDEF
INHESETTCPGRP EQU X’10’ Set TTY Pgrp using INHECTLTTYFD
INHESETCWD EQU X’08’ Set CWD using INHECWDPTR
INHESETUMASK EQU X’04’ Set UMASK using INHEUMASK
INHESETUSERID EQU X’02’ Set Userid using INHEUSERID
INHESETREGIONSZ EQU X’01’ Set Region using INHEREGIONSZ
INHEFLAGS1 DS XL1 2nd byte

BPXYGIDN

972 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

INHESETTIMELIMIT EQU X’80’ Set Timelimit with INHETIMELIMIT
INHESETACCTDATA EQU X’40’ SET ACCTDATA using INHEACCTDATA
INHESETJOBNAME EQU X’20’ SET JOBNAME using INHEJOBNAME
INHEMUSTBELOCAL EQU X’10’ Spawn locally or else fail
INHESETDEBUGENV EQU X’08’ Setup Debug Environment
INHEFLAGS2 DS XL1 3rd byte
INHEFLAGS3 DS XL1 4th byte
INHEPGROUP DS F Process Group for child
INHE#NEWPGROUP EQU 0 Put child in a new proc grp of its own
INHESIGMASK DS BL8 Signal Mask for child
INHESIGDEF DS BL8 Set of default signals for child
INHECTLTTYFD DS F Cntl TTY FD for tcsetgrp() in child
INHECWDPTR DS F Pointer to the users CWD
INHECWDLEN DS H Length of the users CWD
INHEACCTDATALEN DS H LENGTH OF THE USERS ACCTDATA
INHEACCTDATAPTR DS F POINTER TO THE USERS ACCTDATA
INHEUMASK DS XL4 Users Umask
INHEUSERID DS CL8 New A.S. user identity
INHEJOBNAME DS CL8 New A.S. jobname
INHEREGIONSZ DS F New A.S. region size
INHETIMELIMIT DS F New A.S. Time limit

DS H reserved
INHE#LENGTH EQU *-INHE
** BPXYINHE End

BPXYIOCC — Ioctl Command Definitions
BPXYIOCC is composed only of EQUates. DSECT= is allowed but ignored.

BPXYIOCC ,
** BPXYIOCC: Ioctl Command Constant Definitions
** Used By: Ioctl syscalls
* Ioctl command constants - Range 1-255 reserved for OpenMVS
* Authorized/Tcpip CMD values
IOCC#TCI EQU 5000 Cmd for Tcpip Initialization
IOCC#TCC EQU 5001 Cmd for Complete Tcpip Initialization
IOCC#TCS EQU 5002 Cmd for Tcpip Path Sever
IOCC#TCR EQU 5003 Cmd for Tcpip Reply/Post call
IOCC#TCG EQU 5004 Cmd for Tcpip SiGnal call
IOCC#TCCE EQU 5006 Cmd for Tcpip End Registration
SIOCMSDELRT EQU 5007 Cmd for Delete Route
* (Pre-Router wrap)
SIOCMSADDRT EQU 5008 Cmd for Add Route
* (Pre-Router wrap)
SIOCMSSIFADDR EQU 5009 Cmd for Set Interface address
* (Pre-Router wrap)
SIOCMSSIFFLAGS EQU 5010 Cmd for Set Interface Flags
* (Pre-Router wrap)
SIOCMSSIFDSTADDR EQU 5011 Cmd for Set point-to-point interface
* address (Pre-Router wrap)
SIOCMSSIFBRDADDR EQU 5012 Cmd for Set Broadcast address
* (Pre-Router wrap)
SIOCMSSIFNETMASK EQU 5013 Cmd for Set interface network
* mask for an Internet address
* (Pre-Router wrap)
SIOCMSSIFMETRIC EQU 5014 Cmd for Set Interface routing metric
* (Pre-Router wrap)
SIOCMSRBRTTABLE EQU 5015 Cmd for Set Routing table required
* required request
* (Pre-Router wrap)
SIOMSMETRIC1RT EQU 5016 Cmd for Set metric1
* (Pre-Router wrap)
SIOCMSICMPREDIRECT EQU 5017 Cmd for Propagating ICMP redirects
* (Pre-Router wrap)
SIOCSETTKN EQU X’8008139A’ 5018 Set Tcp/Ip master Tkn
*
SIOCMSADDRT6 EQU X’8044F604’ Add IPV6 Route

BPXYINHE

Appendix B. Mapping macros 973

*
SIOCMSDELRT6 EQU X’8044F605’ Delete IPV6 Route
*
SIOCGRT6TABLE EQU X’C014F606’ Get IPV6 Network Routing
* Table
SIOCMSRBRT6TABLE EQU X’8000F607’ Rebuild IPV6 Route Tables
*
SIOCGHOMEIF6 EQU X’C014F608’ Get IPV6 Home Interface
* Configuration
SIOCMSRBHOMEIF6 EQU X’8000F609’ Rebuild IPV6 Home Interface
*
* Ioctl Command Constants - terminal control
TIOCGWINSZ EQU X’4008A368’ get window size
TIOCSWINSZ EQU X’8008A367’ set window size
TIOCNOTIFY EQU X’8001A364’ notify master by packet
* Constants for argument when TIOCNOTIFY is specified
IOCC#PWBEGIN EQU 1 Begin secure data
IOCC#PWEND EQU 2 End secure data
*
* Ioctl command constants - for Router query
SIOCGRTTABLE EQU X’C008C980’ Gets Network Routing
* Table
SIOCSETRTTD EQU X’8008C981’ Set Socket to be attached to
* 1 TD
*
FIONBIO EQU X’8004A77E’ set/reset nonblock I/O
FIONREAD EQU X’4004A77F’ get number of readable bytes
* available
FIOASYNC EQU X’8004A77D’ set/clear async I/O
FIOSETOWN EQU X’8004A77C’ set owner
FIOGETOWN EQU X’4004A77B’ get owner
SECIGET EQU X’4010E401’ get security information
SIOCADDRT EQU X’8030A70A’ IBM use only, Add routing
* table entry
SIOCATMARK EQU X’4004A707’ Is current location pointing
* to out-of-band data?
SIOCSPGRP EQU X’8004A708’ Set process group
SIOCGPGRP EQU X’4004A709’ Get process group
SIOCDELRT EQU X’8030A70B’ IBM use only, Delete routing
* table entry
SIOMETRIC1RT EQU X’8030A70C’ IBM use only, Set metric1
SIOCSIFADDR EQU X’8020A70C’ Set Network interface addr
SIOCGIFADDR EQU X’C020A70D’ Get Network interface address
SIOCGIFBRDADDR EQU X’C020A712’ Get Network interface
* Broadcast Address
SIOCSIFBRDADDR EQU X’8020A713’ Sets Network interface
* Broadcast Address
SIOCGIFCONF EQU X’C008A714’ Get Network interface
* Configuration
SIOCGIFDSTADDR EQU X’C020A70F’ Get Network interface
* Destination Address
SIOCGIFFLAGS EQU X’C020A711’ Get Network interface Flags
SIOCGIFMETRIC EQU X’C020A717’ IBM use only, Gets Network
* Interface Routing Metric
SIOCGIFNETMASK EQU X’C020A715’ Get Network interface
* Network Mask
SIOCSIFNETMASK EQU X’8020A716’ Set Network interface
* Network Mask
SIOCSIFDSTADDR EQU X’8020A70E’ IBM use only, Sets Network
* Interface Destination Address
SIOCSIFFLAGS EQU X’8020A710’ IBM use only, Sets Network
* Interface Flags
SIOCSIFMETRIC EQU X’8020A718’ IBM use only, Sets Network
* Interface Routing Metric
SIOCSARP EQU X’8024A71E’ IBM use only, Sets ARP
* Entry
SIOCGARP EQU X’C024A71F’ IBM use only, Gets ARP

BPXYIOCC

974 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* Entry
SIOCDARP EQU X’8024A720’ IBM use only, Deletes ARP
* Entry
SIOCSHIWAT EQU X’8004A700’ Set High Water Mark
* (Not Supported)
SIOCGHIWAT EQU X’4004A701’ Get High Water Mark
* (Not Supported)
SIOCSLOWAT EQU X’8004A702’ Set Low Water Mark
* (Not Supported)
SIOCGLOWAT EQU X’4004A703’ Get Low Water Mark
* (Not Supported)
FIOFCTLNBIO EQU X’0000E402’ change blocking/nonblocking
* STREAMS
IOCC#ILINK EQU X’4004E21A’ I_LINK
* DFS ACLs
IOCC#EDITACL EQU X’2000C100’ Edit ACL
* RACF ACLs
SETFACL EQU X’0000D301’ SET FILE ACL
IOCC#SETFACL EQU X’0000D301’ SET FILE ACL
GETFACL EQU X’0000D302’ GET FILE ACL
IOCC#GETFACL EQU X’0000D302’ GET FILE ACL
*
* Get Port of Entry for Multi-Level Security (MLS)
* Get Port of Entry Attributes for a Socket Resource
SIOCGSOCKPOEATTRS EQU X’4000D305’
* Constants for argument when FIONBIO is specified
IOCC#BLOCK EQU X’00000000’ Allow blocking to occur
IOCC#NONBLOCK EQU X’00000001’ Do not allow blocking to occur
*

* *
* I P v 6
* *

* IPv6 Ioctls
SIOCGIFVERSION EQU X’4000F601’ Get Interface Ver Out
SIOCGSRCIPADDR EQU X’C000F602’ Get Source Addr InOut
SIOCGIFNAMEINDEX EQU X’4000F603’ Get If Name/Index Out

* Packet mode or Extended Packet mode data record control data.
* *
* Returned on master read when no control information is pending. *
* In packet mode one byte is returned. In extended packet mode, four *
* bytes are returned. Data follows the control data. *

TIOC_DATA EQU X’00’ Data packet

* Packet mode control byte - returned on master read()
* *
* A single control byte is returned in packet mode. In extended *
* packet mode, four bytes are returned, with the non-extended bits *
* in the fourth byte. The equates below can be used against the *
* fourth byte (with TM, OI and NI) or against all four bytes (with *
* OC, NC, etc.). *

TIOCPKT_FLUSHREAD EQU X’01’ Input was flushed
TIOCPKT_FLUSHWRITE EQU X’02’ Output was flushed
TIOCPKT_STOP EQU X’04’ Stop output
TIOCPKT_START EQU X’08’ Start output
TIOCPKT_NOSTOP EQU X’10’ STOP/START not standard
TIOCPKT_DOSTOP EQU X’20’ STOP/START standard

* Extended Packet mode control byte - returned on master read()

TIOCXPKT_PASSTHRU EQU X’00000100’ 3270 Passthrough mode
TIOCXPKT_NOPASSTHRU EQU X’00000200’ Not 3270 Passthrough mode
TIOCXPKT_ECHO EQU X’00000400’ ECHO set on

BPXYIOCC

Appendix B. Mapping macros 975

TIOCXPKT_NOECHO EQU X’00000800’ ECHO set off
TIOCXPKT_CHCP EQU X’00001000’ Code page change
TIOCXPKT_PWBEGIN EQU X’00002000’ Begin secure data
TIOCXPKT_PWEND EQU X’00004000’ End secure data
**
* UPDTOFTE
**
IOCC#UPDTOFTE EQU 20 UPDATE OFTE CMD
*
IOCUOFTE DSECT , ARGUMENT BUFFER
*
IOCUOCMD DS F SUBCMD
IOCUO#READ EQU 1 READ
IOCUO#WRITE EQU 2 WRITE
IOCUO#CS EQU 3 COMPARE & SWAP
IOCUOVALUEBUFF DS 0F VALUE TO/FROM STATE AREA
IOCUOVOFFSET DS F OFFSET (>=0)
IOCUOVLEN DS F LENGTH (>0)
IOCUOVDATA DS 0C DATA
*
IOCUOCSBUFF DSECT , COMPARE VALUE FOR CS SUBCMD
*
IOCUOCSOFFSET DS CL4 OFFSET (BYTE BDY)
IOCUOCSLEN DS CL4 LENGTH (BYTE BDY)
IOCUOCSDATA DS 0C DATA
*
IOCC#REGFILEINT EQU 21 REGISTER FILE INTR
IOCC#FASTPATH EQU 22 Set FastPath Ops
*
IOCC#DEVCONSOLE EQU 23 /dev/console behavior
IOCC#DEVCONSUPPRESS EQU 1 /dev/console - set suppress
IOCC#DEVCONUNSUPPRS EQU 0 /dev/console - unsuppress
*
IOCC#DEVFD EQU 27 /dev/fd behavior
* LFS/Cinet Level Ioctls
IOCC#GETSTACKS EQU 24 Get Stack Names
IOCC#DIRIOCTL EQU 25 Directed Ioctl
IOCC#GRTRSELECT EQU 26 Get PreRtr Select
*

*
* Iocc#GetStacks - *
* Get the names of the stacks that are attached to a socket. *
* *

*
IOCSTACKINFO DSECT ,
IOCSTACKINFOHEADER DS CL8

ORG IOCSTACKINFOHEADER
IOCSTACKINFOFLAGS DS X Flags
IOCSTACKCINET EQU X’80’ Cinet socket

DS CL3
IOCSTACKENTRIES DS F Number of Names returned

ORG
IOCSTACKNAMES DS CL16 Array of stack names

* Array of IOCSTACKNAMES *

*
IOCSTACKNAMESD DSECT ,
IOCSTACKNAME DS CL8 Stack name
IOCSTACKTDINDEX DS X Cinet Stack TdIndex
IOCSTACKFLAGS DS X Flags
IOCSTACK_ACTIVE EQU X’80’ Active
IOCSTACK_IPV6_SUPPORT EQU X’40’ IPv6 is supported
IOCSTACK_IPV6_INTERFACES EQU X’20’ IPv6 Home Interfaces
IOCSTACK_IPV4_INTERFACES EQU X’10’ IPv4 Home Interfaces

BPXYIOCC

976 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

DS CL6

*
* Iocc#DirIoctl - Directed Ioctl *
* Passes the imbedded ioctl to the specified stack. *
* *

*
IOCDIRIOCTL DSECT ,
IOCDIRHDR DS CL16

ORG IOCDIRHDR
IOCDIRNAME DS CL8 Target Stack Name
IOCDIRCMD DS XL4 Imbedded ioctl Command
IOCDIRARGLEN DS F Imbedded ioctl Argument Length

ORG
IOCDIRARG DS C Imbedded ioctl Argument

*
* Iocc#GRtrSelect - Get Cinet PreRouter’s selected stack for each *
* of an array of specified destination IP addresses. *
* *

*
IOCRTRSELECT DSECT ,
IOCRTRIPADDR DS CL16 Input IP Address
IOCRTRSTACK DS CL8 Output Selected Stack Name

ORG IOCRTRSTACK
IOCRTRERRTEST DS CL1 Error if = 0

DS CL1
IOCRTRERRNO DS XL2 Error RC (Errno)
IOCRTRRSN DS XL4 Error Rsn (ErrnoJr)

ORG
IOCRTRERROR EQU X’00’ IocRtrErrTest value to test for error

*
* SiocGIfNameIndex - Get Interface Name/Index Table *
* *

*
IF_NAMEINDEXENTRY DSECT ,
IF_NIINDEX DS F Interface Index

ORG IF_NIINDEX
IF_NITDINDEX DS H CInet Td Index
IF_NIIFINDEX DS H Stack Interface Index

ORG
IF_NINAME DS CL16 Interface Name, blank padded
IF_NIEXT DS CL4

ORG IF_NIEXT
IF_NINAMETERM DS CL1 Null for C for Name len=16

DS CL3 Reserved
ORG

IF_NAMEINDEXENTRYL EQU *-IF_NAMEINDEXENTRY
IF_NAMEINDEX DSECT ,
IF_NIHEADER DS 2F

ORG IF_NIHEADER
IF_NITOTALIF DS F Total Active Interfaces on System
IF_NIENTRIES DS F Number of entries returned

ORG
IF_NITABLE DS CL(IF_NAMEINDEXENTRYL)

*
* SiocGSockPoeAttrs - Socket Port of Entry Attributes *
* *

*
IOCPOEATTR DSECT ,
IOCPOEPEERIPADDR DS CL16 Peer IP Address

BPXYIOCC

Appendix B. Mapping macros 977

ORG IOCPOEPEERIPADDR
IOCPOEPEERIPV6PREFIX DS CL12
IOCPOEPEERIPV4ADDR DS F

ORG
IOCPOETERMID DS CL8 TERMINAL Profile Name
IOCPOELABEL DS CL8 Security Label
IOCPOEPROFILE DS CL64 SERVAUTH Profile Name
*
** BPXYIOCC End

BPXYIOV — Map the I/O Vector Structure
BPXYIOV is used by readv(), writev(), sendmsg() and recvmsg().

BPXYIOV ,
** BPXYIOV: Socket I/O Vectors
** Used By: FCT OPN
IOV DSECT ,
IOV_ENTRY DS 0F Array Entry
* -------------------------- 31-bit format
IOV_BASE DS A Address of buffer
IOV_LEN DS F Length of buffer
IOV#LENGTH EQU *-IOV_ENTRY Length of this structure
** BPXYIOV End

BPXYIPCP — Map InterProcess Communication Permissions
BPXYIPCP ,

** BPXYIPCP: Interprocess Communications Permission
** Used By: MCT, MGT, SCT, SGT, QCT, QGT
IPC_PERM DSECT , Interprocess Communications
IPC_UID DS F Owner’s effective user ID
IPC_GID DS F Owner’s effective group ID
IPC_CUID DS F Creator’s effective user ID
IPC_CGID DS F Creator’s effective group ID
IPC_MODE DS XL4 Mode, mapped by BPXYMODE
IPC#LENGTH EQU *-IPC_PERM Length of Interprocess Control block
* Key:
IPC_PRIVATE EQU 0 Private key.
* Mode bits: Map over S_TYPE in BPXYMODE
IPC_CREAT EQU 1 Create entry if key does not exist.
IPC_EXCL EQU 2 Fail if key exists.
IPC_MEGA EQU 4 Allocation in meg
IPC_BINSEM EQU 4 Binary semaphore
IPC_RCVTYPEPID EQU 4 Msgrcv TYPE=PID
IPC_SNDTYPEPID EQU 8 Msgsnd TYPE=PID
IPC_PLO1 EQU 16 Use PLO for serialization
IPC_SHORTHOLD EQU 16 Binary semaphore short
IPC_PLO2 EQU 32 Use PLO if practical
IPC_PLOINUSE EQU 1 PLO is in use (_getipc only)
* Flag bits - semop, msgrcv, msgsnd:
IPC_NOWAIT EQU 1 Error if request must wait.
* Control Command:
IPC_RMID EQU 1 Remove identifier.
IPC_SET EQU 2 Set options.
IPC_STAT EQU 3 Access status.
* CONSTANTS WHICH MAP OVER BYTE S_TYPE, SEE BPXYMODE
** BPXYIPCP End

BPXYIPCQ — Map w_getipc Structure
BPXYIPCQ ,

** BPXYIPCQ: w_getipc interface mapping
** Used By: GET
IPCQ DSECT , Interprocess Communications - Query
IPCQLENGTH DS F IPCQ#LENGTH used by system call. If not

BPXYIOCC

978 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* equal, check BPXYIPCQ and system levels.
IPCQTYPE DS CL4 "IMSG", "ISEM", "ISHM", "OVER"
IPCQOVER DS 0F OVERVIEW MAPPING STARTS HERE
IPCQMID DS FL4 MEMBER ID
IPCQKEY DS XL4 KEY
IPCQIPCP DS CL20 MAPPED BY BPXYIPCP
IPCQGTIME DS XL4 TIME_T OF LAST ...GET()
IPCQCTIME DS XL4 TIME_T OF LAST ...CTL()
IPCQTTIME DS XL4 TIME_T CHANGED BY TERMINATION
IPCQREST DS 0C IPCQMSG, IPCQSHM, IPCQSEM

ORG IPCQREST Message Queue unique data
DS 0F

IPCQBYTES DS F # BYTES OF MESSAGES ON QUEUE
IPCQQBYTES DS F MAX # BYTES OF MESSAGES ALLOWED ON QUEUE
IPCQLSPID DS F PID OF LAST MSGSND()
IPCQLRPID DS F PID OF LAST MSGRCV()
IPCQSTIME DS F TIME_T OF LAST MSGSND()
IPCQRTIME DS F TIME_T OF LAST MSGRCV()
IPCQNUM DS F # OF MESSAGES ON QUEUE
IPCQRCNT DS F COUNT OF WAITING MSGRCV
IPCQSCNT DS F COUNT OF WAITING MSGSND

DS 0CL16 MSGRCV AND MSGSND WAITERS
DS 0CL8 MSGRCV - WAIT FOR TYPE

IPCQQRPID DS F PROCESS ID
IPCQQRMSGTYPE DS F MESSAGE TYPE

DS 0CL8 MSGSND - WAIT FOR ROOM TO SEND
IPCQQSPID DS F PROCESS ID
IPCQQSMSGLEN DS F MESSAGE LENGTH

DS 9CL16 MSGSND AND MSGRCV WAITERS
DS 0CL8 MESSAGES WAITING TO BE RECEIVED

IPCQQMPID DS F PROCESS ID
IPCQQMMSGTYPE DS F MESSAGE TYPE

DS 9CL8 MESSAGES
ORG IPCQREST Semaphore Unique data
DS 0F

IPCQLOPID DS XL4 PID OF LAST SEMOP
IPCQOTIME DS F TIME_T LAST SEMOP
IPCQADJBADCNT DS F TERMINATION BUMPS SEM_VAL LIMITS
IPCQNSEMS DS FL2 NUMBER OF SEMAPHORES IN THIS SET
IPCQADJCNT DS FL2 NUMBER OF UNDO STRUCTURES
IPCQNCNT DS FL2 COUNT OF WAITERS FOR >0
IPCQZCNT DS FL2 COUNT OF WAITERS FOR =0

DS 0CL16 WAITERS AND ADJUSTERS
DS 0CL8 WAITER

IPCQSWPID DS F PROCESS ID
IPCQSWNUM DS H SEMAPHORE NUMBER
IPCQSWOP DS H SEMAPHORE OPERATION

DS 0CL8 ADJUSTER
IPCQSAPID DS F PROCESS ID
IPCQSANUM DS H SEMAPHORE NUMBER
IPCQSAADJ DS H SEMAPHORE OPERATION

DS 9CL16 WAITERS AND ADJUSTERS
ORG IPCQREST Shared Memory unique data
DS 0F

IPCQACNT DS F USE COUNT (#SHMAT - #SHMDT)
IPCQSEGSZ DS F MEMORY SEGMENT SIZE
IPCQDTIME DS F TIME_T OF LAST SHMDT()
IPCQATIME DS F TIME_T OF LAST SHMAT()
IPCQLPID DS F PID OF LAST SHMAT() OR SHMDT()
IPCQCPID DS XL4 PID OF CREATOR
IPCQATPID DS F ATTACHED PROCESS ID
IPCQATADDRESS DS F SEGMENT ADDRESS FOR PROCESS

DS 18F MORE ATTACHED PROCESS IDS AND
* SEGMENT ADDRESS

ORG IPCQOVER Overview
DS 0F MESSAGE QUEUES

IPCQOMSGNIDS DS F Maximum number MSQs allowed

BPXYIPCQ

Appendix B. Mapping macros 979

IPCQOMSGHIGHH2O DS F Most MSQs at one time
IPCQOMSGFREE DS F Number MSQs available
IPCQOMSGPRIVATE DS F Number MSQs with Ipc_PRIVATE
IPCQOMSGKEYED DS F Number MSQs with KEYs
IPCQOMSGREJECTS DS F TIMES MSGGET DENIED
IPCQOMSGQBYTES DS F MAX BYTES PER QUEUE
IPCQOMSGQMNUM DS F MAX NUMBER MESSAGES PER QUEUE
IPCQOMSGNOALC DS F # MSGSNDS THAT RETURNED ENOMEM

DS F
DS 0F SEMAPHORE

IPCQOSEMNIDS DS F Maximum number SEMs allowed
IPCQOSEMHIGHH2O DS F Most SEMs at one time
IPCQOSEMFREE DS F Number SEMs available
IPCQOSEMPRIVATE DS F Number SEMs with Ipc_PRIVATE
IPCQOSEMKEYED DS F Number SEMs with KEYs
IPCQOSEMREJECTS DS F TIMES SEMGET DENIED
IPCQOSEMSNSEMS DS F MAX NUMBER OF SEMAPHORES PER SET
IPCQOSEMSNOPS DS F MAX NUMBER OPERATION IN SEMOP
IPCQOSEMSBYTES DS F STORAGE LIMIT
IPCQOSEMCBYTES DS F STORAGE COUNT

DS F
DS 0F SHARED MEMORY

IPCQOSHMNIDS DS F Maximum number SHMs allowed
IPCQOSHMHIGHH2O DS F Most SHMs at one time
IPCQOSHMFREE DS F Number SHMs available
IPCQOSHMPRIVATE DS F Number SHMs with Ipc_PRIVATE
IPCQOSHMKEYED DS F Number SHMs with KEYs
IPCQOSHMREJECTS DS F TIMES SHMGET DENIED
IPCQOSHMSPAGES DS F MAX # PAGES PER SYSTEM LIMIT
IPCQOSHMMPAGES DS F MAX # PAGES PER SEGMENT LIMIT
IPCQOSHMNSEGS DS F MAX # SEGMENTS PER PROCESS LIMIT
IPCQOSHMCPAGES DS F CURRENT # BYTES SYSTEM WIDE
* This field does not include pages for
* shared memory requests processed with
* the ipc_MEGA option
IPCQOSHMBIGGEST DS F LARGEST SEGMENT ALLOCATED

ORG ,
IPCQ#LENGTH EQU *-IPCQ Storage needed for w_getipc function
* w-getipc Command:
IPCQ#MSG EQU 1 Retrieve next message queue
IPCQ#SHM EQU 2 Retrieve next shared memory segment
IPCQ#SEM EQU 3 Retrieve next semaphore set
IPCQ#ALL EQU 4 Retrieve next member, all mechanisms
IPCQ#OVER EQU 5 Retrieve overview
** BPXYIPCQ End

BPXYITIM — Map getitimer, setitimer Structure
BPXYITIM ,

** BPXYITIM: getitimer and setitimer interval structure
** Used By: GTR STR
ITIM DSECT ,
** STRUCTURE OF GETITIMER (PARAMETER 2), SETITIMER (PARAMETERS 2,3)
ITIMIPAIR DS 0CL8 Initial value or value at cancel
ITIMISECONDS DS F Seconds 0-7FFFFFFF x
ITIMIMICROSEC DS 0F Microseconds 0-000F423F x
ITIMINANOSEC DS F Nanoseconds 0-369AC9FF x
ITIMRPAIR DS 0CL8 Reload Interval
ITIMRSECONDS DS F Seconds 0-2147483647 d
ITIMRMICROSEC DS 0F Microseconds 0-999999 d
ITIMRNANOSEC DS F Nanoseconds 0-999999999 d
ITIMER_REAL EQU 0 REAL TIME
ITIMER_VIRTUAL EQU 1 VIRTUAL TIME (CPU - SYSTEM)
ITIMER_PROF EQU 2 CPU TIME

BPXYIPCQ

980 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

ITIMER_MICRO EQU 0 1/1,000,000 of seconds
ITIMER_NANO EQU 4 1/1,000,000,000 of seconds
ITIM#LENGTH EQU 16 LENGTH THIS STRUCTURE
** BPXYITIM End

BPXYMMG — Map Interface for _map_init and _map_service
BPXYMMG ,

** BPXYMMG: BPX1MMI & BPX1MMS Interface Declares
** Used By: Callers of the BPX1MMI & BPX1MMS Interface
*
**
*
* Function Code Constants
*
**
*
MMG_INIT EQU 1
MMG_SERVICE EQU 2
*
**
* *
* Parameter list mapping for the BPX1MMI MMG_INIT call *
* *
**
*
_MMG_INIT_PARM DSECT , MMG_INIT Parameter List
_MMG_NUMBLKS DS F Fullword that contains the number of
* blocks to be contained in the map
* area.
_MMG_MEGSPERBLK DS F Fullword that contains the size in
* megabytes of each block in the map
* area
_MMG_MAPTOKEN DS CL8 Token for map area
_MMG_RES01A DS A Reserved for future use
_MMG_RES01B DS A Reserved for future use
_MMG_AREAADDR DS A Fullword that contains, on input, the
* suggested starting address of the map
* area or 0. On output, this field is
* set to the actual map starting
* address.
_MMG_INIT_PARM_LEN EQU *-_MMG_INIT_PARM
*
**
*
* Parameter list mapping for the BPX1MMS MMG_SERVICE request
*
* The parameter list is an array of entries, each entry having the
* format as mapped by _MMG_SERVICE_BLK. Each entry is a request for
* one of the supported request types: MMG_NEWBLOCK, MMG_CONN,
* MMG_DISCONN, MMG_CNTL or MMG_FREE. In addition, an entry can be
* marked as inactive by setting its value to MMG_NOP, which will
* cause the entry to be skipped. The result of a given request will
* be reflected in the array entry.
*
* The meaning of array entry fields is dependant on the requested
* function. The following table defines the field meanings for each
* of the supported functions. A field not used by a service is marked
* N/A. Fields so marked are ignored and their value is not
* important for the specified service. All reserved fields must be
* zero.
*
* Function Field Field usage
* --
* _newblock
* _MMG_SERVICETYPE MMG_NEWBLOCK
* _MMG_SERVICEIFLAG All bits should be zero except

BPXYITIM

Appendix B. Mapping macros 981

* MMG_NOCONN may be set to one if
* the new block is to be allocated
* in the backing storage but not
* connected to the map area
* _MMG_SERVICEOFLAG Should be zero, but not checked
* _MMG_Token output
* _MMG_BlkAddr input - 0 or address where the
* new block is to be
* allocated
* output - An address in the map
* area where the new
* block was allocated
* _conn
* _MMG_SERVICETYPE MMG_CONN
* _MMG_SERVICEIFLAG All bits should be zero
* _MMG_SERVICEOFLAG Should be zero, but not checked
* _MMG_Token input
* _MMG_BlkAddr input - 0 or address where the
* block identified by
* token is to be
* allocated
* output - An address in the map
* area where the block
* was allocated
* _disconn
* _MMG_SERVICETYPE MMG_DISCONN
* _MMG_SERVICEIFLAG All bits should be zero except
* the MMG_FREE bit may be on if
* backing storage is to be
* released for the data
* _MMG_SERVICEOFLAG Should be zero, but not checked
* _MMG_Token N/A
* _MMG_BlkAddr input - Address of the block
* containing data to
* be disconnected
* _free
* _MMG_SERVICETYPE MMG_FREE
* _MMG_SERVICEIFLAG All bits should be zero
* _MMG_SERVICEOFLAG Should be zero, but not checked
* _MMG_Token input - Token of the data
* contained in the
* backing storage which
* is to be release
* _MMG_BlkAddr N/A
* _cntl
* _MMG_SERVICETYPE MMG_CNTL
* _MMG_SERVICEIFLAG All bits should be zero except
* those that define the access
* state of the data (read or
* read/write flags)
* _MMG_SERVICEOFLAG Should be zero, but not checked
* _MMG_Token N/A
* _MMG_BlkAddr input - Address of the block
* containing data to be
* affected by the state
* change
*
**
*
_MMG_SERVICE_PARM DSECT , MMG_SERVICE Parameter List
_MMG_SERVICE_ENTRY DS 0H
_MMG_SERVICETYPE DS FL2 Type of service requested. eg, MMG_CONN
_MMG_SERVICEIFLAG DS BL1 Flags

ORG _MMG_SERVICEIFLAG
_MMG_READONLY EQU X’80’ All pages of each area are to be made
* read-only
_MMG_READWRITE EQU X’40’ All pages of each area are to be made

BPXYMMG

982 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* read-write
_MMG_FREEBLOCK EQU X’20’ The backing storage for the specified
* block is to be freed
_MMG_NOCONN EQU X’10’ The new block is to be allocated in the
* backing storage but not connected to
* the map area

ORG _MMG_SERVICEIFLAG+L’_MMG_SERVICEIFLAG
_MMG_SERVICEOFLAG DS BL1 Flags

ORG _MMG_SERVICEOFLAG
_MMG_REQFAIL EQU X’80’ If on, a failure occured on this entry
* or this entry was not processed

ORG _MMG_SERVICEOFLAG+L’_MMG_SERVICEOFLAG
_MMG_TOKEN DS CL8 Token for a data block
_MMG_RES02B DS A Reserved
_MMG_BLKADDR DS A Fullword that contains the virtual
* address of a map area block
_MMG_MAXARRAYCOUNT EQU 1000 Maximum number of requests that can be
* in a service request array
_MMG_SERVICE_PARM_LEN EQU *-_MMG_SERVICE_PARM
*
**
*
* BPX1MMS SERVICE Request Constants (values for field
* _MMG_SERVICETYPE)
*
**
*
MMG_NOP EQU 0
MMG_NEWBLOCK EQU 1
MMG_CONN EQU 2
MMG_DISCONN EQU 3
MMG_FREE EQU 4
MMG_CNTL EQU 5
*
**
*
** BPXYMMG End

BPXYMNTE — Map Response and Element Structure of w_getmntent
DSECT (MNTENTPARMDATA) will be generated with either DSECT=NO or
DSECT=YES. If DSECT=NO is specified, you may need an additional DSECT /
CSECT statement to return to the current DSECT or CSECT. To get the new
version of the MNTE, set MNTE2=YES. Users of MNTE2=YES must initialize
MNTEHID to ’MNT2’ and set MNTEHBLEN to MNTE#LENGTH.

BPXYMNTE MNTE2=YES
** BPXYMNTE: OpenMVS w_getmntent response structure and element
** Used By: GMN
MNTEH DSECT ,
MNTEHID DC C’MNT2’ Eye catcher
MNTEHSIZE DC A(MNTE#LENGTH) Size of area (MNTEH+MNTE)
MNTEHCUR DC XL8’0000000000000000’
* Index of next element to return
* - must be zero (i.e.
* X’0000000000000000’),
* on initial call
* - must be left undisturbed
* for subsequent calls
MNTEHDEVNO DS F’0’ Device number - this value is
* specified if information about only
* one file system is requested
MNTEHBLEN DS F Length of mnte body used
MNTEHRES1 DS BL8 Reserved for future - must be zero
* on entry
MNTEH#LENGTH EQU *-MNTEH Length of header structure

BPXYMMG

Appendix B. Mapping macros 983

*
MNTE DSECT ,
MNTENTFSTYPE DS F File system type
MNTENTFSTYPEMVS EQU 1 MVS Local File System
MNTENTFSTYPEREMOTE EQU 2 Remote File System
MNTENTFSTYPEPIPE EQU 3 Pipe file system
MNTENTFSTYPESOCKET EQU 4 Socket file system
MNTENTFSTYPEXPFS EQU 5 Cross System PFS (XPFS)
MNTENTFSTYPECSPS EQU 6 Char special streams
MNTENTFSTYPENFS EQU MNTENTFSTYPEREMOTE
MNTENTFSMODE DS 0F File system mount flags
MNTENTFSMODE1 DS B File system mount method - byte 1
MNTENTFSMODE2 DS B File system mount method - byte 2
MNTENTFSMODE3 DS B File system mount method - byte 3
MNTENTFSMODE4 DS B File system mount method - byte 4
MNTENTSECACL EQU X’80’ Acls supported by sec product
MNTENTFSAUNMOUNT EQU X’40’ UnMount during recovery
MNTENTFSCLIENT EQU X’20’ File system is a client
MNTENTFSNOAUTOMOVE EQU X’10’ Automove allowed
MNTENTFSMODENOSEC EQU X’08’ No Security checks enforced
MNTENTFSMODEEXPORT EQU X’04’ File system exported by DFS
MNTENTFSMODENOSUID EQU X’02’ SetUID not permitted for
* files in this file system
MNTENTFSMODERDONLY EQU X’01’ File system mounted read only
MNTENTFSMODERDWR EQU X’00’ File system mounted read/write
MNTENTFSDEV DS F st_dev value to be returned by
* the stat system call for all files
* in this file system
MNTENTPARENTDEV DS F st_dev of the parent file system
MNTENTROOTINO DS F ino of the mount point
MNTENTSTATUS DS B Status of the file system
MNTENTFILEACTIVE EQU B’00000000’ File system is active
MNTENTFILEDEAD EQU B’00000001’ File system is dead
MNTENTFILERESET EQU B’00000010’ File system being reset
MNTENTFILEDRAIN EQU B’00000100’ File system being unmounted with
* drain option
MNTENTFILEFORCE EQU B’00001000’ File system being unmounted with
* force option
MNTENTFILEIMMED EQU B’00010000’ File system being unmounted with
* immed option
MNTENTFILENORM EQU B’00100000’ File system being unmounted with
* normal option
MNTENTIMMEDTRIED EQU B’01000000’ File system Umount immed failed
MNTENTQUIESCED EQU B’10000000’ File system is quiesced
MNTENTMNTINPROGRESS EQU B’10000001’ Mount in progress for
* this file system
MNTENTASYNCHMOUNT EQU B’10000010’ Asynchronous mount in progress
* for this file system
MNTENTFSDDNAME DS CL9 DDNAME specified on mount - null
* terminated
MNTENTFSTNAME DS CL9 File system type name -
* from the FILESYSTYPE parmlib
* statement - null terminated
MNTENTFSNAM44 DS CL44 File system name - as a 44 byte field

ORG MNTENTFSNAM44
MNTENTFSNAME DS CL45 File system name - for PDSE/X, this
* is the name of the PDSE/X containing
* file system, null terminated
MNTENTPATHLEN DS F length of mount point path name
MNTENTMOUNTPOINT DS CL1024 Name of directory where the file
* system is mounted - (mount point
* path name - null terminated
MNTENTJOBNAME DS CL8 Job name of quiesce requestor
MNTENTPID DS F PID of quiesce requestor
MNTENTPARMOFFSET DS F Offset of MntEntParm from MNTE
* (Zero if none)
MNTENTPARMLEN DS H Length of mount parameter

BPXYMNTE

984 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* (Zero if none)
MNTENTSYSNAME DS CL8 Name of system to mount on
MNTENTQSYSNAME DS CL8 Name of queisce system name
MNTENTFROMSYS DS CL8 Filesystems to be moved from here
MNTENTRES00 DS 2B Alignment
MNTENTRFLAGS DS 0F Request flags
MNTENTRFLAGS1 DS B Request flags - byte 1
MNTENTRFLAGS2 DS B Request flags - byte 2
MNTENTRFLAGS3 DS B Request flags - byte 3
MNTENTRFLAGS4 DS B Request flags - byte 4
MNTENTCHANGE EQU X’01’ Change f.s. server request
MNTENTNEWAUTO EQU X’02’ Change automove setting
MNTENTSTATUS2 DS 0F Status of filesystem
MNTENTSTATUS2B1 DS B Status of filesystem - byte 1
MNTENTSTATUS2B2 DS B Status of filesystem - byte 2
MNTENTSTATUS2B3 DS B Status of filesystem - byte 3
MNTENTSTATUS2B4 DS B Status of filesystem - byte 4
MNTENTUNOWNED EQU B’00000001’ File system unowned
MNTENTINRECOVERY EQU B’00000010’ File system in recovery
MNTENTSUPERQUIESCED EQU B’00000100’ File system super quiesced
MNTENTSUCCESS DS F Successful moves
MNTENTREADCT DS F Number of reads from filesys
MNTENTWRITECT DS F Number of writes done
MNTENTDIRIBC DS F Number of directory I/O blocks
MNTENTREADIBC DS F Number of read I/O blocks
MNTENTWRITEIBC DS F Number of write I/O blocks
MNTENTBYTESREAD DS BL8 Number of bytes read
MNTENTBYTESWRITTEN DS BL8 Number of bytes written
MNTENTFILETAG DS CL4 File tag (see BPXYSTAT)
MNTENTSYSLISTOFFSET DS F Offset of system list
MNTENTSYSLISTLENGTH DS H Length of system list
MNTENTAGGNAMELENGTH DS H Length of Aggregate name
MNTENTAGGNAMEOFFSET DS F Aggregate Name Offset or 0
MNTENTRES02 DS 2F Reserved for future expansion
MNTE#LENGTH EQU *-MNTE Length of this structure
*
MNTENTPARMDATA DSECT , Mount() parameter data dsect
MNTENTPARM DS 0C Parameter specified with mount()
*
MNTENTSYSLISTINFO DSECT , Deadsys move to syslist dsect
MNTENTSYSLISTNUM DS H Number of entries in the syslist
MNTENTSYSLISTFLAGS DS H Flags
MNTENTSYSLISTINCL EQU X’0000’ Include syslist
MNTENTSYSLISTEXCL EQU X’0001’ Exclude syslist
MNTENTSYSLIST DS 32CL8 System names
*
MNTENTAGGNAMEDSECT DSECT , At MntEntAggNameOffset if not 0
MNTENTAGGNAME DS 0C Aggregate Name, Null terminated
*
* To access MNTEH, MNTE and MNTENTPARM:
* LA RegOne,buffer RegOne->BPX1GMN buffer and MNTEH
* USING MNTEH,RegOne Addressability to MNTEH
*
* LR RegTwo,RegOne RegTwo->MNTEH
* LA RegTwo,MNTEH#LENGTH(RegTwo) RegTwo->MNTE
* USING MNTE,RegTwo Addressability to MNTENTPARMLEN
* and MNTENTPARMOFFSET
*
* ICM RegThree,15,MNTENTPARMOFFSET Load offset from start of
* entry (i.e. start of MNTE)
* BZ SkipParm If zero, skip processing parm
* ALR RegThree,RegTwo RegTwo->MNTE,
* RegThree=MNTENTPARMOFFSET
* RegThree->MNTENTPARMDATA (after)
* USING MNTENTPARMDATA,RegThree Addressability to MNTENTPARMDATA
*
** BPXYMNTE End

BPXYMNTE

Appendix B. Mapping macros 985

BPXYMODE — Map the Mode Constants of the File Services
BPXYMODE ,

** BPXYMODE: Mode constants specified on system calls
** Used By: CHM FCM MKD MKN OPN UMK
S_MODE DSECT ,

DS 0F
*
S_TYPE DS B File types, mapped by BPXYFTYP
* Flag bytes
S_MODE3B DS 0XL3 All flag bytes
S_RES01 DS 0BL.8 Reserved
S_MODE1 DS B Flag byte 1 - reserved
*
S_RES02 DS 0BL.4 Reserved
S_MODE2 DS B Flag byte 2
* Set ID flags
S_ISUID EQU X’08’ Set user ID on execution
S_ISGID EQU X’04’ Set group ID on execution
S_ISVTX EQU X’02’ Sticky Bit: For executables, look
* first in normal MVS search order
* For directories, deletion rstd
* to owner or superuser.
* Owner flags
S_IRWXU1 EQU X’01’ All permissions for user - part I
S_IRUSR EQU X’01’ Read permission
*
S_MODE3 DS B Flag byte 3
* Owner flags - continued
S_IRWXU2 EQU X’C0’ All permissions for user - Part II
S_IWUSR EQU X’80’ Write permission
S_IXUSR EQU X’40’ Search (if a directory) or
* execute (otherwise) permission
* Group flags
S_IRWXG EQU X’38’ All permissions for group
S_IRGRP EQU X’20’ Read permission
S_IWGRP EQU X’10’ Write permission
S_IXGRP EQU X’08’ Search (if a directory) or
* execute (otherwise) permission
* Other flags
S_IRWXO EQU X’07’ All permissions for other
S_IROTH EQU X’04’ Read permission
S_IWOTH EQU X’02’ Write permission
S_IXOTH EQU X’01’ Search (if a directory) or
* execute (otherwise) permission
S_MODE#LENGTH EQU *-S_MODE Length this structure
** BPXYMODE End

BPXYMSG — Map InterProcess Communication Message Queues
DSECT (MSGBUF) will be generated with either DSECT=NO or DSECT=YES. If
DSECT=NO is specified, you may need an additional DSECT / CSECT statement to
return to the current DSECT or CSECT. Default for the message size is 100 bytes.
Specify VARLEN= to override this value.

BPXYMSG ,
** BPXYMSG: Interprocess Communication Message Queue Structure
** Used By: msgctl
MSQID_DS DSECT , message queue structure
MSG_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP
MSG_QNUM DS F # of messages on queue
MSG_QBYTES DS F max bytes allowed on queue
MSG_LSPID DS F process ID of last msgsnd()
MSG_LRPID DS F process ID of last msgrcv()
MSG_STIME DS F time of last msgsnd()
MSG_RTIME DS F time of last msgrcv()

BPXYMODE

986 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

MSG_CTIME DS F time of last change get/ctl
MSQ#LENGTH EQU *-MSQID_DS Length of this DSECT
MSGBUF DSECT , Message buffer - msgsnd, msgrcv
MSG_TYPE DS F Message type
MSG_MTEXT DS CL100 Message text
MSGB#LENGTH EQU *-MSGBUF Length of this DSECT
MSGXBUF DSECT , Message buffer - msgxrcv
MSGX_MTIME DS F time message sent
MSGX_UID DS F sender’s effective UID
MSGX_GID DS F sender’s effective GID
MSGX_PID DS F sender’s PID
MSGX_TYPE DS F Message type
MSGX_MTEXT DS CL100 Message text
MSGX#LENGTH EQU *-MSGXBUF Length of this DSECT
* Flag bits - msgrcv (also IPC_NOWAIT
MSG_NOERROR EQU 4 No error if big message.
MSG_INFO EQU 8 Use MSGXBUF not MSGBUF format
** BPXYMSG End

BPXYMSGF — Map the Message Flags
BPXYMSGF is used by send(), recv(), sendmsg() and recvmsg().

BPXYMSGF ,
** BPXYMSGF: Socket access flags
** Used By: FCT OPN
MSG_FLAGS DSECT ,
MSG_FLAGS1 DS B I_flags - byte 1
MSGFHIGH EQU X’80’ DO NOT USE THIS BIT!
* MSG_FLAGS must never be < 0
MSG_ACK_GEN EQU X’40’ Generate a UDP ’ACK packet’
* automatically to the originator
* if an incoming UDP packet arrives
*
MSG_ACK_TIMEOUT EQU X’20’ The caller expects an incoming UDP
* packet within the "standard ACK
* time interval". Return to caller
* with an EINTR return code if no
* incoming UDP packet arrives
* within this time interval.
MSG_ACK_EXPECTED EQU X’10’ (Used along with MSG_ACK_TIMEOUT)
* The incoming packet is expected to
* be an ACK. If the ACK arrives,
* the caller does not need to be
* activated to process it.
* Instead, the protocol will just
* cancel the timeout and let the
* application wait for the real data
* to arrive.
MSG_FLAGS2 DS B MSG_flags - byte 2
*
MSG_FLAGS3 DS B MSG_flags - byte 3
MSG_EOF EQU X’80’ Close after send
MSG_FLAGS4 DS B MSG_flags - byte 4
MSG_WAITALL EQU X’40’ Wait until all data returned
MSG_CTRUNC EQU X’20’ Control data truncated
MSG_TRUNC EQU X’10’ Normal data truncated
MSG_EOR EQU X’08’ Terminate a record
MSG_DONTROUTE EQU X’04’ Send without network routing
MSG_PEEK EQU X’02’ Peek at incoming data
MSG_OOB EQU X’01’ Receive out of band data
MSG#LENGTH EQU *-MSG_FLAGS Length of this structure
** BPXYMSGF End

BPXYMSGH — Map the Message Header
BPXYMSGH is used by the sendmsg and recvmsg syscalls.

BPXYMSG

Appendix B. Mapping macros 987

BPXYMSGH ,
** BPXYMSGH: MSGH system call structure
** Used By: SendMsg / RecvMsg
MSGH DSECT ,
MSGHBEGIN DS 0D
* ------------- 32-Bit Version
MSGHNAMEPTR DS A(0) Pointer to a structure that contains
* the recipient’s address.
MSGHNAMELEN DS F’0’ Buffer length.
MSGHIOVPTR DS A(0) Pointer to an array of IOVEC buffers.
MSGHIOVNUM DS F’0’ Number of elements in IOVEC array.
MSGHCONTROLPTR DS 0AL4 Pointer to ancillary data buffer
MSGHACCRIGHTSPTR DS A(0) Pointer to access rights buffer.
MSGHCONTROLLEN DS 0FL4 Length of ancillary data buffer
MSGHACCRIGHTSLEN DS F’0’ Access rights buffer length.
MSGHFLAGS DS F’0’ Output flags on received message
*
* Constants
*
MSGH#LENGTH EQU *-MSGH Length of MsgH
*
CMSGPTR DS A(0) CMsg pointer
*
CMSGHDR DSECT ,
CMSGLEN DS F’0’ Length, including header
CMSGLEVEL DS F’0’ Level
CMSGTYPE DS F’0’ Type
CMSGDATA DS 0C Data
*
* Constants
*
SCM_RIGHTS EQU 1 Access Rights
SCM_SECINFO EQU 16386 Security Information
*
** BPXYMSGH End

BPXYMSGX — Map the Message Header
BPXYMSGX is used by the srx_np() syscall. BPXYMSGX uses constants defined
by mapping macro IVTBUFL.

IVTBUFL ,
IVTBUFL DSECT BUFFER DESCRIPTOR
BUFL_VERSION DS X VERSION OF BUFFER DESCRIPTOR
BUFL_VERSIONC EQU X’00’ VERSION 0
BUFL_SOURCE DS X BUFFER SOURCE
BUFL_CECSA EQU X’80’ INDICATES THAT THE STORAGE
* IS IN CSM ECSA
BUFL_CDSPACE EQU X’40’ INDICATES THAT THE STORAGE
* IS IN CSM DATA SPACE
BUFL_UDSPACE EQU X’20’ INDICATES THAT THE STORAGE
* IS IN A USER DATA SPACE
BUFL_USTOR EQU X’10’ INDICATES THAT THE STORAGE
* IS A USER’S STORAGE OTHER THAN
* A DATA SPACE
BUFL_TYPE DS X BUFFER TYPE
BUFL_FIXED EQU X’80’ INDICATES THAT THE STORAGE IS
* IN A GUARANTEED TO BE FIXED
* STATE
BUFL_PAGEABLE EQU X’40’ INDICATES THAT THE STORAGE IS
* IN A GUARANTEED TO BE PAGEABLE
* STATE
BUFL_PAGEELIG EQU X’20’ INDICATES THAT THE STORAGE IS
* ELIGIBLE TO BE PAGEFREED BY
* CSM

DS XL1 RESERVED
BUFL_TOKEN DS XL12 CSM BUFFER TOKEN

BPXYMSGH

988 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BUFL_ALET DS F DATA SPACE ALET
BUFL_ADDR DS A POINTER TO BUFFER
BUFL_SIZE DS F THE SIZE OF THE ALLOCATED BUFFER
* ON GET_BUFFER REQUESTS, THE DATA
* LENGTH ON COPY_DATA REQUESTS
BUFL_END DS 0F END OF IVTBUFL

BPXYMSGX ,
** BPXYMSGX: MSGX system call structure
** Used By: BPX1SRX
MSGX DSECT ,
*
MSGXNAMEPTR DS A /* PTR TO SOCKADDR BUFFER */
MSGXNAMELEN DS F /* LENGTH OF SOCKADDR BUFFER */
MSGXFLAGS DS 0BL4 /* SRX CONTROL FLAGS */
MSGXFLAGS1 DS BL1
MSGXFLAGS2 DS BL1
MSGXFLAGS3 DS BL1
MSGXFLAGS4 DS BL1 FLAGS ARE IN THE 4TH BYTE
MSGX_CECSA EQU X’02’ /* RECV IN ECSA BUFFERS */
MSGX_CDSPACE EQU X’01’ /* RECV IN DATA SPACE BUFFERS */
MSGXMSGFLAGS DS BL4 /* MSG_* FLAGS, SEE BPXYMSGF */
MSGXDATALEN DS F /* MAX/MIN DATA TO RECEIVE */
MSGXTCB DS A /* TCB TO OWN RECEIVE BUFFERS */
MSGXERRIOVX DS F /* SEND IOVX ELEMENT IN ERROR */
MSGXERRDATA DS F /* AMOUNT SENT FROM LAST BUFFER */
MSGXIVTBUFLOFFSET DS F /*1ST BUFF APPL STILL OWNS

DS CL12 RESERVED
MSGXIOVX DS CL(BUFL_END-IVTBUFL) IVTBUFL FOR IOVX ARRAY
MSGXEND EQU *
*
MSGX#LEN EQU MSGXEND-MSGX
*
* IOVX - ARRAY OF IVTBUFL BUFFER DESCRIPTIONS
*
IOVX DSECT , /* DESCRIBED BY MSGXIOVX */
IOVXBUFL DS 0CL(BUFL_END-IVTBUFL) ARRAY ELEMENT
*
* Constants
* /* BPX1SRX DIRECTION PARAMETER: */
MSGX_SEND EQU 0 /* SEND OPERATION */
MSGX_RECV EQU 1 /* RECEIVE OPERATION */
*
** BPXYMSGX End

BPXYMTM — Map the Modes for mount and unmount
BPXYMTM ,

** BPXYMTM: File system mount/unmount modes
** Used By: MNT UMT
MTM DSECT ,
MTM1 DS B Flag byte 1
MTMRO EQU X’80’ Mount file set read-only
MTMRDWR EQU X’40’ Mount file set read/write
MTMDDNAME EQU X’20’ FileSet is a DDName
MTMUMOUNT EQU X’10’ This is a normal unmount request.
* If no one is using any of the files
* in the named filesystem, the unmount
* will be done. Otherwise, the request
* will be rejected.
MTMIMMED EQU X’08’ This is an unmount immediate request.
* The filesystem will be unmounted
* immediately, forcing any users of any
* files in the named filesystem to fail.
* All data changes that were made up to
* the time of the request will be saved.
* If there is a problem saving the data,
* the unmount request will fail.

BPXYMSGX

Appendix B. Mapping macros 989

MTMFORCE EQU X’04’ This is an unmount force request.
* The filesystem will be unmounted
* immediately, forcing any users of any
* files in the named filesystem to fail.
* All data changes that were made up to
* the time of the request will be saved.
* If there is a problem saving the data,
* the request will continue and data may
* be lost. Since data may be lost,
* before a forced request will be
* allowed, a previous immediate unmount
* request must have been attempted, or
* the request will be rejected.
MTMDRAIN EQU X’02’ This is an unmount drain request.
* The requestor is willing to wait for
* all uses of this filesystem to be
* normally terminated and the
* filesystem to be unmounted.
MTMRESET EQU X’01’ This is a reset unmount request. This
* will allow a previous unmount drain
* request to be stopped.
MTM2 DS B Flag byte 2
MTM2RES80 EQU X’80’ Must not be used
MTM2RES40 EQU X’40’ Must not be used
MTMTERMUNMOUNT EQU X’20’ Unmount from PFS term
MTM2RES10 EQU X’10’ Unused flag - can be used
MTMMNTINCOMP EQU X’08’ Mount is incomplete
MTMUNQSEFORCE EQU X’04’ Force this unquiesce request, even
* if the requester process is not
* the process that made the quiesce
* request.
MTM2RES02 EQU X’02’ Must not be used
MTM2RES01 EQU X’01’ Must not be used
MTM3 DS B Flag byte 3 - reserved
MTM3RES80 EQU X’80’ Must not be used
MTM3RES40 EQU X’40’ Must not be used
MTM3RES20 EQU X’20’ Must not be used
MTM3RES10 EQU X’10’ Must not be used
MTM3RES08 EQU X’08’ Must not be used
MTMNOSUID EQU X’04’ Dont allow setuid
MTMSYNCHONLY EQU X’02’ Mount must be completed
* synchronously. That is, mount()
* must not return +1
MTMREMOUNT EQU X’01’ Change attributes of mounted file
* system
MTM4 DS B Flag byte 4 - reserved
MTMNOSEC EQU X’80’ NoSecurity option
MTM4RES40 EQU X’40’ Must not be used
MTM4RES20 EQU X’20’ Must not be used
MTMAMOVE EQU X’10’ Automove option
MTMAUNMOUNT EQU X’08’ UnMount during recovery
MTM4RES08 EQU X’08’ Must not be used
MTM4RES04 EQU X’04’ Must not be used
MTM4RES02 EQU X’02’ Must not be used
MTM#LENGTH EQU *-MTM Length of this structure
** BPXYMTM End

BPXYOCRT — Map the OE Certificate Support Structure
BPXYOCRT ,

** BPXYOCRT: OE Certificate support structure
** Used By: TLS
OCRT DSECT ,
OCRTTYPE DS F type of certificate attached
OCRTUSERID DS CL9 MVS userid, null terminated, input/output

DS CL3 reserved
OCRTCLEN DS F length of certificate associated with type

BPXYMTM

990 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

OCRTCPTR DS A ptr to the actual certifcate
OCRT_LEN EQU *-OCRT
OCRT_X509 EQU 1 Certificate type X509
** BPXYOCRT End

BPXYOEXT — Map the Common External Control Block
DSECT=NO is not allowed. The storage belongs to z/OS UNIX.

BPXYOEXT ,
** BPXYOEXT: Common External Control Block
*
* The address of BPXYOEXT control block can be obtained as follows:
*
* L 14,16(0,0) GET CVT ADDRESS
* L 15,140(0,14) GET ECVT ADDRESS
* L 14,244(0,15) GET BPXYOEXT ADDRESS
*
*
* OEXT user exit support:
*
* When the kernel detects that the OEXTUSEREXIT address is
* non-zero, control will be given to this exit on:
*
* 1) Successful completion of the GETPWNAME service and
* specified name matches invoking userid.
*
* Parm 1 = 4 byte function code set to OEXT#UEGETPWNAME
* Parm 2 = 4 byte length of Current Working Directory
* Parm 3 = N byte Current Working Directory
*
* Purpose of call is to allow exit to examine/change CWD.
* Length of CWD must remain the same.
*
* User Exit will be given control in supervisor state key zero.
*
* Input: ---------------
* Register 1 = Parmlist address ---> | Parm 1 addr |
* ---------------
* | Parm 2 addr |
* ---------------
* .
* .
* Bit 31 on ---------------
* in last -->| Parm N addr |
* parm ---------------
*
*
* Register 13 = Save area address
* Register 14 = Return address
*
* Output:
* Possible modification of CWD, length must not change.
*
* Exit will be passed a 64 bytes save area in Register 13. It is
* the responsibility of the User Exit to save all resisters upon
* entry and to restore all registers before return.
*
*
OEXT DSECT ,
OEXTID DS CL4 Eye catcher
OEXTSP DS FL1 Subpool of this structure
OEXTLEN DS FL3 Length this structure
OEXTFLGS DS 0CL4
OEXTFLG1 DS B
OEXTF1DEFSEG EQU X’80’ OMVS default segment exists
* EQU X’40’ Reserved for future use

BPXYOCRT

Appendix B. Mapping macros 991

OEXTSYSPLEXACTV EQU X’20’ OMVS is a member of sysplex
OEXTNOACCT EQU X’10’ Don’t allow user to change acct-info
*
OEXTSETIP
*
OEXTGRPIDVALID EQU X’04’ If on, OextTtyGrpId is valid
OEXTSERVICESAVAILABLE EQU X’02’ IF ON, USS Services Available
OEXTFLG2 DS B
OEXTFLG3 DS B
OEXTFLG4 DS B
OEXTSTARTM DS BL.64 Time OpenEdition MVS was started
* (TOD format)
OEXTSMFP DS A Pointer to the SMF Process accounting
* data collection routine. This offset
* must not change. It is hardcoded in
* executable macro BPXESMF.
OEXTLVL DS 0XL4 OpenEdition MVS Release level
* indicator
* (Multiple bits may be set, e.g.
* OEXT1120 and OEXT1130 will both
* be set)
OEXTLV0 DS XL1 Byte 0 of OEXTLVL
* EQU X’80’ Reserved
OEXT1120 EQU X’40’ HOM1120 functions are present
OEXT1130 EQU X’20’ HOM1130 functions are present
OEXT1130IPC EQU X’10’ HOM1130 functions InterProcess
* Communication (IPC), NFSC, directory
* sticky bit, lchown UID=-1, are
* present.
OEXT1140 EQU X’08’ HOM1140 functions are present
OEXT1150 EQU X’04’ HBB6603 functions are present. Future
* OpenEdition release indicators will
* not be added since OpenEdition MVS is
* now an integral part of the BCP.
OEXTTECFS EQU X’02’ The Thli ECB comunication function is
* supported
OEXTTAFS EQU X’01’ The MvsThreadAffinity function is
* supported
OEXTLV1 DS XL1 Byte 1 of OEXTLVL
OEXTPQG EQU X’80’ The pthread_quiesce_and_get_np
* function (BPX1PQG) is supported

DS XL2 Bytes 2-3 of OEXTLVL
OEXTAPPCBPXEXIT DS A Pointer to the OpenEdition MVS Exit
* for APPC Processing.
OEXTTIXP DS A Pointer to OpenEdition timer exit.
* Invoked by IEAVLEXT.
OEXTRUNOPTSPTR DS A Pointer to the RUNOPTS() string
* specified at IPL time.
OEXTRUNOPTSLEN DS FL4 Length of the RUNOPTS() string
* specified at IPL time.
OEXTBPXWLMEXIT DS A Pointer to OpenMVS Exit for WLM
* IWMUWON timeout processing
OEXTUSEREXIT DS A Pointer to OpenMVS User Exit
OEXTMSGACBRTN DS A Pointer to JESYSMSG ACB PUT rtn
OEXTPARMLIBPTR DS A Pointer to USS Parmlib Data Area
OEXTARG_MAX DS FL4 Sysconf ARG_MAX value
OEXTCLK_TCK DS FL4 Sysconf CLK_TCK value
OEXTTZNAME_MAX DS FL4 Sysconf TZNAME_MAX value
OEXTJOB_CONTROL DS FL4 Sysconf JOB_CONTROL value
OEXTVERSION DS FL4 Sysconf VERSION value
OEXT2_CHAR_TERM DS FL4 Sysconf CHAR_TERM value
OEXTTTYGRPID DS FL4 sysconf TTY_GROUP value

DS 1CL0008 Reserved
DS 0D Ensure end on double word boundary

BPXYOEXT

992 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

OEXT#LENGTH EQU *-OEXT Length of this structure
OEXT#UEGETPWNAME EQU 1 Function code indicating user exit
* called from getpwname
** BPXYOEXT End

BPXYOPNF — Map Flag Values for open
BPXYOPNF ,

** BPXYOPNF: File status flags
** Used By: FCT OPN
O_FLAGS DSECT ,
O_FLAGS1 DS B Open flags - byte 1
OPNFHIGH EQU X’80’ DO NOT USE THIS BIT!
* O_FLAGS must never be < 0
O_FLAGS2 DS B Open flags - byte 2
OPNFEXEC EQU X’80’ Execute access requested -
* authorization required for use
O_FLAGS3 DS B Open flags - byte 3
O_NOLARGEFILE EQU X’08’ Large Files not allowed
O_LARGEFILE EQU X’04’ Ignored
O_ASYNCSIG EQU X’02’ An asynchronous signal may occur
O_SYNC EQU X’01’ Force synchronous updates
O_FLAGS4 DS B Open flags - byte 4
O_CREXCL EQU X’C0’ Create file only if non-existent
O_CREAT EQU X’80’ Create file
O_EXCL EQU X’40’ Exclusive flag
O_NOCTTY EQU X’20’ Not a controlling terminal
O_TRUNC EQU X’10’ Truncate flag
O_APPEND EQU X’08’ Set offset to EOF on write
O_NONBLOCK EQU X’04’ Don’t block this file
FNDELAY EQU X’04’ Don’t block this file
O_RDWR EQU X’03’ Open for Read and Write
O_RDONLY EQU X’02’ Open for Read Only
O_WRONLY EQU X’01’ Open for Write Only
O_ACCMODE EQU X’03’ Mask for file access modes
O_GETFL EQU X’0F’ Mask for file access modes and
* file status flags together
OPNF#LENGTH EQU *-O_FLAGS Length of this structure
** BPXYOPNF End

BPXYPCF — Command Values for pathconf and pathconf
BPXYPCF is composed only of EQUates. DSECT= is allowed but ignored.

BPXYPCF ,
** BPXYPCF: Command values
** Used By: FPC PCF
PC_CHOWN_RESTRICTED EQU 1 _POSIX_CHOWN_RESTRICTED option
PC_LINK_MAX EQU 2 LINK_MAX option
PC_MAX_CANON EQU 3 _POSIX_MAX_CANON option
PC_MAX_INPUT EQU 4 _POSIX_MAX_INPUT option
PC_NAME_MAX EQU 5 NAME_MAX option
PC_NO_TRUNC EQU 6 _POSIX_NO_TRUNC option
PC_PATH_MAX EQU 7 PATH_MAX option
PC_PIPE_BUF EQU 8 PIPE_BUF option
PC_VDISABLE EQU 9 _POSIX_VDISABLE option
PC_ACL EQU 10 _PC_ACL option
PC_ACL_ENTRIES_MAX EQU 11 _PC_ACL_ENTRIES_MAX
PC_CASE EQU 100 Case Flags
*
PCFGMAX EQU 11 Max _POSIX_ value
*
* Pathconf Case Flags - vn_pathconf(PC_CASE) returned value
PCCASEFLAGS DSECT ,

DS XL3
PCCASEFLAGSBYTE DS XL1
PCCASEINSENSITIVE EQU X’02’ 0=SENSITIVE,1=NOT

BPXYOEXT

Appendix B. Mapping macros 993

PCCASENONPRESERVING EQU X’01’ 0=PERSERVING,1=NOT
*
* Pathconf File Group - for v_pathconf(BPX1VPC)
PCFG DSECT ,
PCFGLINKMAX DS F LINK_MAX
PCFGNAMEMAX DS F NAME_MAX
PCFGPCFLAGS DS XL1 FLAGS:
PCFGNOTRUNC EQU X’80’ POSIX_NO_TRUNC
PCFGCHOWNRSTD EQU X’40’ CHOWN RESTRICTED
PCFGCASEINSENSITIVE EQU X’20’ 0=SENSITIVE,1=NOT
PCFGCASENONPRESERVING EQU X’10’ 0=PERSERVING,1=NOT
PCFGSECACL EQU X’08’ 0=ACLSUPPORT,1=NONE

DS XL3
*
** BPXYPCF End

BPXYPEDB — Mapping of Process Exit Data Block f
BPXYPEDB ,

PEDB DSECT PEDB - Process Exit Data Block
PEDBEYE DS 1CL0004 Eye catcher - ’PEDB’
PEDBLENGTH DS 1FL2 Length of structure
PEDBVERSION DS 1FL1 Version number
PEDBEXITPOINTID DS 1FL1 Unique value identifying exit point, these X

constants are defined below
PEDBFLAGS DS 0FL4 Flags
PEDBCREATEDVIAFLAGS DS 0CL0001 Bits indicating what the process is X

being created via
PEDBVIAFORK EQU X’80’ On = process is being created via fork()
PEDBVIASPAWN EQU X’40’ On = process is being created via spawn()
PEDBVIAATTEXEC EQU X’20’ On = process is being created via X

attach_exec()
PEDBVIAATTEXECMVS EQU X’10’ On = process is being created via X

attach_execmvs()
PEDBVIA1STCALLABLE EQU X’08’ On = process is being created via the 1st X

callable service from a non-USS address space
ORG PEDBCREATEDVIAFLAGS+X’00000001’

PEDBFLAGS2 DS 0CL0001 2nd flag byte
PEDBVIAMEMTERM EQU X’80’ On = process is being terminated via memterm
PEDBVIAABTERM EQU X’40’ On = process is being terminated via abterm

ORG PEDBFLAGS2+X’00000001’
PEDBFLAGS3 DS 1CL0001 3rd flag byte
PEDBFLAGS4 DS 1CL0001 4th flag byte
PEDBUNIQUEID DS 1BL8 A Unique Id identifying this process’s set of X

exits. This Id is the same starting at the X
pre-process initialization exit all the way X
to the pre-process term exit. It also happens X
to be TOD when the pre-process initial- X
zation exit was called.

*
* ***
* * *
* * Information specific to Initiator of the new process *
* * (creator) This section is filled out ONLY when the following*
* * exits hit: BPX_PREPROC_INIT - pre-process initialization *
* * BPX_POSPROC_INIT - post process initialization *
* * BPX_IMAGE_INIT - process image change This section is NOT *
* * filled out by the following exits: BPX_PREPROC_TERM - *
* * pre-process termination *
* * *
* ***
*
*
PEDBCREATORINFO DS 0CL0164
PEDBCREATORPROCID DS 1FL4 Process ID initiating New process
PEDBCREATORASID DS 1FL2 ASID of initiating new process
PEDBCREATORUSERIDLEN DS 1FL1 Length of the Userid initiating the new X

BPXYPCF

994 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

process
PEDBCREATORALIASLEN DS 1FL1 Length of the Alias initiating the new X

process
PEDBCREATORPROGNAMELEN DS 1FL2 Length of the Program Name initiating X

new process
DS 1FL2 Reserved

PEDBCREATORJOBNAME DS 1CL0008 Jobname initiating the new process
PEDBCREATORUSERID DS 1CL0008 Userid initiating the new process
PEDBCREATORALIAS DS 1CL0008 Alias initiating the new process
PEDBCREATORPROGNAME DS 1CL0128 Program Name of the initiating new X

process
*
* ***
* * *
* * New Process / Terminating Process Information (child) This *
* * section is filled out ONLY when the following exits hit: *
* * BPX_POSPROC_INIT - post process initialization *
* * BPX_IMAGE_INIT - process image change BPX_PREPROC_TERM - *
* * pre-process termination This section is NOT filled out by *
* * the following exits: BPX_PREPROC_INIT - pre-process *
* * initialization *
* * *
* ***
*
*
PEDBNEWINFO DS 0CL0164
PEDBTERMINFO DS 0CL0164
PEDBNEWPROCID DS 0FL4 Process ID of New process
PEDBTERMPROCID DS 1FL4 Process ID for the terminating process
PEDBNEWASID DS 0FL2 ASID of new process
PEDBTERMASID DS 1FL2 ASID of the terminating process
PEDBNEWUSERIDLEN DS 0FL1 Length of the Userid of the new process
PEDBTERMUSERIDLEN DS 1FL1 Length of the Userid of the terminating X

process
PEDBNEWALIASLEN DS 0FL1 Length of the Alias of the new process
PEDBTERMALIASLEN DS 1FL1 Length of the Alias of the terminating X

process
PEDBNEWPROGNAMELEN DS 0FL2 Length of the Program Name of the new X

process
PEDBTERMPROGNAMELEN DS 1FL2 Length of Program Name of the terminating X

process
DS 1FL2 Reserved

PEDBNEWJOBNAME DS 0CL0008 Jobname of new process
PEDBTERMJOBNAME DS 1CL0008 Jobname of terminating process
PEDBNEWUSERID DS 0CL0008 Userid of the new process
PEDBTERMUSERID DS 1CL0008 Userid of the terminating process
PEDBNEWALIAS DS 0CL0008 Alias of the new process
PEDBTERMALIAS DS 1CL0008 Alias of the terminating process
PEDBNEWPROGNAME DS 0CL0128 Program Name of the new process
PEDBTERMPROGNAME DS 1CL0128 Program Name of the terminating process
*
* ***
* * *
* * *
* ***
*
*

DS 1CL0064 Reserved for future use
PEDBVER1LEN DS 0C End of Version 1
PEDB#ID EQU C’PEDB’ Eye catcher
PEDB#VER EQU 1 Current version of this control block
PEDB#VER01 EQU 1 Version 1 of control block
PEDB#LEN01 EQU 412 Version 1 of PEDB control block len
PEDB#LEN EQU 412 Length of PEDB
*
* Constants to fill in PEDBExitPointId field
*

BPXYPEDB

Appendix B. Mapping macros 995

*
PEDB_BPX_PREPROC_INIT EQU 1 Identifies that this this structure was X

built for the pre-process initiation exit
PEDB_BPX_POSPROC_INIT EQU 2 Identifies that this this structure was X

built for the post process initiation exit
PEDB_BPX_IMAGE_INIT EQU 3 Identifies that this this structure was X

built for the process image change exit
PEDB_BPX_PREPROC_TERM EQU 4 Identifies that this this structure was X

built for the pre-process termination
PEDB_LEN EQU *-PEDB

BPXYPGPS — Map the Response Structure for w_getpsent
VARLEN accepts three operands. Operands omitted (like the first) default to the
maximum needed. Use zero if the associated field is not needed.

VARLEN describes the number of bytes to map the following:
1. Controlling TTY name and its length
2. Pathname and its length
3. Command and its length

BPXYPGPS VARLEN=(1028,1028,1028)
** BPXYPGPS: w_getpsent return data structure
** Used By: GPS
PGPS DSECT ,
PGPSSTATUS0 DS B MVS status
PGPSSWAP EQU X’80’ Swapped out
* EQU X’7F’ Not Used
PGPSSTATUS1 DS B Process status
PGPSSTOPPED EQU X’80’ Stopped process
PGPSTRACE EQU X’40’ PTrace active
PGPSMULTHREAD EQU X’20’ 0=One open task in process
PGPSPTHREAD EQU X’10’ 0=No pthread task in process
PGPSMULPROCESS EQU X’08’ 0=One process in addr space
* EQU X’07’ Not Used
PGPSSTATUS2 DS B System Call Status
PGPSLENERR EQU X’80’ PGPSLENGTH conflict
* EQU X’7F’ Not Used
PGPSSTATUS3 DS CL1 State of reported task - with
* PGPSPTHREAD=0 the most recent created thread
* PGPSPTHREAD=1 the initial pthread task (IPT)
PGPSMSGRCV EQU C’A’ IPC MSGRCV WAIT
PGPSMSGSND EQU C’B’ IPC MSGSND WAIT
PGPSWAITC EQU C’C’ COMM KERNELWAIT
PGPSSEMOP EQU C’D’ IPC SEMOP WAIT
PGPSFREEZE EQU C’E’ QUIESCEFREEZE
PGPSWAITF EQU C’F’ F S KERNEL WAIT
PGPSMVSPAUSE EQU C’G’ MVSPAUSE
PGPSZOMBIE2 EQU C’L’ PROCESS TERMINATED AND STILL
* SESSION OR PROCESS GROUP LEADER
PGPSWAITO EQU C’K’ OTHER KERNEL WAIT
PGPSQUIESCET EQU C’Q’ QUIESCE TEMRINATION WAIT
PGPSRUN EQU C’R’ NOT KERNEL WAIT
PGPSSLEEP EQU C’S’ SLEEP() ISSUED
PGPSCHILD EQU C’W’ WAITING FOR CHILD
PGPSFORK EQU C’X’ FORK NEW PROCESS
PGPSZOMBIE EQU C’Z’ PROCESS TERMINATED AND PARENT
* HAS NOT ISSUED WAIT SYSCALL
PGPSPID DS F Process ID
PGPSPPID DS F Parent ID
PGPSSID DS F Session ID (leader)
PGPSPGPID DS F Process Group
PGPSFGPID DS F Foreground Process Group
PGPSEUID DS F Effective User ID
PGPSRUID DS F Real User ID
PGPSSUID DS F Saved Set User ID

BPXYPEDB

996 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PGPSEGID DS F Effective Group ID
PGPSRGID DS F Real Group ID
PGPSSGID DS F Saved Set Group ID
PGPSTSIZE DS F Total size
PGPSSTARTTIME DS F Starting time, GMT since EPOCH
PGPSUSERTIME DS F User CPU time (clock_t)
PGPSSYSTIME DS F System CPU time (clock_t)
PGPSCONTTYBLEN DC A(1028) L’PGPSCONTTYBUF
PGPSCONTTYPTR DC A(PGPSCONTTYBUF) ->PGPSCONTTYBUF
PGPSPATHBLEN DC A(1028) L’PGPSPATHBUF
PGPSPATHPTR DC A(PGPSPATHBUF) ->PGPSPATHBUF
PGPSCMDBLEN DC A(1028) L’PGPSCMDBUF
PGPSCMDPTR DC A(PGPSCMDBUF) ->PGPSCMDBUF
PGPSSERVERTYPE DS F Server type (FILE=1, LOCK=2)
PGPSSERVERNAME DS CL32 Name supplied on registration
PGPSMAXVNODETOKENS DS F Max number of VNode Toks allowed
PGPSVNODETOKENCOUNT DS F Current number of VNode Tokens
PGPSSERFLAGS DS F Server flags
PGPSSYSCALLCOUNT DS F Count of syscalls this process
PGPSJOBNAME DS CL8 AscbJBNI/JBNS JobName
PGPSWAITTIME DS F Since Kern Wait Started
PGPSASID DS FL2 Address space ID
PGPS#LENGTH EQU *-PGPS Length of this structure
* Variable portion - Controlling terminal buffer
*
* Notes on format of controlling terminal string in PGPSCONTTYBUF
* 1. Controlling terminal string returned in PGPSCONTTY is
* null-terminated.
* 2. The PGPSCONTTYLEN value does NOT include the terminating
* null character.
PGPSCONTTYBUF DS 0CL1028 ConTty Len+Buf
PGPSCONTTYLEN DS FL4 Length ConTty returned
PGPSCONTTY DS CL1024 ConTty (len+1-th char=null)
*
* Notes on format of path string in PGPSPATHBUF:
* 1. Pathname returned in PGPSPATH is null-terminated.
* 2. The PGPSPATHLEN value does NOT include the terminating null
* character.
* 3. TSO (non-shell) pathnames may be padded with spaces to eight
* characters.
PGPSPATHBUF DS 0CL1028 Pathname Len+Buf
PGPSPATHLEN DS FL4 Length Pathname returned
PGPSPATH DS CL1024 Pathname (len+1-th char=null)
*
* Notes on format of PGPSCMDBUF:
* 1. PGPSCMD consists of one or more character fields representing
* the command and its arguments (if any).
* 2. Each character field consists of a four byte length field and
* a null-terminated character string.
* 3. TSO (non-shell) commands may be padded with spaces to eight
* characters.
* 4. Unlike PGPSCONTTYLEN and PGPSPATHLEN, each character field
* length value DOES include the null-terminating character.
* 5. The PGPSCMDLEN value is the sum of all character fields (length
* fields and character strings).
PGPSCMDBUF DS 0CL1028 Command Len+Buf
PGPSCMDLEN DS FL4 Length Command returned
PGPSCMD DS CL1024 Command (array of len, element)
PGPS#STORAGE EQU *-PGPS Length, total area used
** BPXYPGPS End

BPXYPGTH — Map the Response Structure for __getthent
BPXYPGTH ,

** BPXYPGTH: __getthent input and output structures
** Used By: GTH
PGTHA DSECT , I N P U T - - - - - - - - - - -

BPXYPGPS

Appendix B. Mapping macros 997

PGTHACONTINUE DS 0CL14
PGTHAPID DS F PROCESS ID (IGNORED IF FIRST)
PGTHATHID DS CL8 THREAD ID (IGNORED IF FIRST/LAST)
PGTHAACCESSPID DS FL1 FIRST, CURRENT, NEXT
PGTH#NEXT EQU 2 NEXT AFTER SPECIFIED
PGTH#CURRENT EQU 1 AS SPECIFIED
PGTH#FIRST EQU 0 FIRST (EQUIV NEXT WITH PID=0)
PGTH#LAST EQU 3 only with PGTHIACCESSTHID
PGTHAACCESSTHID DS FL1 FIRST, CURRENT, NEXT, LAST
* ONLY FLAG1 BITS THREAD AND PTAG WILL BE CONSIDERED WHEN
* ACCESSPID=CURRENT AND ACCESSTHID=NEXT
* ASID AND LOGINNAME FILTERS APPLY ONLY WHEN ACCESSPID = FIRST, NEXT
PGTHAASID DS FL2 FILTER - ASID
* LOGINNAME COMPARISON WILL LOOK FOR UNIX ALIAS. IF PGHTALOGINNAME
* IS NOT AN ALIAS, IT WILL BE SHIFTED TO UPPER CASE AND CHECKED
* AGAINST MVS ID.
PGTHALOGINNAME DS CL8 FILTER - USERID ALIAS OR MVS
PGTHAFLAG1 DS FL1 WHAT OUTPUT AREAS TO INCLUDE
PGTHAPROCESS EQU X’80’ PGTHC, PROCESS DATA
PGTHACONTTY EQU X’40’ PGTHD, CONTTY
PGTHAPATH EQU X’20’ PGTHE, PATH
PGTHACOMMAND EQU X’10’ PGTHF, CMD & ARGS
PGTHAFILEDATA EQU X’08’ PGTHG, FILE DATA
PGTHATHREAD EQU X’04’ PGTHJ, THREAD DATA
PGTHAPTAG EQU X’02’ PGTHK, PTAG (NEEDS PGTHJ)

DS FL1
PGTHA#LEN EQU *-PGTHA
PGTHB DSECT , O U T P U T - - - - - - - - - -
PGTHBID DS CL4 "gthb"
PGTHBCONTINUE DS 0CL14 NEXT VALUE FOR PGTHACONTINUE
PGTHBPID DS F PROCESS ID
PGTHBTHID DS CL8 THREAD ID
PGTHBACCESSPID DS FL1 CURRENT/FIRST/NEXT
PGTHBACCESSTHID DS FL1 CURRENT/FIRST/NEXT/LAST

DS FL2
PGTHBLENUSED DS F LENGTH OF OUTPUT BUFFER USED
PGTHBLIMITC DS CL1 N, A
PGTHBOFFC DS FL3 OFFSET OF PROCESS AREA
PGTHBLIMITD DS CL1 N, A, X
PGTHBOFFD DS FL3 OFFSET OF CONTTY AREA
PGTHBLIMITE DS CL1 N, A, X
PGTHBOFFE DS FL3 OFFSET OF PATH AREA
PGTHBLIMITF DS CL1 N, A, X
PGTHBOFFF DS FL3 OFFSET OF COMMAND AREA
PGTHBLIMITG DS CL1 N, A, X
PGTHBOFFG DS FL3 OFFSET OF FILE DATA AREA
PGTHBLIMITJ DS CL1 N, A, V, X
PGTHBOFFJ DS FL3 OFFSET OF THREAD AREA
PGTHB#LEN EQU *-PGTHB
* VALUES FOR PGTH.LIMIT. FIELDS
PGTH#NOTREQUESTED EQU C’N’ Associated PghtA.. bit off
PGTH#OK EQU C’A’ All data included
PGTH#STORAGE EQU C’S’ output buffer exhausted
* EXHAUSTED STORAGE < 1ST PGTHJ RESULTS IN -1 EINVAL JRBUFFTOOSMALL
PGTH#VAGUE EQU C’V’ Changed out from under us
PGTH#NOTCONNECTED EQU C’X’ Need data not connected
* USING PGTHC,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFC
PGTHC DSECT , P R O C E S S - - - - - - - - -
PGTHCID DS CL4 "gthc"
PGTHCFLAG1 DS FL1
PGTHCMULPROCESS EQU X’80’ MULTIPLE PROCESSES
PGTHCSWAP EQU X’40’ TCBOUT
PGTHCTRACE EQU X’20’ THREAD IS BEING TRACED
PGTHCSTOPPED EQU X’10’ STOPPED
PGTHCINCOMPLETE EQU X’08’ NOT ALL BLOCKS PRESENT
PGTHCZOMBIE EQU X’04’ PROCESS IS A ZOMBIE

DS 3FL1

BPXYPGTH

998 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PGTHCPID DS F PROCESS ID
PGTHCPPID DS F PARENT ID
PGTHCPGPID DS F PROCESS GROUP
PGTHCSID DS F SESSION ID
PGTHCFGPID DS F FOREGROUND PROCESS GROUP
PGTHCEUID DS F EFFECTIVE USER ID
PGTHCRUID DS F REAL USER ID
PGTHCSUID DS F SAVED SET USER ID
PGTHCEGID DS F EFFECTIVE GROUP ID
PGTHCRGID DS F REAL GROUP ID
PGTHCSGID DS F SAVED SET GROUP ID
PGTHCTSIZE DS F TOTAL SIZE
PGTHCSYSCALLCOUNT DS F COUNT OF SLOW-PATH SYSCALLS
PGTHCUSERTIME DS F TIME SPENT IN USER CODE
PGTHCSYSTIME DS F TIME SPENT IN SYSTEM CODE
PGTHCSTARTTIME DS F TIME PROCESS WAS DUBBED
PGTHCCNTOE DS FL2 NO. OE THREADS
PGTHCCNTPTCREATED DS FL2 NO. PTHREAD CREATED THREADS
PGTHCCNTTHREADS DS FL2 COUNT OF ALL THREADS
PGTHCASID DS FL2 ADDRESS SPACE ID
PGTHCJOBNAME DS CL8 MVS JOB NAME
PGTHCLOGINNAME DS CL8 LOGIN NAME - ALIAS OR MVS
PGTHC#LEN EQU *-PGTHC
* USING PGTHD,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFD
PGTHD DSECT , C O N T T Y - - - - - - - - - -
PGTHDID DS CL4 "gthd"
PGTHDLEN DS FL2 Length of ConTty
PGTHDCONTTY DS CL1024 1024 = max ConTty
* USING PGTHE,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFE
PGTHE DSECT , P A T H - - - - - - - - - - - -
PGTHEID DS CL4 "gthe"
PGTHELEN DS FL2 Length of Path
PGTHEPATH DS CL1024 1024 = max path
* USING PGTHF,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFF
PGTHF DSECT , C O M M A N D - - - - - - - - -
PGTHFID DS CL4 "gthf"
PGTHFLEN DS FL2 Length of command and arguments
PGTHFCOMMAND DS CL1024 1024 = max command
* USING PGTHG,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFG
PGTHG DSECT , F I L E H E A D E R - - - - -
PGTHGID DS CL4 "gthg"
PGTHGLIMITH DS CL1 N, A, S, X
PGTHGOFFH DS FL3 Offset of PgthH
PGTHGCOUNT DS F Count of PgthH elements
PGTHGMAXVNODETOKENS DS F MAX NUMBER VNODE TOKENS
PGTHGVNODETOKENCOUNT DS F CURRENT NUMBER VNODE TOKENS
PGTHGSERVERFLAGS DS F SABFLAGS
PGTHGSERVERNAME DS CL32 SABSERVERNAME SERVER=
PGTHGACTIVEFILES DS F SABVDECOUNT AF=
PGTHGMAXFILES DS F SABMAXVDES MF=
PGTHGSERVERTYPE DS F SABSERVERTYPE TYPE=
PGTHG#LEN EQU *-PGTHG
PGTHGARRAY DS 0C first PGTHH
* USING PGTHH,Rx where Rx = ADDRESS of PGTHB + PGHTGOFFH
* Increment Rx by PGTHH#LEN until PGTHGCOUNT exhausted
PGTHH DSECT , F I L E D A T A - - - - - - -
PGTHHID DS CL2
PGTHH#IDR EQU C’rd’ root directory (first)
PGTHH#IDC EQU C’cd’ current directory (second)
PGTHH#IDF EQU C’fd’ file directory
PGTHH#IDV EQU C’vd’ vnode directory
PGTHHTYPE DS BL1 Mapped in BPXYFTYP see FT_DIR +
PGTHHOPEN DS BL1 Mapped in BPXYOPNF see O_FLAGS4
PGTHHINODE DS F I-NODE see stat()
PGTHHDEVNO DS F DEVICE NUMBER see stat()
PGTHH#LEN EQU *-PGTHH
* USING PGTHJ,Rx where Rx = ADDRESS of PGTHB + PGTHBOFFJ

BPXYPGTH

Appendix B. Mapping macros 999

* Reset Rx to be PGTHB + PGTHJOFFJ for the next thread
PGTHJ DSECT , T H R E A D - - - - - - - - - -
PGTHJID DS CL4 "gthj"
PGTHJLIMITJ DS CL1 A, S, X
PGTHJOFFJ DS FL3 Offset of next PgthJ
PGTHJLIMITK DS CL1 N, A, S, X
PGTHJOFFK DS FL3 Offset of PgthK, this thread
PGTHJTHID DS CL8 THREAD ID
PGTHJSYSCALL DS CL4 SYSCALL (eg. "1FRK" for fork)
PGTHJTCB DS A TCB ADDRESS
PGTHJTTIME DS F TIME RUNNING .001 SECS
PGTHJWTIME DS F OE WAITING TIME .001 SECS

DS F space
PGTHJSEMNUM DS H SEMAPHORE NUMBER IF STATUS2=D
PGTHJSEMVAL DS H SEMAPHORE VALUE IF STATUS2=D
PGTHJLATCHWAITPID DS F LATCH PROCESS ID WAITED FOR
PGTHJPENMASK DS XL8 SIGNAL PENDING MASK
PGTHJLOGINNAME DS CL8 LOGIN NAME - ALIAS or MVS
PGTHJPREVSC DS 5CL4 LAST FIVE SYSCALLS
PGTHJSTATUSCHARS DS 0CL5 STATUS
PGTHJSTATUS1 DS CL1 STATUS 1
PGTHJ#PthdCreated EQU C’J’ pthread created
PGTHJSTATUS2 DS CL1 STATUS 2
PGTHJ#MsgRcv EQU C’A’ msgrcv wait
PGTHJ#MsgSnd EQU C’B’ msgsnd wait
PGTHJ#WaitC EQU C’C’ communication wait
PGTHJ#Semop EQU C’D’ see PgthJSemVal/SemNum
PGTHJ#WaitF EQU C’F’ file system wait
PGTHJ#MVSPause EQU C’G’ MVS in pause
PGTHJ#WaitO EQU C’K’ other kernel wait
PGTHJ#WaitP EQU C’P’ PTwaiting
PGTHJ#Run EQU C’R’ running / non-kernel wait
PGTHJ#Sleep EQU C’S’ sleep
PGTHJ#Child EQU C’W’ waiting for child
PGTHJ#Fork EQU C’X’ fork new process
PGTHJ#MVSWait EQU C’Y’ MVS wait
PGTHJSTATUS3 DS CL1 STATUS 3
PGTHJ#MediumWght EQU C’N’ medium weight thread
PGTHJ#Async EQU C’O’ asynchronous thread
PGTHJ#IPT EQU C’U’ Initial process thread
PGTHJ#Zombie EQU C’Z’ Process terminated and parent
* has not completed wait
PGTHJSTATUS4 DS CL1 STATUS 4
PGTHJ#Detached EQU C’V’ thread is detached
PGTHJSTATUS5 DS CL1 STATUS 5
PGTHJ#Freeze EQU C’E’ quiesce freeze

DS CL3
PGTHJ#LEN EQU *-PGTHJ
* USING PGTHH,Rx where Rx = ADDRESS of PGTHB + PGTHJOFFK
PGTHK DSECT , P T A G - - - - - - - - - - - -
PGTHKDATALEN DS F LENGTH TO TRAILING NULL
PGTHKDATA DS CL68 SEE pthread_tag_np
PGTHK#LEN EQU *-PGTHH
** BPXYPGTH End

BPXYPOLL — Map poll Syscall Parameters
This structure is passed to the poll syscall.

BPXYPOLL ,
** BPXYPOLL: POLLFD structure for poll syscall
** Used By: POL
POLLFD DSECT ,
POLLHFD DS FL4 File descriptor

ORG POLLHFD
POLLHMQID DS FL4 Message queue identifier
POLLEVENTS DS 0XL2 Events

BPXYPGTH

1000 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

DC XL1’0’ Reserved
DS XL1 POLLEVENTS+1

POLLEPRI EQU X’10’ High-pri data may be recv’d
POLLEWRBAND EQU X’08’ Priority data may be written
POLLEWRNORM EQU X’04’ Data on band 0 may be written.
POLLEOUT EQU X’04’ Same as WrNorm
POLLEIN EQU X’03’ Same as RdNorm
POLLERDBAND EQU X’02’ Non-0 band data may be read
POLLERDNORM EQU X’01’ Data on band 0 may be read.
POLLREVENTS DS 0XL2 Returned events

DS XL1 Reserved
DS XL1 POLLREVENTS+1

POLLRNVAL EQU X’80’ Invalid FD member.(Revent Only)
POLLRHUP EQU X’40’ Hangup occurred (Revent Only)
POLLRERR EQU X’20’ Error occurred. (Revent Only)
POLLRPRI EQU X’10’ High-pri data may be recv’d
POLLRWRBAND EQU X’08’ Priority data may be written
POLLRWRNORM EQU X’04’ Data on band 0 may be written.
POLLROUT EQU X’04’ Same as WrNorm
POLLRIN EQU X’03’ Same as RdNorm
POLLRRDBAND EQU X’02’ Non-0 band data may be read
POLLRRDNORM EQU X’01’ Data on band 0 may be read.
POLLFD#LENGTH EQU *-POLLFD
*
#POLLEMASK EQU X’001F’
#POLLRDMASK EQU X’00130000’ All Read bits
#POLLWRMASK EQU X’000C0000’ All Write bits
#POLLPRIMASK EQU X’00100000’ The PollPri bit
#POLLINMASK EQU X’00030000’ Pollin rdnorm rdband bits
#POLLRNMASK EQU X’00010000’ Read Normal
#POLLWNMASK EQU X’00040000’ Write Normal
#POLLEVMASK EQU X’001F0000’ Events
*
*
** BPXYPOLL End

BPXYPPSD — Map Signal Delivery Data
This structure is passed to a signal interface routine (SIR).

BPXYPPSD ,
** BPXYPPSD: Signal Data Area
** Used By: User written signal interrupt routines
PPSD DSECT ,
PPSDID DC C’PPSD’ Eye catcher
PPSD#ID EQU C’PPSD’ Control Block Acronym
PPSDSP DS FL1 Subpool number of this PPSD
PPSD#SP EQU 230 Subpool for the PPSD
PPSDLEN DC AL3(PPSD#LENGTH) Length this structure
*
* ***
* PpsdSIRParms is used to setup up a parameter list to the
* Signal Interface Routine (SIR). When the SIR is invoked, the
* address of PpsdSIRParms field is set in Register 1. The
* PpsdAddrPpsd contains the address of the Ppsd.
* ***
*
PPSDSIRPARMS DS 0A SIR Parameters
PPSDADDRPPSD DC A(PPSD) Pointer to the top of the Ppsd
PPSDSIRPARMEND EQU X’80’ End of Parameters flag set on
PPSDTRMEXITSTATUS DS F 4 Byte status passed to PRTRM
PPSDSIGNUM DS F Signal number
PPSDFL DS XL2 X’7FFF’ reserved

ORG PPSDFL
PPSDFLAGS2A DS 0B
PPSDQUIESCEFREEZE EQU X’80’ Interrupt due to freeze
PPSDSIRCOMPLETE EQU X’40’ Sir done with async I/O exits

BPXYPOLL

Appendix B. Mapping macros 1001

PPSDPROCDFT EQU X’20’ Process default
PPSDSIGQUEUE EQU X’10’ NSSGQ queued signal
PPSDREDRIVE EQU X’08’ SPB will Resend signal later
PPSDJUMPBACK EQU X’04’ SPB return to point of interrupt
PPSDMASKONLY EQU X’02’ SPB restore mask only
PPSDSIGTHSTOP EQU X’01’ Interrupt due to thread-stop
* signal

ORG PPSDFL+0001
PPSDFLAGS2B DS B
PPSDQUIESCEANDGET EQU X’80’ Interrupt due to
* pthread_quiesce_and_get_np
PPSDACTION DS B Action for this signal
* EQU 4 catch
* EQU 5 SIR determines default action
PPSDFLAGS DS B X’00’ reserved
PPSDASYNC EQU X’80’ Signal delivered Asynchronously
PPSDDUMP EQU X’40’ Dump for terminating signals
PPSDPTHREADKILL EQU X’20’ Signal sent via BPX1PTK
PPSDTHISTHREADGEN EQU X’10’ Sending=Receiving thread
PPSDSIGNAL EQU X’08’ Interrupt due to signal
PPSDCANCEL EQU X’04’ Interrupt due to cancel
PPSDQUIESCE EQU X’02’ Interrupt due to quiesce
PPSDIPT EQU X’01’ If ON then this is the IPT
PPSDSAHANDLER DS A Addr of catcher function
PPSDSAMASK DS XL8 Signal mask set by BPX1SIA for
* this signal
PPSDSAFLAGS DS XL4 X’00FFFFFF’ reserved
PPSDNOCLDSTOP EQU X’80’ Do not generate SIGCHLD on stops
PPSDOLDSTYLE EQU X’40’ Signal defined by signal() funct.
PPSDONSTACK EQU X’20’ Deliver on alternate stack
PPSDRESETHAND EQU X’10’ Reset action on delivery
PPSDRESTART EQU X’08’ Restart interruptable funcs
PPSDSIGINF EQU X’04’ Pass sig info to catcher
PPSDNOCLDWAIT EQU X’02’ Don’t create zombie on exit
PPSDNODEFER EQU X’01’ Don’t block sig on delivery
PPSDCURRENTMASK DS XL8 This is the signal mask to be set
* when the signal catcher returns.
* Signal mask at time of interrupt
* except for sigsuspend case. If
* signal during sigsuspend, then
* this mask is the signal mask prior
* to call to sigsuspend.
PPSDSIR DS A Addr Signal interrupt routine
PPSDUSERDATA DS A User data speicified on BPX1MSS
PPSDGENREGS DS CL64 Users general regs at interrupt
PPSDPSW DS XL8 Users PSW at interrupt
PPSDARREGS DS 16F Users AR regs at interrupt
PPSDKILDATA DS FL2 User specified data on BPX1KIL
PPSDKILOPTS DS XL2 X’7FFF’ reserved
* User specified options on BPX1KIL
PPSDPTBYPASS EQU X’80’ Ptrace Bypass option in effect
PPSDKERNSICODE EQU X’40’ PpsdKilData=Kern set SiCode
PPSDAPPLSICODE EQU X’20’ PpsdKilData=Appl set SiCode
PPSDCONSCANCEL EQU X’10’ Console MODIFY cancel qualifier
* in PpdsKilData
PPSDQUIESCEDATA DS F Quiesce_Data specified on BPX1QUT
PPSDLASTPTSIG DS F Last Ptraced Signal
PPSDSIGACTIONDATA DS F User_Data specified on BPX1SIA
PPSDPTXLWAPTR DS A Threads workarea address specified
* on BPX1PTC (pthread_create). This
* address is zero if the thread was
* not pt_created.
PPSDSENDINGTHREAD DS CL8 Sending thread id
PPSDTARGETTHREAD DS CL8 Target thread id
PPSDSENDINGPID DS F Sending process id
PPSDSENDINGUID DS F Sending real uid
PPSDSIADDR DS A Address of faulting instruction

BPXYPPSD

1002 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* for SIGILL, SIGFPE, SIGSEGV
PPSDSISTATUS DS F Exit status or signal
PPSDSIBAND DS F Band event
PPSDERRNO DS F Error return code
PPSDCATCHERMASK DS XL8 Signal Mask to be set before signal
* catcher is called. If signal during
* sigsuspend then this field is same
* as mask specified on sigsuspend. If
* not sigsuspend, then PpsdCatcherMask
* and PpsdCurrentMask are equal.
PPSDEXCOUNT DS FL2 Count of PpsdAiocb’s
PPSDEXLASTIX DS FL2 Last array index used
PPSDAIOCB DS 24F Aiocb Array for Async I/O exit
PPSDSQV DS F Signal si_value
PPSDREDRIVETIME DS F Time to delay signal 1000 per mic
PPSDG64H DS 16F Users G64H at interrupt
PPSDRRTRMMSGTHID DS CL8 Sending thread id for MSG
* BPXP010I

DS 6F Reserved
PPSDEND DS 0D End of PPSD on double word
PPSD#LENGTH EQU *-PPSD Length of this structure
** BPXYPPSD End

BPXYPRLI — Process-level Information
BPXYPRLI ,

** BPXYPRLI: Process Level Information
PRLI DSECT ,
PRLIID DC C’PRLI’ EBCDIC ID
PRLISP DS FL1 Subpool number of this Prli
PRLILEN DS FL3 Length of this Prli
PRLIPROCESSID DS F Process ID. Used for fast getpid()
PRLICATCHERMASK DS BL8 Mask of signals that may be caught
PRLIOAPB DS A Oapb Addr of this process
PRLIFLAG DS BL1 Flag byte
PRLIF1MED EQU B’10000000’ Process is medium weight local
PRLIF1DISSIG EQU B’01000000’ Disable signal delivery
PRLISYSCONFOK EQU B’00100000’ SC_ fields valid. Note, that X

this implies the OEXT SC_ X
fields are also valid

PRLIF1TERMT EQU B’00010000’ Terminate threads
PRLIMAGICNUMBER DS CL2 Magic Number Characters

DS CL1 Reserved
PRLIL16JRC DS F Return code area for L16J FastCGI
PRLIRUID DS A Real Uid addr
PRLIEUID DS A Effective Uid addr
PRLIRGID DS A Real Gid addr
PRLIEGID DS A Effective gid
PRLIPROCGRPID DS A Process Group ID addr
PRLIPARENTPID DS A Parent Process ID addr
PRLITHREADTASKSMAX DS A SC_THREAD_TASK_MAX_NP value addr
PRLITHREADSMAX DS A SC_THREADS_MAX_NP value address
PRLICHILDMAX DS A SC_CHILD_MAX value addr
PRLIOPENMAX DS A SC_OPEN_MAX value address
PRLIMMAPMEMMAX DS A SC_MMAP_MEM_MAX value address
PRLIEND DS 0C End of Prli
PRLI#ID EQU C’PRLI’ Control Block Acronym
PRLI#LEN EQU 32 Length of Prli
PRLI#SP EQU 230 Subpool for the Prli
PRLI_LEN EQU *-PRLI
** BPXYPRLI End

BPXYPTAT — Map Attributes for pthread_exit_and_get
VARLEN defines the number of bytes set aside to define the pthread attributes.

BPXYPPSD

Appendix B. Mapping macros 1003

BPXYPTAT VARLEN=1024
** BPXYPTAT: Pthread Attributes
** Used By:
PTAT DSECT ,
PTATEYE DC C’BPXYPTAT’ Eye Catchter
PTATLENGTH DC A(PTAT#LENGTH) Length of PTAT
PTATSYSOFFSET DC A(PTATSYSOFFVAL) Offset of SYSATTRS
PTATSYSLENGTH DC A(PTATSYSLENVAL) Length of SYSATTRS
PTATUSEROFFSET DC A(PTATUSEROFFVAL) Offset of USERATTRS
PTATUSERLENGTH DC A(L’PTATUSERATTRS) Length of USERATTRS
PTATSYSOFFVAL EQU *-PTAT Offset value of System Attribute Area
PTATSYSATTRS DS 0F System attributes
PTATDETACHSTATE DS F Detach State of thread to be created:
PTATUNDETACHED EQU 0
PTATDETACHED EQU 1
PTATWEIGHT DS F Weight of thread to be created:
PTATHEAVY EQU 0
PTATMEDIUM EQU 1
PTATSYNCTYPE DS F Synchronous processing type of thread:
PTATSYNCHRONOUS EQU 0
PTATASYNCHRONOUS EQU 1 /*
PTATSHSPMASK DS 0XL16 /*

DS XL15 /*
PTATSHSPBYTE16 DS XL1 /*
PTATSHSPINUSE EQU X’01’ 0=system default used
* 1=use mask
* default shared subpools 1, 2, 78

DS CL16 Reserved space in System Attribute Area
PTATSYSLENVAL EQU *-PTATSYSATTRS Length of System Attributes
PTATUSEROFFVAL EQU *-PTAT Offset of user attribute area
PTATUSERATTRS DS CL1024 User attributes area
PTAT#LENGTH EQU *-PTAT Length of this structure
** BPXYPTAT End

BPXYPTRC — Map Parameters for ptrace
VARLEN defines the number of bytes needed to hold the pathname (the default is
the maximum pathname, 1024).

BPXYPTRC
*
* **
* * *
* * Ptrace PT_LDINFO return structure. Note that this maps one *
* * element, corresponding to one load module. Each element *
* * consists of a fixed portion, and a variable portion (the path *
* * name and member name character strings). The character strings *
* * are terminated with a null value (X’00’). Each loader info *
* * element immediately follows the last null terminator for the *
* * previous element. The first full word of each element is an *
* * offset to the next element. Thus, the start of the next element *
* * can be specified as follows: *
* * *
* * NextLDInfo = Addr(PtLDInfo)+PtLDInfoNext *
* * *
* **
*
*
PTLDINFO DSECT
PTLDFIXEDAREA DS 0CL0032
PTLDINFONEXT DS 1FL4 Offset to next element
PTLDINFOFD DS 1FL4 File descriptor for this load module (not X

used)
PTLDTEXTORG DS 1AL4 Program text origin address (i.e. load point X

address)
PTLDTEXTSIZE DS 1FL4 Length of text
PTLDTEXTSUBPOOL DS 1CL0001 Subpool where text is loaded

BPXYPTAT

1004 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PTLDTEXTFLAGS DS 0BL1 Text related flags
PTLDTEXTWRITE EQU X’80’ 0 = text can be read but not written into 1 = X

text can be read and written into
PTLDTEXTMVS EQU X’40’ 0 = File system load module 1 = MVS load X

module
PTLDTEXTEXT EQU X’20’ 0 = Only 1 text extent 1 = More than one text X

extent. First extent is in this element, X
extent 2 - n are in the PtLDInfoExt area

ORG PTLDTEXTFLAGS+X’00000001’
PTLDOFFEXT DS 1FL2 Offset from this element to element X

extension. 0 if there is no extension for X
this element

PTLDDATAORG DS 1AL4 Program data origin address (not used)
PTLDDATASIZE DS 1FL4 Length of data (not used)
PTLDDATASUBPOOL DS 1FL1 Subpool where data is loaded (not used)
PTLDDATAFLAGS DS 1BL1 Data related flags (not used)

DS 1FL2 Reserved
PTLDVARAREA DS 0C
PTLDPATHNAME DS 0C Fully qualified path name of load module
PTLDMEMBERNAME DS 0C Member name of load module (not used)
PTLDINFO_LEN EQU *-PTLDINFO
PTLDINFOEXT DSECT
PTLDINFONUMTEXTEXT DS 1FL2 Number of additional text extents in the X

following arrays that are meaningful, up to X
15 in this area, for a total of 16

DS 1FL2 reserved
PTLDTEXTORGEXT DS 1AL4 Program text origin address (i.e. load point X

address)
ORG PTLDTEXTORGEXT+X’0000003C’

PTLDTEXTSIZEEXT DS 1FL4 Length of text
PTLDNULLTERM EQU 0 Null terminator for character strings

ORG PTLDINFOEXT+X’0000007C’
PTLDINFOEXT_LEN EQU *-PTLDINFOEXT
*
* **
* * *
* * Ptrace thread information return structure. Note that this *
* * maps one element, corresponding to one thread. *
* * *
* * Note: the only valid information for a dead thread is: *
* * *
* * PTPTNEXT, PTPTTHID, PTPTSTATEACTIVE=0, PTPTKERNELPTHREAD, *
* * PTPTEXITSTATUS *
* **
*
*
PTPTINFO DSECT
PTPTNEXT DS 1AL4 Offset to next element
PTPTTHID DS 1CL0008 Thread ID
PTPTRESERVED DS 1CL0016 Reserved
PTPTSTATE DS 0BL4 Thread state flags
PTPTSTATE1 DS 0BL1 Thread state flag byte
PTPTSTATEACTIVE EQU X’80’
*
* ***
* * *
* * 0 = thread is dead
* * 1 = thread is active
* * *
* ***
*
*
PTPTSTATEASYNC EQU X’40’
*
* ***
* * *
* * 1 = thread is asynchronous

BPXYPTRC

Appendix B. Mapping macros 1005

* * (is also active but not
* * yet running)
* * *
* ***
*
*
PTPTSTATECANCELPEND EQU X’20’
*
* ***
* * *
* * 1 = cancel is pending
* * *
* ***
*
*

ORG PTPTSTATE1+X’00000001’
PTPTSTATE2 DS 1BL1 Thread state flag byte
PTPTSTATE3 DS 1BL1 Thread state flag byte
PTPTSTATE4 DS 1BL1 Thread state flag byte
PTPTKERNELATTR DS 0BL4 Thread kernel attributes
PTPTKERNEL1 DS 0BL1 Thread kernel attribute byte
PTPTKERNELDETACH EQU X’80’
*
* ***
* * *
* * 0 = thread is not detached
* * 1 = thread is detached
* * *
* ***
*
*
PTPTKERNELMEDIUM EQU X’40’
*
* ***
* * *
* * 0 = thread is heavyweight
* * 1 = thread is mediumweight
* * *
* ***
*
*
PTPTKERNELASYNC EQU X’20’
*
* ***
* * *
* * 0 = thread is synchronous
* * 1 = thread is asynchronous
* * *
* ***
*
*
PTPTKERNELPTHREAD EQU X’10’
*
* ***
* * *
* * 1 = thread is created via
* * pthread create
* * *
* ***
*
*

ORG PTPTKERNEL1+X’00000001’
PTPTKERNEL2 DS 0BL1 Thread kernel attribute byte
PTPTKERNELHOLD EQU X’80’
*
* ***
* * *

BPXYPTRC

1006 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* * 1 = thread is held
* * *
* ***
*
*

ORG PTPTKERNEL2+X’00000001’
PTPTKERNEL3 DS 1BL1 Reserved
PTPTKERNEL4 DS 1BL1 Reserved
PTPTEXITSTATUS DS 1CL0004
*
* ***
* * *
* * Thread exit status if dead
* * (PtptStateActive = 0)
* * *
* ***
*
*
PTPTPENDINGSIGMASK DS 1BL8
PTPTINFO_LEN EQU *-PTPTINFO
*
* ***
* * *
* * Mask of pending signals
* * (bit 0 represents signal 1)
* * (bit 63 represents signal 64)
* * *
* ***
*
* **
* * *
* * Ptrace thread information extended structure. Note that this *
* * maps one element, corresponding to one thread. PtpxInfo maps *
* * exactly to PtPtInfo *
* * *
* * *
* * *
* * Note: the only valid information for a dead thread is: *
* * *
* * PTPXNEXT, PTPXTHID, PTPXSTATEACTIVE=0, PTPXKERNELPTHREAD, *
* * PTPXEXITSTATUS *
* **
*
*
PTPHINFO DSECT PT_THREAD_INFO_EXTENDED header information
PTPHINFOBASE DS 0CL0048
*
* ***
* * *
* * PtphInfoBase contains information about the process and *
* * pointers to the next array of thread info
* * *
* ***
*
*
PTPHID DS 1CL0004 Acronym
PTPHNEXT DS 1AL4 Address of the next PtPhInfo
PTPHPTPXOFF DS 1AL4 Offset of first Ptpx in this chunk of storage
PTPHPID DS 1FL4 Process id of the threads
PTPHPENDINGSIGMASK DS 1BL8 Signals pending at the process
PTPHBLOCKEDSIGMASK DS 1BL8 blocked signals at process
PTPHTHREADNUM DS 1FL4 Total number of threads reported in chain
PTPHTNUM DS 1CL0004 Threads in the Current buffer
PTPHPTPXLEN DS 1FL4 Length of the PtPx in this buffer

DS 1FL4 Reserved
PTPHEND DS 0C
PTPHINFO_LEN EQU *-PTPHINFO

BPXYPTRC

Appendix B. Mapping macros 1007

PTPXINFO DSECT PT_THREAD_INFO_EXTENDED maps a single entry
PTPXINFOBASE DS 0CL0064
PTPXNEXT DS 1AL4 Offset to next element
PTPXTHID DS 1CL0008 Thread ID
PTPXTCB DS 1AL4 Tcb address for this process
PTPXOTCB DS 1AL4 Otcb address for this process
PTPXBLOCKEDSIGMASK DS 1BL8 blocked signals
PTPXSTATE DS 0BL4 Thread state flags
PTPXSTATE1 DS 0BL1 Thread state flag byte
PTPXSTATEACTIVE EQU X’80’ 0 = thread is dead
*
* ***
* * *
* * 1 = thread is active
* * *
* ***
*
*
PTPXSTATEASYNC EQU X’40’ 1 = N/A
*
* ***
* * *
* * (is also active but not
* * yet running)
* * *
* ***
*
*
PTPXSTATECANCELPEND EQU X’20’
*
* ***
* * *
* * 1 = cancel is pending
* * *
* ***
*
*

ORG PTPXSTATE1+X’00000001’
PTPXSTATE2 DS 1BL1 Thread state flag byte
PTPXSTATE3 DS 1BL1 Thread state flag byte
PTPXSTATE4 DS 1BL1 Thread state flag byte
PTPXKERNELATTR DS 0BL4 Thread kernel attrtes
PTPXKERNEL1 DS 0BL1 Thread kernel attribute byte
PTPXKERNELDETACH EQU X’80’
*
* ***
* * *
* * 0 = thread is not detached
* * 1 = thread is detached
* * *
* ***
*
*
PTPXKERNELMEDIUM EQU X’40’
*
* ***
* * *
* * 0 = thread is heavyweight
* * 1 = thread is mediumweight
* * *
* ***
*
*
PTPXKERNELASYNC EQU X’20’
*
* ***
* * *

BPXYPTRC

1008 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* * 0 = thread is synchronous
* * 1 = thread is asynchronous
* * *
* ***
*
*
PTPXKERNELPTHREAD EQU X’10’
*
* ***
* * *
* * 1 = thread is created via
* * pthread create
* * *
* ***
*
*

ORG PTPXKERNEL1+X’00000001’
PTPXKERNEL2 DS 0BL1 Thread kernel attribute byte
PTPXKERNELHOLD EQU X’80’
*
* ***
* * *
* * 1 = thread is held
* * *
* ***
*
*

ORG PTPXKERNEL2+X’00000001’
PTPXKERNEL3 DS 1BL1 Reserved
PTPXKERNEL4 DS 1BL1 Reserved
PTPXEXITSTATUS DS 1CL0004
*
* ***
* * *
* * Thread exit status if dead
* * (PTPXStateActive = 0)
* * *
* ***
*
*
PTPXPENDINGSIGMASK DS 1BL8 Mask of pending signals is set) (bit 0 X

represents signal 1)
PTPXPID DS 1FL4 Process id for this Thid
PTPXASID DS 1FL2
PTPXFLAGS DS 0BL2 Thread related flags
PTPXIPT EQU X’80’ Ipt Thread
PTPXINCOMPLETE EQU X’40’ The reported thread information is incomplete

ORG PTPXFLAGS+X’00000002’
PTPXOAPB DS 1AL4 Pointer to the Oapb

DS 1CL0004 Reserved
PTPXEND DS 0C
PTPXINFO_LEN EQU *-PTPXINFO
*
* **
* * *
* * Ptrace explain information return structure. *
* * *
* **
*
*
PTEXINFO DSECT
PTEXREG1 DS 1FL4 Register 1 at CEEEVDBG entry
PTEXREG12 DS 1FL4 Register 12 at CEEEVDBG entry
PTEXREG13 DS 1FL4 Register 13 at CEEEVDBG entry
PTEXINFO_LEN EQU *-PTEXINFO
*
* **

BPXYPTRC

Appendix B. Mapping macros 1009

* * *
* * Ptrace program recovery parameters structure. *
* * (This area is provided by the caller) *
* * *
* **
*
*
PTPICPARMS DSECT
PTPICREGISTERS DS 1AL4 Address of GPRs at time of interrupt
PTPICPSW DS 1AL4 Address of PSW at time of interrupt
PTPICINTCODE DS 1FL2 Program interrupt code
PTPICSIGNUMBER DS 1FL2 Return value indicating signal number that X

should be raised by the caller if the X
PtPICUseSigNum flag is set

PTPICFLAGS DS 0BL4 Flags
PTPICICMODIFIED EQU X’80’ 0 = The instruction counter portion of the X

PSW pointed to by the PtPICPSW field has not X
been modified 1 = The instruction counter X
portion of the PSW pointed to by the PtPICPSW X
field has been modified - continue execution X
at this modified address

PTPICREGSMODIFIED EQU X’40’ 0 = The registers pointed to by the X
PtPICRegisters field have not been modified 1 X
= The registers pointed to by the X
PtPICRegisters field have been modified

PTPICUSESIGNUM EQU X’20’ 1 = Raise the signal number returned in the X
PtPICSigNumber field upon return

PTPICBYPASSSIG EQU X’10’ 1 = Do not raise any signal upon return
PTPICILCEXISTS EQU X’08’ 1 = PtPICILC field is present
PTPICHIREGSEXISTS EQU X’04’ 1 = The PtPICHiRegisters field is present
PTPICHIREGSMODIFIED EQU X’02’ 0 = The registers pointed to by the X

PtPICHiRegisters field have not been modified X
1 = The registers pointed to by the X
PtPICHiRegisters field have been modified

DS 1BL.025 Reserved
ORG PTPICFLAGS+X’00000004’

PTPICABENDCODE DS 0BL4 Abend code or zero
PTPICABENDFLAGS DS 1BL1 Abend code flags
PTPICABENDCC DS 1BL3 System completion code (first 12 bits) and X

user completion code (second 12 bits)
PTPICABENDREASON DS 1FL4 Abend reason code or zero
PTPICILC DS 1FL1 Instruction length code (only present if X

PtPICILCExists flag is set)
PTPICRESERVED DS 1CL0003 Reserved
PTPICHIREGISTERS DS 1AL4 Address of high GPRs at time of interrupt
PTPICRSVD DS 1CL0032 Reserved. This area is provided by the caller X

and may not be present in old releases of X
code

*
* **
* * *
* * Ptrace request parameter definitions. *
* * *
* **
*
*
PT_TRACE_ME EQU 0 Debug this process
PT_READ_I EQU 1 Read a full word
PT_READ_D EQU 2 Read a full word
PT_READ_U EQU 3 Read control info
PT_WRITE_I EQU 4 Write a full word
PT_WRITE_D EQU 5 Write a full word
PT_CONTINUE EQU 7 Continue the process
PT_KILL EQU 8 Terminate the process
PT_READ_GPR EQU 11 Read GPR, CR, PSW
PT_READ_FPR EQU 12 Read FPR
PT_WRITE_GPR EQU 14 Write GPR, CR, PSW

BPXYPTRC

1010 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PT_WRITE_FPR EQU 15 Write FPR
PT_READ_BLOCK EQU 17 Read storage
PT_WRITE_BLOCK EQU 19 Write storage
PT_READ_GPRH EQU 20 Read GPRH
PT_WRITE_GPRH EQU 21 Write GPRH
PT_REGHSET EQU 22 Read all GPRHs
PT_ATTACH EQU 30 Attach to a process
PT_DETACH EQU 31 Detach from a process
PT_REGSET EQU 32 Read all GPRs
PT_REATTACH EQU 33 Reattach to a process
PT_LDINFO EQU 34 Read loader info
PT_MULTI EQU 35 Multi process mode
PT_BLOCKREQ EQU 40 Block request
PT_THREAD_INFO EQU 60 Read thread info
PT_THREAD_MODIFY EQU 61 **X

*************** Modify thread kernel X
information **********************************X

PT_THREAD_READ_FOCUS EQU 62 ***X
****************** Read current focus thread X
ID ***X

PT_THREAD_WRITE_FOCUS EQU 63 **X
******************* Modify current focus X
thread ID ************************************X

PT_THREAD_HOLD EQU 64 **X
*************** Modify thread hold state *****X
**X

PT_THREAD_SIGNAL EQU 65 **X
*************** Queue a signal for a thread **X
**X

PT_EXPLAIN EQU 66 **X
*************** Return extended event info ***X
**X

PT_EVENTS EQU 67 **X
*************** Modify extended events list **X
**X

PT_THREAD_INFO_EXTENDED EQU 68 **X
********************* Read extended thread X
info ***X

PT_REATTACH2 EQU 71 **X
*************** Reattach to a process X
(extended) ***********************************X

PT_CAPTURE EQU 72 **X
*************** Capture debugged storage *****X
**X

PT_UNCAPTURE EQU 73 **X
*************** Uncapture debugged storage ***X
**X

PT_EXTENDED_EVENT EQU 98 **X
*************** Debug an extended event ******X
**X

PT_RECOVER EQU 99 Debug a program check
*
* **
* * *
* * Ptrace register definitions. The following are defined: *

BPXYPTRC

Appendix B. Mapping macros 1011

* * *
* * - General purpose registers *
* * - Floating point registers *
* * - PSW registers *
* * - Control registers *
* * - General Purpose High Registers
* * *
* **
*
*
PT_GPR0 EQU 0 General purpose register 0
PT_GPR1 EQU 1 General purpose register 1
PT_GPR2 EQU 2 General purpose register 2
PT_GPR3 EQU 3 General purpose register 3
PT_GPR4 EQU 4 General purpose register 4
PT_GPR5 EQU 5 General purpose register 5
PT_GPR6 EQU 6 General purpose register 6
PT_GPR7 EQU 7 General purpose register 7
PT_GPR8 EQU 8 General purpose register 8
PT_GPR9 EQU 9 General purpose register 9
PT_GPR10 EQU 10 General purpose register 10
PT_GPR11 EQU 11 General purpose register 11
PT_GPR12 EQU 12 General purpose register 12
PT_GPR13 EQU 13 General purpose register 13
PT_GPR14 EQU 14 General purpose register 14
PT_GPR15 EQU 15 General purpose register 15
PT_FPR0 EQU 16 Floating point register 0
PT_FPR1 EQU 17 Floating point register 1
PT_FPR2 EQU 18 Floating point register 2
PT_FPR3 EQU 19 Floating point register 3
PT_FPR4 EQU 20 Floating point register 4
PT_FPR5 EQU 21 Floating point register 5
PT_FPR6 EQU 22 Floating point register 6
PT_FPR7 EQU 23 Floating point register 7
PT_FPR8 EQU 24 Floating point register 8
PT_FPR9 EQU 25 Floating point register 9
PT_FPR10 EQU 26 Floating point register 10
PT_FPR11 EQU 27 Floating point register 11
PT_FPR12 EQU 28 Floating point register 12
PT_FPR13 EQU 29 Floating point register 13
PT_FPR14 EQU 30 Floating point register 14
PT_FPR15 EQU 31 Floating point register 15
PT_FPC EQU 32 Floating point control register
PT_PSW EQU 40 PSW
PT_PSW0 EQU 40 Left half of the PSW
PT_PSW1 EQU 41 Right half of the PSW
PT_CR0 EQU 42 Control register 0
PT_CR1 EQU 43 Control register 1
PT_CR2 EQU 44 Control register 2
PT_CR3 EQU 45 Control register 3
PT_CR4 EQU 46 Control register 4
PT_CR5 EQU 47 Control register 5
PT_CR6 EQU 48 Control register 6
PT_CR7 EQU 49 Control register 7
PT_CR8 EQU 50 Control register 8
PT_CR9 EQU 51 Control register 9
PT_CR10 EQU 52 Control register 10
PT_CR11 EQU 53 Control register 11
PT_CR12 EQU 54 Control register 12
PT_CR13 EQU 55 Control register 13
PT_CR14 EQU 56 Control register 14
PT_CR15 EQU 57 Control register 15
PT_GPRH0 EQU 58 GP High register 0
PT_GPRH1 EQU 59 GP High register 1
PT_GPRH2 EQU 60 GP High register 2
PT_GPRH3 EQU 61 GP High register 3
PT_GPRH4 EQU 62 GP High register 4

BPXYPTRC

1012 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PT_GPRH5 EQU 63 GP High register 5
PT_GPRH6 EQU 64 GP High register 6
PT_GPRH7 EQU 65 GP High register 7
PT_GPRH8 EQU 66 GP High register 8
PT_GPRH9 EQU 67 GP High register 9
PT_GPRH10 EQU 68 GP High register 10
PT_GPRH11 EQU 69 GP High register 11
PT_GPRH12 EQU 70 GP High register 12
PT_GPRH13 EQU 71 GP High register 13
PT_GPRH14 EQU 72 GP High register 14
PT_GPRH15 EQU 73 GP High register 15
*
* **
* * *
* * Ptrace User Area offset definitions. Offsets for signal catcher *
* * information are defined by the limits below. Any offset between *
* * the minimum and maximum signal numbers is a request for signal *
* * catcher information for that signal number (i.e. offset 3 means *
* * signal catcher information for signal number 3). *
* * *
* **
*
*
PTUAREA#MINSIG EQU 1 Lowest signal number
PTUAREA#MAXSIG EQU 1024 Highest signal number
PTUAREA#INTCODE EQU 1025 Request for program interrupt code
PTUAREA#ABENDCC EQU 1026 Request for abend completion code
PTUAREA#ABENDRC EQU 1027 Request for abend reason code
PTUAREA#SIGCODE EQU 1028 Request for signal code
PTUAREA#ILC EQU 1029 Request for instruction length code
PTUAREA#PRFLAGS EQU 1030 Request for process flags
*
* **
* * *
* * Ptrace miscellaneous definitions. *
* * *
* **
*
*
PTCONTNORM EQU 1 Continue normally (continue address not X

changed) for a PT_CONTINUE request
PTNOSTICKYPGM EQU 1 Main program of process is not sticky bit X

program. Returned on PTUAREA#PRFLAGS request
PTMAXIMUMLENGTH EQU 64000 Maximum storage length
PTLD#FIXEDLEN EQU 32 Length of PtLDInfo fixed area
PTPT#LENGTH EQU 48 Length of PtptInfo fixed area
PTPH#LENGTH EQU 48 Length of PtPhInfo fixed area on double word X

boundary
PTPX#LENGTH EQU 64 Length of PtpxInfo fixed area on double word X

boundary
PTEX#LENGTH EQU 12 Length of PtExInfo
PTPIC#LENGTH1 EQU 32 Length of PtPicParms if PtPicHiRegsExists = X

OFF
PTPIC#LENGTH EQU 64 Length of PtPICParms
PTPICPARMS_LEN EQU *-PTPICPARMS
*
* **
* * *
* * Ptrace PT_BlockReq structure. This request allows the user to *
* * block several different Ptrace requests into a single call to *
* * Ptrace. The block request structures mapped below must be *
* * contained in a single large area. This area is pointed to by *
* * the Ptrace Address parameter and its length is contained in the *
* * Ptrace Data parameter. The PtBRInfo structure must be at offset *
* * zero into the provided area. *
* * *
* * Offsets are used to locate all relevant areas so that the Ptrace *

BPXYPTRC

Appendix B. Mapping macros 1013

* * block request input may be relocated. All offsets are relative *
* * to the main input, the PtBRInfo area. A given request block, *
* * such as the PtBR_GPR structure, may be found using the *
* * PtBRInfo address + PtBRReqBlkOff(x). *
* * *
* * Only certain requests may be blocked into a single call to *
* * Ptrace. The requests that may be blocked are -- *
* * PT_READ_GPR *
* * PT_WRITE_GPR *
* * PT_READ_FPR *
* * PT_WRITE_FPR *
* * PT_READ_GPRH *
* * PT_WRITE_GPRH *
* * PT_READ_U *
* * PT_READ_D *
* * PT_READ_I *
* * PT_WRITE_D *
* * PT_WRITE_I *
* * PT_READ_BLOCK *
* * PT_WRITE_BLOCK. *
* *
* **
*
*
PTBRINFO DSECT
PTBRFIXEDAREA DS 0CL0016
PTBRNUMREQS DS 1FL4 Number of requests in PtBRReqs

DS 1CL0012 Reserved
PTBRREQS DS 0CL0016 requests
PTBRTYPE DS 1FL4 Type of request. For example, PT_READ_BLOCK. X

This entry is ignored if this field is zero
PTBRSTATUS DS 1FL4 Status from request. Same as reasoncode on X

individual call of same type
PTBRREQBLKOFF DS 1FL4 Offset to request block further defining X

request and whose format is dependant on the X
request type

DS 1CL0004 reserved
PTBRINFO_LEN EQU *-PTBRINFO
*
* **
* * Structure for PT_Read_GPR and PT_Write_GPR. *
* **
*
*
PTBR_GPR DSECT
PTBR_GPR_CNTLGPR DS 0BL2 Only used on write request
PTBR_GPR_CNTLGPR1 DS 0BL1
PTBR_GPR_WGPR0 EQU X’80’ Write content of GPR 0
PTBR_GPR_WGPR1 EQU X’40’ Write content of GPR 1
PTBR_GPR_WGPR2 EQU X’20’ Write content of GPR 2
PTBR_GPR_WGPR3 EQU X’10’ Write content of GPR 3
PTBR_GPR_WGPR4 EQU X’08’ Write content of GPR 4
PTBR_GPR_WGPR5 EQU X’04’ Write content of GPR 5
PTBR_GPR_WGPR6 EQU X’02’ Write content of GPR 6
PTBR_GPR_WGPR7 EQU X’01’ Write content of GPR 7

ORG PTBR_GPR_CNTLGPR1+X’00000001’
PTBR_GPR_CNTLGPR2 DS 0BL1
PTBR_GPR_WGPR8 EQU X’80’ Write content of GPR 8
PTBR_GPR_WGPR9 EQU X’40’ Write content of GPR 9
PTBR_GPR_WGPR10 EQU X’20’ Write content of GPR 10
PTBR_GPR_WGPR11 EQU X’10’ Write content of GPR 11
PTBR_GPR_WGPR12 EQU X’08’ Write content of GPR 12
PTBR_GPR_WGPR13 EQU X’04’ Write content of GPR 13
PTBR_GPR_WGPR14 EQU X’02’ Write content of GPR 14
PTBR_GPR_WGPR15 EQU X’01’ Write content of GPR 15

ORG PTBR_GPR_CNTLGPR+X’00000002’
PTBR_GPR_CNTLMISC DS 0BL2 Only used on write request

BPXYPTRC

1014 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PTBR_GPR_WPSW EQU X’80’ Write content of PSW, word 2
ORG PTBR_GPR_CNTLMISC+X’00000002’
DS 1CL0012 Reserved

PTBR_GPR_GPRS DS 0CL0064 General purpose registers
PTBR_GPR_GPR00 DS 1FL4 GPR 00
PTBR_GPR_GPR01 DS 1FL4 GPR 01
PTBR_GPR_GPR02 DS 1FL4 GPR 02
PTBR_GPR_GPR03 DS 1FL4 GPR 03
PTBR_GPR_GPR04 DS 1FL4 GPR 04
PTBR_GPR_GPR05 DS 1FL4 GPR 05
PTBR_GPR_GPR06 DS 1FL4 GPR 06
PTBR_GPR_GPR07 DS 1FL4 GPR 07
PTBR_GPR_GPR08 DS 1FL4 GPR 08
PTBR_GPR_GPR09 DS 1FL4 GPR 09
PTBR_GPR_GPR10 DS 1FL4 GPR 10
PTBR_GPR_GPR11 DS 1FL4 GPR 11
PTBR_GPR_GPR12 DS 1FL4 GPR 12
PTBR_GPR_GPR13 DS 1FL4 GPR 13
PTBR_GPR_GPR14 DS 1FL4 GPR 14
PTBR_GPR_GPR15 DS 1FL4 GPR 15
PTBR_GPR_CRS DS 0CL0064 Control registers. May be read but will not X

be written
PTBR_GPR_CR00 DS 1FL4 CR 00
PTBR_GPR_CR01 DS 1FL4 CR 01
PTBR_GPR_CR02 DS 1FL4 CR 02
PTBR_GPR_CR03 DS 1FL4 CR 03
PTBR_GPR_CR04 DS 1FL4 CR 04
PTBR_GPR_CR05 DS 1FL4 CR 05
PTBR_GPR_CR06 DS 1FL4 CR 06
PTBR_GPR_CR07 DS 1FL4 CR 07
PTBR_GPR_CR08 DS 1FL4 CR 08
PTBR_GPR_CR09 DS 1FL4 CR 09
PTBR_GPR_CR10 DS 1FL4 CR 10
PTBR_GPR_CR11 DS 1FL4 CR 11
PTBR_GPR_CR12 DS 1FL4 CR 12
PTBR_GPR_CR13 DS 1FL4 CR 13
PTBR_GPR_CR14 DS 1FL4 CR 14
PTBR_GPR_CR15 DS 1FL4 CR 15
PTBR_GPR_PSW DS 0CL0008 PSW. May be read but only the rightmost 4 X

bytes (word 2) will be written
PTBR_GPR_PSW_W1 DS 1CL0004 PSW word 1.
PTBR_GPR_PSW_W2 DS 1CL0004 PSW word 2
PTBR_GPR_LEN EQU *-PTBR_GPR
*
* **
* * Structure for PT_Read_FPR and PT_Write_FPR. *
* **
*
*
PTBR_FPR DSECT
PTBR_FPR_CNTLFPR DS 0BL2 Only used on write request
PTBR_FPR_CNTLFPR1 DS 0BL1
PTBR_FPR_WFPR0 EQU X’80’ Write content of FPR 0
PTBR_FPR_WFPR1 EQU X’40’ Write content of FPR 1
PTBR_FPR_WFPR2 EQU X’20’ Write content of FPR 2
PTBR_FPR_WFPR3 EQU X’10’ Write content of FPR 3
PTBR_FPR_WFPR4 EQU X’08’ Write content of FPR 4
PTBR_FPR_WFPR5 EQU X’04’ Write content of FPR 5
PTBR_FPR_WFPR6 EQU X’02’ Write content of FPR 6
PTBR_FPR_WFPR7 EQU X’01’ Write content of FPR 7

ORG PTBR_FPR_CNTLFPR1+X’00000001’
PTBR_FPR_CNTLFPR2 DS 0BL1
PTBR_FPR_WFPR8 EQU X’80’ Write content of FPR 8
PTBR_FPR_WFPR9 EQU X’40’ Write content of FPR 9
PTBR_FPR_WFPR10 EQU X’20’ Write content of FPR 10
PTBR_FPR_WFPR11 EQU X’10’ Write content of FPR 11
PTBR_FPR_WFPR12 EQU X’08’ Write content of FPR 12

BPXYPTRC

Appendix B. Mapping macros 1015

PTBR_FPR_WFPR13 EQU X’04’ Write content of FPR 13
PTBR_FPR_WFPR14 EQU X’02’ Write content of FPR 14
PTBR_FPR_WFPR15 EQU X’01’ Write content of FPR 15

ORG PTBR_FPR_CNTLFPR+X’00000002’
PTBR_FPR_CNTLMISC DS 0BL2 Only used on write request
PTBR_FPR_WFPC EQU X’80’ Write content of FPC

ORG PTBR_FPR_CNTLMISC+X’00000002’
DS 1CL0012 Reserved

PTBR_FPR_FPRS DS 0CL0128 Floating point registers
PTBR_FPR_FPR00 DS 1CL0008 FPR 00
PTBR_FPR_FPR01 DS 1CL0008 FPR 01
PTBR_FPR_FPR02 DS 1CL0008 FPR 02
PTBR_FPR_FPR03 DS 1CL0008 FPR 03
PTBR_FPR_FPR04 DS 1CL0008 FPR 04
PTBR_FPR_FPR05 DS 1CL0008 FPR 05
PTBR_FPR_FPR06 DS 1CL0008 FPR 06
PTBR_FPR_FPR07 DS 1CL0008 FPR 07
PTBR_FPR_FPR08 DS 1CL0008 FPR 08
PTBR_FPR_FPR09 DS 1CL0008 FPR 09
PTBR_FPR_FPR10 DS 1CL0008 FPR 10
PTBR_FPR_FPR11 DS 1CL0008 FPR 11
PTBR_FPR_FPR12 DS 1CL0008 FPR 12
PTBR_FPR_FPR13 DS 1CL0008 FPR 13
PTBR_FPR_FPR14 DS 1CL0008 FPR 14
PTBR_FPR_FPR15 DS 1CL0008 FPR 15
PTBR_FPR_FPC DS 1CL0004 Floating Point Control Register
PTBR_FPR_LEN EQU *-PTBR_FPR
*
* **
* * Structure for PT_Read_GPRH PT_Write_GPRH.
* **
*
*
PTBR_GPRH DSECT
PTBR_GPRH_CNTLGPRH DS 0BL2 Only used on write request
PTBR_GPRH_CNTLGPRH1 DS 0BL1
PTBR_GPRH_WGPRH0 EQU X’80’ Write content of GPRH 0
PTBR_GPRH_WGPRH1 EQU X’40’ Write content of GPRH 1
PTBR_GPRH_WGPRH2 EQU X’20’ Write content of GPRH 2
PTBR_GPRH_WGPRH3 EQU X’10’ Write content of GPRH 3
PTBR_GPRH_WGPRH4 EQU X’08’ Write content of GPRH 4
PTBR_GPRH_WGPRH5 EQU X’04’ Write content of GPRH 5
PTBR_GPRH_WGPRH6 EQU X’02’ Write content of GPRH 6
PTBR_GPRH_WGPRH7 EQU X’01’ Write content of GPRH 7

ORG PTBR_GPRH_CNTLGPRH1+X’00000001’
PTBR_GPRH_CNTLGPRH2 DS 0BL1
PTBR_GPRH_WGPRH8 EQU X’80’ Write content of GPRH 8
PTBR_GPRH_WGPRH9 EQU X’40’ Write content of GPRH 9
PTBR_GPRH_WGPRH10 EQU X’20’ Write content of GPRH10
PTBR_GPRH_WGPRH11 EQU X’10’ Write content of GPRH11
PTBR_GPRH_WGPRH12 EQU X’08’ Write content of GPRH12
PTBR_GPRH_WGPRH13 EQU X’04’ Write content of GPRH13
PTBR_GPRH_WGPRH14 EQU X’02’ Write content of GPRH14
PTBR_GPRH_WGPRH15 EQU X’01’ Write content of GPRH15

ORG PTBR_GPRH_CNTLGPRH+X’00000002’
PTBR_GPRH_CNTLMISC DS 1BL2 Only used on write request

DS 1CL0012 Reserved
PTBR_GPRH_GPRHS DS 0CL0064 GP High registers.
PTBR_GPRH_GPRH00 DS 1FL4 GPRH 00
PTBR_GPRH_GPRH01 DS 1FL4 GPRH 01
PTBR_GPRH_GPRH02 DS 1FL4 GPRH 02
PTBR_GPRH_GPRH03 DS 1FL4 GPRH 03
PTBR_GPRH_GPRH04 DS 1FL4 GPRH 04
PTBR_GPRH_GPRH05 DS 1FL4 GPRH 05
PTBR_GPRH_GPRH06 DS 1FL4 GPRH 06
PTBR_GPRH_GPRH07 DS 1FL4 GPRH 07
PTBR_GPRH_GPRH08 DS 1FL4 GPRH 08

BPXYPTRC

1016 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

PTBR_GPRH_GPRH09 DS 1FL4 GPRH 09
PTBR_GPRH_GPRH10 DS 1FL4 GPRH 10
PTBR_GPRH_GPRH11 DS 1FL4 GPRH 11
PTBR_GPRH_GPRH12 DS 1FL4 GPRH 12
PTBR_GPRH_GPRH13 DS 1FL4 GPRH 13
PTBR_GPRH_GPRH14 DS 1FL4 GPRH 14
PTBR_GPRH_GPRH15 DS 1FL4 GPRH 15

DS 1CL0008 Reserved
PTBR_GPRH_LEN EQU *-PTBR_GPRH
*
* **
* * Structure for PT_Read_Block and PT_Write_Block. *
* **
*
*
PTBR_BLOCK DSECT
PTBR_BLOCK_AADDR DS 1AL4 address of area to read
PTBR_BLOCK_ALEN DS 1FL4 length of area to read

DS 1CL0008 Reserved
PTBR_BLOCK_BUF DS 0C area to read into or write from. Must be at X

least PtBR_Block_ALen bytes large
PTBR_BLOCK_LEN EQU *-PTBR_BLOCK
*
* **
* * Structure for PT_Read_D and PT_Write_D. *
* **
*
*
PTBR_D DSECT
PTBR_D_WORDPTR DS 1AL4 Address of fullword of data
PTBR_D_WORD DS 1FL4 fullword of data at specified address for a X

read request or the data to be written to the X
specified address for a write request

PTBR_D_LEN EQU *-PTBR_D
*
* **
* * Structure for PT_Read_I and PT_Write_I. *
* **
*
*
PTBR_I DSECT
PTBR_I_WORDPTR DS 1AL4 Address of fullword of program data
PTBR_I_WORD DS 1FL4 fullword of program data at specified address X

for a read request or the program data to be X
written to the specified address for a write X
request

PTBR_I_LEN EQU *-PTBR_I
*
* **
* * Structure for PT_Read_U. *
* **
*
*
PTBR_U DSECT
PTBR_U_NUMOFFSETS DS 1FL4 Number of entries in offset/control word X

array
DS 1CL0004 Reserved

PTBR_U_OWARRAY DS 0CL0008 Array of offsets and control words
PTBR_U_OFFSET DS 1FL4 Offset of fullword of control information
PTBR_U_WORD DS 1FL4 fullword of control information from user X

area in the debugged process
PTBR_U_LEN EQU *-PTBR_U

BPXYPTRC

Appendix B. Mapping macros 1017

BPXYPTXL — Map the Parameter List for pthread_create
BPXYPTXL ,

** BPXYPTXL: Pthread Parameter List
** Used By: PTX
PTXL DSECT , Parameter List returned by BPX1PTX
PTXLWORKAREAPTR DS A Pointer to User Work Area
PTXLATTRIBUTEPTR DS A Pointer to User Attributes
PTXLTHIDPTR DS A Pointer to Thread ID
PTXLSTATUSPTR DS A Pointer to Thread Run Status
PTXL#LENGTH EQU *-PTXL
PTXLRS DSECT , Thread Run Status

DS 0F
PTXLRSFLAGS DS 0BL4 Thread Run Status Flags
PTXLRSFLAGS0 DS B 1st byte
PTXLRSREADY EQU X’80’ Thread is ready to run
PTXLRSFLAGS1 DS B 2nd byte
PTXLRSFLAGS2 DS B 3rd byte
PTXLRSFLAGS3 DS B 4th byte
PTXLRS#LENGTH EQU *-PTXLRS
** BPXYPTXL End

BPXYRFIS — Map the Register File Interest Structures
BPXYRFIS ,

** BPXYRFIS
*
* Register File Interest Structure
*
RFIS DSECT ,
RFIS_CMD DS H CMD = REG OR UNREG
RFIS_FLAGS DS 0H FLAGS
RFIS_FLAGS1 DS XL1 FLAGS Byte 1
RFIS_LOSTMSGS EQU X’80’ MSGSND HAS FAILED
RFIS_FLAGS2 DS XL1 FLAGS Byte 2
RFIS_RFTOK DS CL8 SYSTEM REGISTERED FILE TOKEN
RFIS_QID DS F IPC MSG QUEUE ID
RFIS_TYPE DS F IPC MSG TYPE
RFIS_UTOK DS CL8 IPC MSG USER TOKEN
*
RFIS#LENGTH EQU *-RFIS Length of this structure
*
** RFIS_CMD Values
RFIS#REG EQU 1
RFIS#UNREG EQU 2
*
* Registered File invalidate Message
*
RFIM DSECT ,
RFIM_TYPE DS F IPC MSG TYPE, FROM RFIS_TYPE
RFIM_TEXT DS 0CL12 IPC MSG TEXT:
RFIM_UTOK DS CL8 USER TOKEN, FROM RFIS_UTOK
RFIM_EVENT DS H CHANGE EVENT
RFIM_FLAGS DS 0H FLAGS
RFIM_FLAGS1 DS XL1 FLAGS Byte 1
RFIM_LOSTMSGS EQU X’80’ MSGSND HAS FAILED
RFIM_FLAGS2 DS XL1 FLAGS Byte 2
*
RFIM#LENGTH EQU *-RFIM Length of this structure
*
** RFIM_EVENT Values
RFIM#WRITE EQU 1 WRITE, TRUNC, OPEN(O_TRUNC)
RFIM#ATTR EQU 2 ANY ATTR CHANGE, CHMOD, ETC.
RFIM#UNLINK EQU 3 ANY NAME UNLINKED

BPXYPTXL

1018 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

RFIM#RENAME EQU 4 ANY NAME RENAMED
RFIM#UNMOUNT EQU 5 CONTAINING FILE SYS UNMNTED
*
** BPXYRFIS End

BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures
BPXYRLIM ,

** BPXYRLIM: Rlimit, Timeval, and Rusage Structures
** Used By: setrlimit, getrlimit, and getrusage
RLIMIT DSECT , Rlimit structure
RLIM_CUR_DW DS 0CL8 Current limit (doubleword)
RLIM_CUR_HW DS F Current (soft) limit highword - X

used only for RLIMIT_FSIZE X
ignored for all other resources

RLIM_CUR DS 0F Current (soft) limit lowword
RLIM_CUR_LW DS F Current (soft) limit lowword
RLIM_MAX_DW DS 0CL8 Current limit (doubleword)
RLIM_MAX_HW DS F Current (hard) limit highword - X

used only for RLIMIT_FSIZE X
ignored for all other resources

RLIM_MAX DS 0F Maximum (hard) limit lowword
RLIM_MAX_LW DS F Maximum (hard) limit lowword
RLIMIT#LENGTH EQU *-RLIMIT Length of this DSECT
TIMEVAL DSECT , Timeval structure
TMVL_SEC DS F Seconds
TMVL_USEC DS F Microseconds
TIMEVAL#LENGTH EQU *-TIMEVAL Length of this DSECT
RUSAGE DSECT , Rusage structure
RU_UTIME DS CL(TIMEVAL#LENGTH) User time used
RU_STIME DS CL(TIMEVAL#LENGTH) System time used
RUSAGE#LENGTH EQU *-RUSAGE Length of this DSECT
** BPXYRLIM End

BPXYRMON — Map Resource Monitor Data
BPXYRMON ,

** BPXYRMON: Resource monitor data mapping
** Used By: RMG
RMON DSECT ,
RMONID DC C’RMON’ Eye catcher
RMONLENGTH DC A(RMON#LENGTH) Length of this structure
RMONSYSCALLS DS F Total Syscalls. This
* includes syscalls done internally
* by the kernel. It does not include
* all trivial syscalls.
RMONCPUTIME DS F Total CPU time spent in
* kernel (Hundredths of a second)
RMONOVERRUN DS 0CL12
RMONOVRPROC DS F Count of times the maximum number
* of processes was exceeded.
RMONOVRUID DS F Count of times the maximum number
* of active UIDs was exceeded.
RMONOVRPRUID DS F Count of times the maximum number
* of processes per UID was exceeded.
RMONLIMITS DS 0CL6
RMONMAXPROC DS H Maximum number of processes
RMONMAXUID DS H Maximum number of active UIDs
RMONMAXPRUID DS H Maximum number of processes per UID
RMONCURRENT DS 0CL6
RMONNUMPROC DS H Current number of processes
RMONNUMUID DS H Current number of active UIDs

DS H Reserved
RMONOVERRUNIPC DS 0CL16
RMONOVRIPCMSGNIDS DS F Number of attempts to exceed
* maximum number of message queue

BPXYRFIS

Appendix B. Mapping macros 1019

* IDs
RMONOVRIPCSEMNIDS DS F Number of attempts to exceed
* maximum number of semaphore
* IDs
RMONOVRIPCSHMNIDS DS F Number of attempts to exceed
* maximum number of shared memory
* IDs
RMONOVRIPCSHMSPGS DS F Number of attempts to exceed
* maximum number of shared memory
* pages for all segments
RMONLIMITSIPC DS 0CL16
RMONMAXIPCMSGNIDS DS F Maximum number of message queue
* IDs
RMONMAXIPCSEMNIDS DS F Maximum number of semaphore
* IDs
RMONMAXIPCSHMNIDS DS F Maximum number of shared memory
* IDs
RMONMAXIPCSHMSPGS DS F Maximum number of shared memory
* pages for all segments
RMONCURRENTIPC DS 0CL16
RMONNUMIPCMSGNIDS DS F Current number of message queue
* IDs
RMONNUMIPCSEMNIDS DS F Current number of semaphore
* IDs
RMONNUMIPCSHMNIDS DS F Current number of shared memory
* IDs
RMONNUMIPCSHMSPGS DS F Current number of shared memory
* pages for all segments
RMONOVRMMAPAREA DS F Number of attempts to exceed
* maximum number of mmap storage
* pages
RMONMAXMMAPAREA DS F Maximum number of mmap storage
* pages
RMONNUMMMAPPAGES DS F Current number of mmap storage
* pages (in use)
RMONMAXSHRPAGES DS F Maximum number of shared storage
* pages as specified by BPXPRMXX
* parmlib statement MAXSHAREPAGES
RMONNUMSHRPAGES DS F Current number of shared storage
* pages
RMONOVRSHRPAGES DS F Number of attempts to exceed
* maximum number of shared storage
* pages
RMONMAXSHRLIBRGN DS F Maximum amount of storage available
* for shared library region as
* specified by parmlib statement
* SHRLIBRGNSIZE in megabytes
RMONCURSHRLIBRGN DS F Current amount of shared library
* storage allocated in megabytes
RMONOVRSHRLIBRGN DS F Number of attempts to exceed maximum
* storage amount for shared library
* region
RMONMAXQUEUEDSIGS DS F Maximum amount of queued signals
* allowed per process as specified
* by parmlib statement
* MAXQUEUEDSIGS
RMONOVRQUEUEDSIGS DS F Number of attempts to exceed maximum
* number of queued signals
RMON#LENGTH EQU *-RMON Length of RMON
** BPXYRMON End

BPXYSECI — Map the Output of BPX1IOC for the SECIGET Request
BPXYSECI ,

** BPXYSECI: Socket Peer Security Identifiers
** Used By: IOC
SECI DSECT ,

BPXYRMON

1020 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

SECIUSERID DS CL8 MVS User ID
SECIEUID DS F Effective UID
SECIEGID DS F Effective GID
SECI#LENGTH EQU *-SECI Length of this area
** BPXYSECI End

BPXYSEEK — Constants for lseek
BPXYSEEK is composed only of EQUates. DSECT= is allowed but ignored.

BPXYSEEK ,
** BPXYSEEK: Lseek constant definitions
** Used By: LSK
SEEK_SET EQU 0 Set file offset to offset
SEEK_CUR EQU 1 Set file offset to current + offset
SEEK_END EQU 2 Set file offset to EOF + offset
** BPXYSEEK End

BPXYSEL — Map the select Options
BPXYSEL contains the read, write and exception options for the select system call.

BPXYSEL ,
** BPXYSEL: Select Options
** Used By: SEL
SEL DSECT ,
SELBEGIN DS 0F
*
SELBITS DS 0XL4 Flag Bits.8F FF FF FF Reserved
SELPOLLFLAGS DS XL2 Select flags / Poll (r)events
*---
* Select flags
*---
SELFLAGS ORG SELPOLLFLAGS

DS XL1
* EQU X’80’ Never use this bit
SELREAD EQU X’40’ Descriptor ready for read.
SELWRITE EQU X’20’ Descriptor ready for write.
SELXCEPT EQU X’10’ Descriptor ready for exception.

DS XL1 Available byte
*---
* Poll Events/Returned Events
*---
SELPOLLEVENTS ORG SELPOLLFLAGS

DS XL2 Mapped by PollEvents(BPXYPOLL)
SELPOLLREVENTS ORG SELPOLLFLAGS

DS XL2 Mapped by PollRevents(BPXYPOLL)
*

DS XL1 Available byte
DS XL1 Reserved for internal use

*
* Constants
*
SEL#LENGTH EQU *-SEL Length of SEL
SEL#QUERY EQU 1 Query function
SEL#CANCEL EQU 2 Cancel function
SEL#BATSELQ EQU 3 Batch-Select Query function
SEL#BATSELC EQU 4 Batch-Select Cancel function
SEL#POLLQUERY EQU 5 Poll Query function
SEL#BATPOLLQ EQU 6 Batch-Poll Query function
SEL#BATPOLLC EQU 7 Batch-Poll Cancel function
SEL#POLLCANCEL EQU 8 Poll Cancel function
SEL#BITSBACKWARD EQU 0 Bit Backward Order by word
SEL#BITSFORWARD EQU 1 Bit Forward Order by word
SEL#TYPES EQU 3 3 TYPES (Read Write Except)

BPXYSECI

Appendix B. Mapping macros 1021

SEL#RBIT EQU 64 Read bit position in byte
SEL#WBIT EQU 32 Write bit position in byte
SEL#XBIT EQU 16 Xcept bit position in byte
** BPXYSEL End

BPXYSELT — Map the Timeout Value for the select Syscall
BPXYSELT ,

** BPXYSELT: Select Time Structure
** Used By: Select Syscall
SELT DSECT ,
SELTBEGIN DS 0D
*
TV_SEC DS F’0’ Seconds
TV_USEC DS F’0’ Microseconds
*
* Constants
*
SELT#LENGTH EQU *-SELT Length of SELT
** BPXYSELT End

BPXYSEM — Map InterProcess Communication Semaphores
DSECTs (SEMID_DS, SEM_ARRAY and SEM_BUF_ELE) will be generated with
either DSECT=NO or DSECT=YES. If DSECT=NO is specified, you may need an
additional DSECT / CSECT statement to return to the current DSECT or CSECT.

BPXYSEM ,
** BPXYSEM: Interprocess Communications Permission
** Used By: XSO, XSC
SEMID_DS DSECT , semctl structure
SEM_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP
SEM_NSEMS DS H number of semaphores in set

DS H spacer
SEM_OTIME DS FL4 last semop() time
SEM_CTIME DS FL4 last time changed by semctl()
SEM#LENGTH EQU *-SEMID_DS Length of this DSECT
* SETVAL - a one element array for Semaphore_Number
* SETALL, GETALL - an array with Number_of_Semaphore elements
SEM_ARRAY DSECT , SETALL, GETALL, SETVAL
SEM_ARRAY_VAL DS FL2 semaphore value
SEM_BUF_ELE DSECT , sembuf element - semop
SEM_NUM DS FL2 semaphore number (0 to n-1)
SEM_OP DS FL2 semaphore operation
SEM_FLG DS H operation flags
SEM#BUFLEN EQU *-SEM_BUF_ELE
* Flag bits - semop (also IPC_NOWAIT
SEM_UNDO EQU 2 Set up adjust on exit entry.
* Control Commands - (also IPC_RMID, IPC_SET, IPC_STAT):
SEM_GETVAL EQU 21 Get the current semaphore value
SEM_SETVAL EQU 22 Change the semaphore value
SEM_GETPID EQU 23 Get PID of last process to alter sem
SEM_GETNCNT EQU 24 Get count of tasks waiting for val>0
SEM_GETZCNT EQU 25 Get count of tasks waiting for val=0
SEM_GETALL EQU 26 Get the current semaphore values
SEM_SETALL EQU 27 Change the semaphore values
* Maximum and minimum values
SEM#MAX_VAL EQU 32767 Maximum sem_val (min = 0)
SEM#MAX_ADJ EQU 16383 Maximum sem_adj (min = -MAX)
** BPXYSEM End

BPXYSFDL — Map the Server File Descriptor List Structure
The mapping macro only provides enough space for one file descriptor; follow the
invocation with up to 63 additional words.

BPXYSEL

1022 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPXYSFDL ,
** BPXYSFDL: Dile descriptor List
** Used By: SPW
SFDL DSECT ,
SFDLHEADER DS 0CL8
SFDLCOUNT DS F Number of entries in this file descriptor list
SFDLFLAGS DS F Flags
SFDLCLOSE EQU X’80’ All files to be closed (Bit 0 of SFDLFLAGS)
SFDLDESC DS F First FD(follow by COUNT-1 additional FDs)
SFDLMAXCOUNT EQU 64 Maximum value for SFDLCOUNT
SFDL_LEN EQU *-SFDL
** BPXYSFDL End

BPXYSFPL — Map the send_file parameter list
BPXYSFPL ,

** BPXYSFPL: SFPL system call structure
** Used By: BPX1SF
SFPL DSECT ,
SFSOCKETDES DS F Socket Descriptor
SFHEADERLEN DS F Header Length
SFHEADERVPTR DS 0F
SFHEADERALET DS F Header Alet
SFHEADERPTR DS F Header Ptr
SFFILEDES DS F File Descriptor
SFFILEBYTESDW DS 0F Bytes to send Double Word (-1=all)
SFFILEBYTESH DS F High Word
SFFILEBYTESL DS F Low Word
SFFILEOFFSETDW DS 0F Offset Double Word
SFFILEOFFSETH DS F High Word
SFFILEOFFSETL DS F Low Word
SFFILESIZEDW DS 0F File Size Double Word
SFFILESIZEH DS F High Word
SFFILESIZEL DS F Low Word
SFTRAILERLEN DS F Trailer Length
SFTRAILERVPTR DS 0F
SFTRAILERALET DS F Trailer Alet
SFTRAILERPTR DS F Trailer Ptr
SFBYTESSENTDW DS 0F Bytes Sent Double Word
SFBYTESSENTH DS F High Word
SFBYTESSENTL DS F Low Word
SFFLAGS DS 0XL4 Control Flags
SFPLVERSION DS XL1 Version
SFFLAGBYTE2 DS XL1 Reserved
SFFLAGBYTE3 DS XL1 Reserved
SFFLAGBYTE4 DS XL1 Flags
SF_CLOSE EQU 2 Close Socket Descriptor
SF_REUSE EQU 1 Reuse Socket Descriptor
SFRESERVE DS CL12 Reserved
*
SFPLEND EQU *
*
SFPL#LENGTH EQU SFPLEND-SFPL
*
* Constants
*
*
** BPXYSFPL End

BPXYSFDL

Appendix B. Mapping macros 1023

BPXYSHM—Map InterProcess Communication Shared Memory
Segments

BPXYSHM ,
** BPXYSHM: Interprocess Communications Permission
** Used By: XMC
SHMID_DS DSECT , SHMID_DS - shmctl structure
SHM_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPC
SHM_SEGSZ DS F size of segment in bytes
SHM_LPID DS F process ID of last operation
SHM_CPID DS F process ID of creator
SHM_NATTCH DS F number of current attaches
SHM_ATIME DS F time of last shmat
SHM_DTIME DS F time of last shmdt
SHM_CTIME DS F time of last change shmget/shmctl
* Mode bits (mapped over S_TYPE in BPXYMODE):
SHM_RDONLY EQU 1 Attach read-only (else read-write)
SHM_RND EQU 2 Round attach address to SHMLBA
SHMLBA EQU 4096 Rounding boundary
SHM#LENGTH EQU *-SHMID_DS Length of this DSECT
** BPXYSHM End

BPXYSIGH — Signal Constants
BPXYSIGH is composed of only EQUates. DSECT= is allowed but ignored.

BPXYSIGH ,
** BPXYSIGH: Component signal definition
** Used By: KIL SIA SPM

* Signals with default action ABNORMAL TERMINATION
SIGHUP# EQU 1 Hangup detected on controlling terminal
SIGINT# EQU 2 Interactive attention
SIGABRT# EQU 3 Abnormal termination
SIGILL# EQU 4 Detection of an incorrect hardware instruction
SIGPOLL# EQU 5 Pollable event
SIGURG# EQU 6 High bandwidth data is available at a socket
SIGFPE# EQU 8 Erroneous arithmetic operation, such as division
* by zero of an operation resulting in overflow
SIGKILL# EQU 9 Termination (cannot be caught or ignored)
SIGBUS# EQU 10 Bus error
SIGSEGV# EQU 11 Detection of an incorrect memory reference
SIGSYS# EQU 12 Bad System Call
SIGPIPE# EQU 13 Write on a pipe with no readers
SIGALRM# EQU 14 Timeout
SIGTERM# EQU 15 Termination
SIGUSR1# EQU 16 Reserved as application-defined signal 1
SIGUSR2# EQU 17 Reserved as application-defined signal 2
SIGABND# EQU 18 Abend
SIGQUIT# EQU 24 Interactive termination
SIGTRAP# EQU 26 Trap used by the ptrace call
SIGXCPU# EQU 29 CPU time limit exceeded
SIGXFSZ# EQU 30 File size limit exceeded
SIGVTALRM# EQU 31 Virtual timer expired
SIGPROF# EQU 32 Profiling timer expired
SIGDANGER# EQU 33 Shutdown Imminent
SIGDCE# EQU 38 Reserved for exclusive use by DCE
* Signals with default action of CONTINUE
* Signals with default action IGNORE THE SIGNAL
SIGNULL# EQU 0 Null - no signal sent
SIGCHLD# EQU 20 Child process terminated or stopped
SIGIO# EQU 23 Completion of input or output
SIGIOER# EQU 27 Input or Output Error
SIGWINCH# EQU 28 Change size of window
SIGDUMP# EQU 39 Take a SYSMDUMP
* Signals with default action STOP

BPXYSHM

1024 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

SIGSTOP# EQU 7 Stop (cannot be caught or ignored)
SIGTTIN# EQU 21 Read from a control terminal attempted by a
* member of a background process group
SIGTTOU# EQU 22 Write from a control terminal attempted by a
* member of a background process group
SIGTSTP# EQU 25 Interactive stop
SIGTHSTOP# EQU 34 Thread stop (cannot be caught or blocked or
* ignored)
* Signals with default action CONTINUE IF IT IS CURRENTLY STOPPED,
* OTHERWISE IGNORE THE SIGNAL
SIGCONT# EQU 19 Continue if stopped
SIGTHCONT# EQU 35 Thread continue (cannot be caught or blocked or
* ignored)

** Equates that define sa_handler values on Sigaction()

SIG_DFL# EQU 0 Default signal action
SIG_IGN# EQU 1 Ignore signal action

** Constants that define sa_flags values on Sigaction()

SA_FLAGS_DFT# EQU X’00000000’ Default sa_flags
SA_NOCLDSTOP# EQU X’80000000’ No SIGCHLD when children stop
SA_OLD_STYLE# EQU X’40000000’ Old style signal() function
SA_ONSTACK# EQU X’20000000’ Deliver on alternate stack
SA_RESETHAND# EQU X’10000000’ Reset action on delivery
SA_RESTART# EQU X’08000000’ Restart interruptible funcs
SA_SIGINFO# EQU X’04000000’ Pass siginfo to catcher
SA_NOCLDWAIT# EQU X’02000000’ Don’t create zombie on exit
SA_NODEFER# EQU X’01000000’ Don’t block signal on delivery
SA_IGNORE# EQU X’00000001’ Act as though sa_handler contained
* SIG_IGN#

** Constants that define how parameter on sigprocmask()

SIG_BLOCK# EQU 0 Block signals set on in New_signal_mask
SIG_UNBLOCK# EQU 1 Unblock signals set on in New_signal_mask
SIG_SETMASK# EQU 2 Set signal mask to New_signal_mask

** Constants that define the lower two bytes of the Signal_Options *
** on the BPX1KIL and BPX1PTK syscalls. If a signal generated with *
** one or more of these flags is handled by the Signal Interface *
** Routine, the flags will appear in the PpsdKilOpts field upon *
** delivery of said signal.
** When the lower two bytes contain x’1000’ (SIG_CONSCANCEL#) the *
** upper two bytes will contain the SIGCNCL type qualifier

SIG_FLAGS_DFT# EQU X’0000’ Default options
SIG_PTRACEBYPASS# EQU X’8000’ Bypass ptrace processing
SIG_KERNSICODE# EQU X’4000’ OpenMVS kernel set si_code
SIG_APPLSICODE# EQU X’2000’ Application set si_code
SIG_CONSCANCEL# EQU X’1000’ Console (MODIFY) cancel thread

** Constants that define si_codes which are passed in the upper two *
** bytes of the Signal_Options on the BPX1KIL and BPX1PTK syscalls *
** If a signal generated with a si_code is handled by the Signal *
** Interface Routine the si_code will appear in the PpsdKilData *
** field upon delivery of said signal.

ILL_ILLOPC# EQU 11 Illegal opcode
ILL_ILLOPN# EQU 12 Illegal operand
ILL_ILLADR# EQU 13 Illegal addressing mode
ILL_ILLTRP# EQU 14 Illegal trap
ILL_PRVOPC# EQU 15 Privileged opcode
ILL_PRVREG# EQU 16 Privileged register
ILL_COPROC# EQU 17 Coprocessor error
ILL_BADSTK# EQU 18 Internal stack error

BPXYSIGH

Appendix B. Mapping macros 1025

ILL_EXECUTE# EQU 19 Execute exception
ILL_ILLSPEC# EQU 20 Specification exception

FPE_INTDIV# EQU 31 Integer divide by zero
FPE_INTOVF# EQU 32 Integer overflow
FPE_FLTDIV# EQU 33 Floating point divide by zero
FPE_FLTOVF# EQU 34 Floating point overflow
FPE_FLTUND# EQU 35 Floating point underflow
FPE_FLTRES# EQU 36 Floating point inexact result
FPE_FLTINV# EQU 37 Invalid floating point operation
FPE_FLTSUB# EQU 38 Subscript out of range
FPE_FLTSIG# EQU 39 Floating point significance exception
FPE_DECDATA# EQU 40 Decimal data exception
FPE_DECDIV# EQU 41 Decimal divide by zero
FPE_DECOVF# EQU 42 Decimal overflow
FPE_UNKWN# EQU 43 Undetermined exception

SEGV_MAPERR# EQU 51 Address not mapped to object
SEGV_ACCERR# EQU 52 Invalid permissions for mapped object
SEGV_PROTECT# EQU 53 Invalid key access
SEGV_ADDRESS# EQU 54 Invalid address

BUS_ADRALN# EQU 71 Invalid address alignment
BUS_ADRERR# EQU 72 Non-existent physical address
BUS_OBJERR# EQU 73 Object specific hardware error

TRAP_BRKPT# EQU 91 Process breakpoint
TRAP_TRACE# EQU 92 Process trace trap

CLD_EXITED# EQU 101 Child has exited
CLD_KILLED# EQU 102 Child was killed
CLD_DUMPED# EQU 103 Child was terminated abnormally
CLD_TRAPPED# EQU 104 Traced child has trapped
CLD_STOPPED# EQU 105 Child has stopped
CLD_CONTINUED# EQU 106 Stopped child was continued

POLL_IN# EQU 111 Data input available
POLL_OUT# EQU 112 Output buffers available
POLL_MSG# EQU 113 Input message available
POLL_ERR# EQU 114 I/O error
POLL_PRI# EQU 115 High priority input available
POLL_HUP# EQU 116 Device disconnected

ABND_REAL# EQU 170 Abend Real

SI_ASYNCIO# EQU 175 Completion of an asynchronous I/O
SI_QUEUE# EQU 176 Signal sent by sigqueue()

** Equate for BPX1STW (sigtimedwait) syscall that when specified *
** for the "Seconds" parameter indicates not to timeout while *
** waiting for signal(s). *

SIG#NO_TIMEOUT EQU X’7FFFFFFF’
** BPXYSIGH End

BPXYSINF — Map SIGINFO_T Structure
DSECT (SIGINFO_T) will be generated with either DSECT=NO or DSECT=YES. If
DSECT=NO is specified, you may need an additional DSECT / CSECT statement to
return to the current DSECT or CSECT.

BPXYSINF ,
** BPXYSINF: siginfo_t Structure
** Used By: waitid
SIGINFO_T DSECT , Siginfo_t structure
SI_SIGNO DS F signal number
SI_ERRNO DS F error number

BPXYSIGH

1026 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

SI_CODE DS F signal code
SI_PID DS F sending process ID
SI_UID DS F real user ID of sending process
SI_ADDR DS A address of faulting instruction
SI_STATUS DS F exit value or signal
SI_BAND DS F band event for SIGPOLL
SI_VALUE DS F signal value
SIGINFO#LENGTH EQU *-SIGINFO_T Length of this DSECT
** BPXYSINF End

BPXYSOCK — Map SOCKADDR Structure and Constants
BPXYSOCK maps the SOCKADDR structure for socket, accept, bind, sendto,
recvfrom, getsockname, and getpeername.

BPXYSOCK ,
*

** BPXYSOCK: OpenMVS Socket Address Structure *
** Used By: Sockets PFS *

*
SOCKADDR DSECT ,
SOCKBEGIN DS 0F
*
SOCK_LEN DS X Address Length - Length of *X

either SOCK_SIN (for AF_INET *X
sockets) or of the name supplied*X
in SOCK_SUN_NAME (for AF_UNIX *X
sockets)

SOCK_FAMILY DS X Address Family
SOCK_DATA DS 0C Protocol specific area
*
SOCK#LEN EQU *-SOCKADDR Constant - Fixed length of SOCK
*

* *
* AF_Inet Socket Address Structure *
* *

*

ORG SOCK_DATA Start of AF_Inet unique area
SOCK_SIN DS 0C
SOCK_SIN_PORT DS H Port number used by the appl
SOCK_SIN_ADDR DS CL4 INET address (netid)

DS CL8 Reserved area not used
*
SOCK_SIN#LEN EQU *-SOCK_SIN Constant - Fixed length of
* AF_Inet unique area
*
*

* *
* AF_Unix Socket Address Structure *
* *

*

ORG SOCK_DATA Start of AF_Unix unique area
SOCK_SUN DS 0C
SOCK_SUN_NAME DS CL108 Path name of the socket
* Length 108 matchs RS/6000
*
SOCK_SUN#LEN EQU *-SOCK_SUN Constant - Fixed length of
* AF_Unix unique area
*

* *

BPXYSINF

Appendix B. Mapping macros 1027

* AF_Inet6 Socket Address Structure *
* *

*

ORG SOCK_DATA Start of AF_Inet6 area
SOCK_SIN6 DS 0C
SOCK_SIN6_PORT DS H Port number used by the appl
SOCK_SIN6_FLOWINFO DS CL4 FLOW INFORMATION
SOCK_SIN6_ADDR DS CL16 INET address (netid)
SOCK_SIN6_SCOPE_ID DS CL4 SCOPE ID
*
SOCK_SIN6#LEN EQU *-SOCK_SIN6 Length of AF_INET6 area
*

* *
* Equates for Address Families *
* *

*
AF_UNSPEC EQU 0 Unspecified
AF_UNIX EQU 1 Unix Domain
AF_INET EQU 2 Internetwork: UDP TCP
AF_IMPLINK EQU 3 Arpanet imp addresses
AF_PUP EQU 4 pup protocols: BSP
AF_CHAOS EQU 5 mit CHAOS protocols
AF_NS EQU 6 XEROX NS protocols
AF_NBS EQU 7 nbs protocols
AF_ECMA EQU 8 European computer man.
AF_DATAKIT EQU 9 datakit protocols
AF_CCITT EQU 10 CCITT protocols: X.25
AF_SNA EQU 11 IBM SNA
AF_DECNET EQU 12 DECNet
AF_DLI EQU 13 Direct data link interface
AF_LAT EQU 14 LAT
AF_HYLINK EQU 15 NSC hyperchannel
AF_APPLETALK EQU 16 Apple Talk
AF_IUCV EQU 17 IBM IUCV
AF_ESCON EQU 18 ESCON UDP
AF_INET6 EQU 19 IPv6
AF_ROUTE EQU 20 Routing Sockets
AF_MAX EQU 21
*
**/
* Equates for protocol
**/
*
IPPROTO_IP EQU 0 DEFAULT PROTOCOL
IPPROTO_TCP EQU 6 TCP
IPPROTO_UDP EQU 17 USER DATAGRAM
IPPROTO_IPV6 EQU 41 IPv6
IPPROTO_ICMPV6 EQU 58 IPv6 ICMP
*
IPPROTO_HOPOPTS EQU 0
IPPROTO_ROUTING EQU 43
IPPROTO_FRAGMENT EQU 44
IPPROTO_ESP EQU 50
IPPROTO_AH EQU 51
IPPROTO_NONE EQU 59
IPPROTO_DSTOPTS EQU 60
*

* *
* Equates for setpeer options *
* *

*
SOCK#SO_SET DC X’00000200’

BPXYSOCK

1028 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

SOCK#SO_UNSET DC X’00000400’
*

* *
* Equates for socket types *
* *

*
SOCK#_STREAM EQU 1
SOCK#_DGRAM EQU 2
SOCK#_RAW EQU 3
SOCK#_RDM EQU 4
SOCK#_SEQPACKET EQU 5
*

* *
* Equates for Dimension (socket/socketpair syscall) *
* *

*
SOCK#DIM_SOCKET EQU 1
SOCK#DIM_SOCKETPAIR EQU 2
*

* *
* Equates for getname option *
* *

*
SOCK#GNMOPTGETPEERNAME EQU 1
SOCK#GNMOPTGETSOCKNAME EQU 2
*

* *
* Equates for sockopt *
* *

*
SOCK#OPTOPTGETSOCKOPT EQU 1
SOCK#OPTOPTSETSOCKOPT EQU 2
SOCK#OPTOPTSETIBMSOCKOPT EQU 3
*

* *
* Equates for Shutdown options *
* *

*
SOCK#SHUTDOWNREAD EQU 0
SOCK#SHUTDOWNWRITE EQU 1
SOCK#SHUTDOWNBOTH EQU 2
*
*

* *
* Equate for Level Number for socket options *
* *

*
SOCK#SOL_SOCKET DC X’0000FFFF’
*
*

* *
* Equate for InAddrAny for bind requests *
* *

BPXYSOCK

Appendix B. Mapping macros 1029

*
INADDR_ANY DC X’00000000’
*
INADDR_LOOPBACK DC X’7F000001’
IN6ADDR_ANY DC X’00000000000000000000000000000000’
IN6ADDR_LOOPBACK DC X’00000000000000000000000000000001’
IN6ADDR_MAPPEDV4 DC X’00000000000000000000FFFF’
IN6ADDR_COMPATV4 DC X’000000000000000000000000’
*

* *
* Equates for Socket options *
* *

*
SOCK#SO_DEBUG DC X’00000001’
SOCK#SO_ACCEPTCONN DC X’00000002’
SOCK#SO_REUSEADDR DC X’00000004’
SOCK#SO_KEEPALIVE DC X’00000008’
SOCK#SO_DONTROUTE DC X’00000010’
SOCK#SO_BROADCAST DC X’00000020’
SOCK#SO_USELOOPBACK DC X’00000040’
SOCK#SO_LINGER DC X’00000080’
SOCK#SO_OOBINLINE DC X’00000100’
*
SOCK#SO_SNDBUF DC X’00001001’
SOCK#SO_RCVBUF DC X’00001002’
SOCK#SO_SNDLOWAT DC X’00001003’
SOCK#SO_RCVLOWAT DC X’00001004’
SOCK#SO_SNDTIMEO DC X’00001005’
SOCK#SO_RCVTIMEO DC X’00001006’
SOCK#SO_ERROR DC X’00001007’
SOCK#SO_TYPE DC X’00001008’
*
* Non-standard sockopts
*
SO_PROPAGATEID DC X’00004000’ /*
SO_CLUSTERCONNTYPE DC X’00004001’
SO_SECINFO DC X’00004002’
*
* SO_CLUSTERCONNTYPE Output Values
*
SO_CLUSTERCONNTYPE_NOCONN EQU 0
SO_CLUSTERCONNTYPE_NONE EQU 1
SO_CLUSTERCONNTYPE_SAME_CLUSTER EQU 2
SO_CLUSTERCONNTYPE_SAME_IMAGE EQU 4
SO_CLUSTERCONNTYPE_INTERNAL EQU 8
*
*
* IPPROTO_IP Options
*
IP_TOS EQU 2 /*
IP_MULTICAST_TTL EQU 3 /*
IP_MULTICAST_LOOP EQU 4 /*
IP_ADD_MEMBERSHIP EQU 5 /*
IP_DROP_MEMBERSHIP EQU 6 /*
IP_MULTICAST_IF EQU 7 /*
IP_DEFAULT_MULTICAST_TTL EQU 1 /*
IP_DEFAULT_MULTICAST_LOOP EQU 1 /*
IP_MAX_MEMBERSHIPS EQU 20 /*
*
* setibmsockopt options
*
SOCK#SO_BULKMODE DC X’00008000’
SOCK#SO_IGNOREINCOMINGPUSH DC X’00000001’
SOCK#SO_NONBLOCKLOCAL DC X’00008001’
SOCK#SO_IGNORESOURCEVIPA DC X’00000002’

BPXYSOCK

1030 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* Toggles the use of non-VIPA addresses. When
* enabled, non-VIPA addresses will be used for
* outbound IP packets.
SOCK#SO_OPTMSS DC X’00008003’
* Toggles the use of optimal TCP segment size.
* When enabled, the TCP segment size may be optimally
* increased on outbound data transfers. This may
* reduce the amount of TCP outbound and inbound
* acknowledgement packet processing; therefore,
* minimizing CPU consumption.
SOCK#SO_OPTACK DC X’00008004’ Optimize Acks
SOCK#SO_EIOIFNEWTP DC X’00000005’ Notify of new tp

* *
* Equates for So_ option values *
* *

SOCK#SO_SETOPTIONON DC X’00000001’
SOCK#SO_SETOPTIONOFF DC X’00000000’

* *
* Equates for IPPROTO_TCP options *
* *

SOCK#TCP_NODELAY DC X’00000001’
SOCK#TCP_KEEPALIVE DC X’00000008’
*

* *
* Equates for Socket Port Constant *
* *

*
SOCK#LASTRESERVEPORT EQU 1023
*
*
IP_MREQ DSECT ,
IMR_MULTIADDR DS CL4 IP MULTICAST ADDR OF GROUP
IMR_INTERFACE DS CL4 LOCAL IP ADDR OF INTERFACE
*

* *
* Structure for So_Linger *
*

*
SOCK_LINGER_STRUCT DSECT ,
SOCK_L_ONOFF DS F On/Off indicator
SOCK_L_LINGER DS F Length of time to linger

* *
* Equates for IPPROTO_IPV6 Options
* *

SOCK#IPV6_UNICAST_HOPS EQU 3
SOCK#IPV6_MULTICAST_LOOP EQU 4
SOCK#IPV6_JOIN_GROUP EQU 5
SOCK#IPV6_LEAVE_GROUP EQU 6
SOCK#IPV6_MULTICAST_IF EQU 7
SOCK#IPV6_MULTICAST_HOPS EQU 9
SOCK#IPV6_V6ONLY EQU 10
SOCK#IPV6_HOPLIMIT EQU 11 /* ANC DATA ONLY */
SOCK#IPV6_PKTINFO EQU 13
SOCK#IPV6_RECVHOPLIMIT EQU 14
SOCK#IPV6_RECVPKTINFO EQU 15
SOCK#IPV6_REACHCONF EQU 17
SOCK#IPV6_USE_MIN_MTU EQU 18

BPXYSOCK

Appendix B. Mapping macros 1031

SOCK#IPV6_CHECKSUM EQU 19

* The following are not currently supported by TCPIP

SOCK#IPV6_PATHMTU EQU 12
SOCK#IPV6_RECVPATHMTU EQU 16
SOCK#IPV6_NEXTHOP EQU 20
SOCK#IPV6_RTHDR EQU 21
SOCK#IPV6_HOPOPTS EQU 22
SOCK#IPV6_DSTOPTS EQU 23
SOCK#IPV6_RTHDRDSTOPTS EQU 24
SOCK#IPV6_RECVRTHDR EQU 25
SOCK#IPV6_RECVHOPOPTS EQU 26
SOCK#IPV6_RECVRTHDRDSOPTS EQU 27
SOCK#IPV6_RECVDSTOPTS EQU 28
SOCK#IPV6_RTHDR_TYPE_0 EQU 0 IPv6 Routing hdr type 0

* *
* Equates for IPPROTO_ICMPV6 options
* *

SOCK#ICMP6_FILTER EQU 1

* *
* Structure for Packet Source/Destination Information
* *

*
IN6_PKTINFO DSECT ,
IPI6_ADDR DS CL16 IPv6 Addr
IPI6_IFINDEX DS F Interface Index

* *
* Structure for Multicast Mreq
* *

*
IPV6_MREQ DSECT ,
IPV6MR_MULTIADDR DS CL16 IPv6 Addr
IPV6MR_INTERFACE DS F Interface index

* *
* Structure for CInet Interface Index
* *

*
IFINDEX DSECT ,
IFI_TDX DS H Cinet Td Index
IFI_INDEX DS H Stacks Interface Index

* *
* Structure for Icmp6 Filtering
* *

*
ICMP6_FILTER DSECT ,
ICMP6_FILT DS 8F 8*32 = 256 bits
*
** BPXYSOCK End

BPXYSSET — Map the sigaction set
DSECT=.. is not supported. The generated code will allocate
SSETOPTION_FLAGS and a DSECT for SSET. This should be followed by CSECT
statement to return to the current DSECT or CSECT.

BPXYSOCK

1032 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPXYSSET ,
** BPXYSSET: Macro which enables multiple signal calls
** Used By: SA2
SSETOPTION_FLAGS DS 0F
SSETOPTION_FLAGS1 DS FL1 FLAGS INDICATING CALLER OPTIONS
SSET_IGINVALID EQU X’80’ IGNORE INVALID SIGNALS & SIGACTIONS X

0=DO NOT IGNORE, 1=IGNORE
DS 3FL1 RESERVED

SSET DSECT ,
SSETCONSOLMASK DS XL8 SIGNALS HAVING THE SAME FLAGS,MASK, X

USERDATA, AND SIGNAL ACTION
SSETCOMPARE DS 0CL20
SSETFLAGS DS XL4 VALUE FOR SIGACTION FLAGS (BPXYSIGH)
SSETSAHANDLER DS A ADDRESS OF A SIGNAL HANDLER ROUTINE
SSETSAMASK DS XL8 VALUE FOR SIGACTION MASK
SSETUSERDATA DS F USER DEFINED DATA
SSET#LENGTH EQU *-SSET LENGTH OF ONE SSET ENTRY
** BPXYSSET End

BPXYSSTF — Map Response Structure for File System Status
BPXYSSTF ,

** BPXYSSTF: file system status response structure
** Used By: STF STV FTV VSF
SSTF DSECT ,
SSTFID DC C’SSTF’ EBCDIC ID - SSTF (f_OEcbid)
SSTFLEN DC A(SSTF#LENGTH) Length of SSTF (f_OEcblen)
SSTFBLOCKSIZE DS F Block size (f_bsize)

DS F Reserved
SSTFDBLTOTSPACE DS 0D Name of dblword field - total

DS F Reserved
SSTFTOTALSPACE DS F Total space. The total number of X

blocks on file system in units of X
f_frsize (f_blocks)

SSTFDBLUSEDSPACE DS 0D Name of dblword field - used
DS F Reserved

SSTFUSEDSPACE DS F Allocated space in block size units X
(f_OEusedspace)

SSTFDBLFREESPACE DS 0D Name of dblword field - free
DS F Reserved

SSTFFREESPACE DS F Space available to unprivileged X
users in block size units X
(f_bavail)

SSTFENDVER1 EQU * End of Version 1 SSTF
SSTFFSID DS F File system ID (f_fsid) X

Set by LFS
SSTFFLAG DS 0BL.32 Bit mask of f_flag vals
SSTFFLAGB1 DS XL1 byte 1
SSTFEXPORTED EQU X’40’ Filesys is exported X

(ST_OEEXPORTED) X
Set by LFS

SSTFV3PROP DS XL1 NFS V3 Properties
SSTFFSF_V3RET EQU X’80’ V3 Prop Returned
SSTFFSF_CANSETTIME EQU X’10’ time_delta accuracy
SSTFFSF_HOMOGENEOUS EQU X’08’ Pathconf same for all
SSTFFSF_SYMLINK EQU X’02’ Supports Symlinks
SSTFFSF_LINK EQU X’01’ Supports Hard Links
SSTFFLAGB3 DS XL1 byte 3
SSTFFLAGB4 DS XL1 byte 4
SSTFNOSEC EQU X’04’ No Security checks enforced
SSTFNOSUID EQU X’02’ SetUID/SetGID not supported X

(ST_NOSUID) X
Set by LFS

SSTFRDONLY EQU X’01’ Filesys is read only X
(ST_RDONLY) X
Set by LFS

SSTFMAXFILESIZE DS 0D Name of dblword field - maximum X

BPXYSSET

Appendix B. Mapping macros 1033

file size X
May be set by LFS

SSTFMAXFILESIZEHW DS F High word of max file size X
(f_OEmaxfilesizehw)

SSTFMAXFILESIZELW DS F Low word of max file size X
(f_OEmaxfilesizelw)

DS CL16 Reserved
SSTFENDLFSINFO EQU * End of LFS information
SSTFFRSIZE DS F Fundamental filesystem block size X

(f_frsize)
DS F Reserved

SSTFDBLBFREE DS 0D Name of dblword field - X
total number of free blocks

DS F Reserved
SSTFBFREE DS F Total number of free blocks X

(f_bfree)
SSTFFILENODES DS 0CL12 File nodes
SSTFFILES DS F Total number of file nodes X

in the file system (f_files)
SSTFFFREE DS F Total number of free file nodes X

(f_ffree)
SSTFFAVAIL DS F Number of free file nodes available X

to unprivileged users (f_favail)
SSTFNAMEMAX DS F Maximum file name len (f_namemax)
SSTFINVARSEC DS F Number of seconds file system X

will remain unchanged X
(f_OEinvarsec)

SSTFTIME_DELTA DS 0CL8 Set file time granularity
SSTFTIME_DELTA_SEC DS F Seconds
SSTFTIME_DELTA_NS DS F Nano-seconds

DS CL12 Reserved
SSTF#LENGTH EQU *-SSTF Length of this structure
SSTF#MINLEN EQU SSTFENDVER1-SSTF
SSTF#LFSLEN EQU SSTFENDLFSINFO-SSTF
** BPXYSSTF End

BPXYSTAT — Map the Response Structure for stat
BPXYSTAT ,

** BPXYSTAT: stat system call structure
** Used By: FST LST STA
STAT DSECT ,
ST_BEGIN DS 0D
*
ST_EYE DC C’STAT’ Eye catcher
ST_LENGTH DC AL2(STAT#LENGTH) X

Length of this structure
ST_VERSION DC AL2(ST#VER) X

Version of this structure
ST_MODE DS F File Mode, mapped by BPXYMODE
ST_INO DS F File Serial Number
ST_DEV DS F Device ID of the file
ST_NLINK DS F Number of links
ST_UID DS F User ID of the owner of the file
ST_GID DS F Group ID of the Group of the file
ST_SIZE DS 0D File Size in bytes, for regular
* files. Unspecified, for others
ST_SIZE_H DS F First word of size
ST_SIZE_L DS F Second word of size
ST_ATIME DS F Time of last access
ST_MTIME DS F Time of last data modification
ST_CTIME DS F Time of last file status change
* Time is in seconds since
* 00:00:00 GMT, Jan. 1, 1970
ST_RDEV DS 0F Device Information
ST_MAJORNUMBER DS H Major number for this file, if it
* is a character special file.

BPXYSSTF

1034 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

ST_MINORNUMBER DS H Minor number for this file, if it
* is a character special file.
ST_AUDITORAUDIT DS F Area for auditor audit info
ST_USERAUDIT DS F Area for user audit info
ST_BLKSIZE DS F File Block size
ST_CREATETIME DS F File Creation Time
ST_AUDITID DS 4F RACF File ID for auditing
ST_RES01 DS F
ST_CHARSETID DS 0XL12 Coded Character Set ID (obsolete
ST_FILETAG DS 0F File Tag
FT_CCSID DS H Coded character set ID in binary
FT_UNTAGGED EQU X’0000’ File has no tag
FT_BINARYTAG EQU X’FFFF’ File is binary data
FT_FLAGS DS XL2 File tagging flags
FT_TXTFLAG EQU X’8000’ File is pure text data
FT_DEFERTAG EQU X’4000’ File to be tagged at 1st write
ST_RES01A DS 2F reserved
ST_BLOCKS_D DS 0D Double word number - blocks allocated
ST_RES02 DS F
ST_BLOCKS DS F Number of blocks allocated
ST_GENVALUE DS 0XL4 General attribute values
ST_OPAQUE DS XL3 Opaque attribute flags- Reserved
ST_VISIBLE DS X Visible attribute flags
ST_SHARELIB EQU X’10’ Shared Library Flag
ST_NOSHAREAS EQU X’08’ No shareas flag
ST_APFAUTH EQU X’04’ APF authorized flag
ST_PROGCTL EQU X’02’ Program controlled flag
ST_EXTLINK EQU X’01’ External Symlink
ST_REFTIME DS F Reference time
ST_FID DS 2F File identifier
ST_FILEFMT DS XL1 File Format
ST_FSPFLAG2 DS XL1 IFSP_FLAG2 ACL support
ST_ACCESSACL EQU X’80’ Access Acl exists
ST_FMODELACL EQU X’40’ File Model Acl exists
ST_DMODELACL EQU X’20’ Directory Model Acl exists
ST_RES03 DS CL2 reserved
ST_CTIMEMSEC DS F Micro-Sec of full Ctime
ST_SECLABEL DS CL8 Security Label
ST_RES04 DS CL4 Reserved for future
*
* Constants
*
ST#VER EQU ST#VER01 Current version
ST#VER01 EQU 1 Version 1 of this structure
STAT#LENGTH EQU *-STAT Length of STAT
ST#LEN EQU STAT#LENGTH Length of STAT
** BPXYSTAT End

BPXYTCCP — Map the Terminal Control Code Page Structure
BPXYTCCP ,

** BPXYTCCP: terminal control code page structure
** Used By: TGC TSC TST
TCCP DSECT ,
TCCPFLAG DS 0BL.32 Bit mask of __tccp_flags
TCCPFLAGB1 DS XL1 byte 1
TCCPFLAGB2 DS XL1 byte 2
TCCPFLAGB3 DS XL1 byte 3
TCCPFLAGB4 DS XL1 byte 4
TCCPFASTP EQU X’02’ If set, indicates that the X

application can optionally X
use iconv() services to X
build the translation tables X
once and perform all X
subsequent translation locally. X
(_TCCP_FASTP)

TCCPBINARY EQU X’01’ If set, indicates that binary X

BPXYSTAT

Appendix B. Mapping macros 1035

mode is desired. X
The code pages are ignored. X
(_TCCP_BINARY)

TCCPSRCNAME DS CL32 Source code page name X
The code page name is case sensitive X
and must be null (X’00’) terminated. X
(__tccp_fromname)

TCCPTRGNAME DS CL32 Target code page name X
The code page name is case sensitive X
and must be null (X’00’) terminated. X
(__tccp_toname)

TCCPEND EQU * End of TCCP
*
* Constants
*
TCCP#LENGTH EQU *-TCCP Length of this structure
*
* CPCN capability constants
*
TCCP#CPNAMESONLY EQU 1 Code page names only (_CPCN_NAMES)
TCCP#CPNAMESANDTBLS EQU 2 Code page names and conversion tables X

(_CPCN_TABLES)
TCCP#CPNAMEMAX EQU 32 Maximum length of code page name X

including terminating null X
(_TCCP_CPNAMEMAX)

** BPXYTCCP End

BPXYTCPP — Map TcpParm Structure
BPXYTCPP maps the TcpParm structure for socket request communication
between the kernel and the TCP/IP address space.

BPXYTCPP ,
** BPXYTCPP: Tcp/Ip parameter list
** Used By: callers of Tcp/Ip
TCPPARM DSECT ,
TCPPARMBEGIN DS 0F
**
* TcpParm Assembler Declarations *
**
* TcpParm Header *
**
TCPPEYE DC C’TCPP’ Eye Catcher
TCPPGARBQNEXTPTR DS 0F Ptr to next free Tcpparm
TCPPLEN DC AL4(TCPPARM#LEN) Length of the structure
TCPPTYPE DC F’0’ See TcppType# for types
TCPPHOMEPTR DC A(0) Ptr to original TcpParm
*
TCPPCSWAPCTR DC F’0’ Counter area to Compare and
* Swap for Cleanup
*
TCPPMSGID DS F MsgId (Filled in by TCP/IP)
* and used on Cancel
*
TCPPFLAGS DS B Flags - Byte 1
TCPPNOIOCTL EQU X’80’ No IoCtl to be done by TcpIp
TCPPSRBSCHED EQU X’40’ Sched SRB instead of Post
TCPPGOODCANCEL EQU X’20’ TCP/IP cancel cancelled
** EQU X’1F’ Reserved
*
TCPPRESERVED7 DS 7C Reserved
TCPPCALLERSPID DC F’0’ Callers Pid for SigPipe Signal
TCPPTRGCLS DS F Target class (Filled in by
* Tcp/Ip) and used on Cancel
TCPPWPTOKEN DS CL24 Kernel Post Token
TCPPIPWORKAREA DS CL32 TcpIp Work area
*

BPXYTCCP

1036 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

TCPPSOCKETTOKEN DS 0CL8 Socket Token
TCPPPATHID DS F IUCV Pathid id
TCPPSOCKID DS F Socket Id
*
TCPPRETCODE DC F’0’ Return Code
TCPPERRNO DC F’0’ Errno
*
TCPPSPECIFIC DS CL60 Call Specific Output area

* Cancel: (Read/Write/Accept/Select only)

TCPPCANCEL DS 0CL12 Cancel
TCPPCLTRGCLS DS F TrgCls of request to cancel
TCPPCLSOCKID DS 0F SocketId of request to cancel
TCPPCLSLDESCSS DS F Descriptor set size of select
* request
TCPPCLMSGID DS F MsgId of original cancel
TCPPASYTOK DS CL8 TOken for lfs Asynch CB

DS CL16 RESERVED
*

* Constants used in the Header *

TCPPARM#LEN EQU *-TCPPARM Constant - Length of TcpParm
*

* Call Specific Assembler Declarations *

*

* Init/Term Calls *

* IUCV Connect: (Get PathId) *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPIUCVCONNECT DS 0F IUCV Connect
TCPPRCUSERID DS CL8 MVS UserId (boundary word)
TCPPRCSOCKPERPATH DS F Number of Sockets per Path
TCPPRRETPATHID DS F Returned: PathId
*
TCPPIUCV#LEN EQU *-TCPPIUCVCONNECT Length of TCPPIUCVCONNECT
*

* Initial Send: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPINITSEND DS 0F InitSend
TCPPRSUBTASKID DS CL8 Unique subtask Id
TCPPRISOCKPERPATH DS F Number of Sockets per Path
TCPPRRETSOCKPERPATH DS F Returned: Sockets per Path
*
TCPPINITSEND#LEN EQU *-TCPPINITSEND Length of TPCCINITSEND
*

* Sever: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSEVER DS 0F Sever
TCPPSUSERID DS CL8 UserId to sever
*
TCPPSEVER#LEN EQU *-TCPPSEVER Length of TCPPSEVER
*

************************* Socket Calls ********************************

BPXYTCPP

Appendix B. Mapping macros 1037

*

* Accept: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPACCEPT DS 0F Accept
TCPPAPATHID DS F Pathid for new socket
TCPPARETADDRNPLEN DS X Returned: Length of "peer"

ORG TCPPARETADDRNPLEN Set back for NPORT
TCPPARETADDRNPORT DS CL16 Returned: Address of "peer"
TCPPARETSOCKID DS F Returned: Socket Id
TCPPAASYNCIDXSAVE DS F Paid Index save area
TCPPAASYNCTNODSAVE DS CL8 Tnod Token save area
*
TCPPACCEPT#LEN EQU *-TCPPACCEPT Length of TCPPACCEPT
*

* Bind: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPBIND DS 0F Bind
TCPPBADDRNPLEN DS X Address to bind to length

ORG TCPPBADDRNPLEN Set back for NPORT
TCPPBADDRNPORT DS CL16 Address to bind to
*
TCPPBIND#LEN EQU *-TCPPBIND Length of TCPPBIND
*

* Close: (No mapping necessary) *

*

* Connect: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPCONNECT DS 0F Connect
TCPPCOADDRNPLEN DS X Address to connect to len

ORG TCPPCOADDRNPLEN Set back for NPORT
TCPPCOADDRNPORT DS CL16 Address to connect to
*
TCPPCONNECT#LEN EQU *-TCPPCONNECT Length of TCPPCONNECT
*

* Fcntl: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPFCNTL DS 0F Fcntl
TCPPFCOMMAND DS F Command options currently:
* F_SETFL (4) or F_GETFL (3)
TCPPFARGUMENT DS F Arguments currently:
* FNDELAY (x’00000004’)
*
TCPPFCNTL#LEN EQU *-TCPPFCNTL Length of TCPPFCNTL
*

* GetHostId: (No mapping necessary) *

*

* GetHostName: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPGETHOSTNAME DS 0F GetHostName
TCPPGHOSTNAMELEN DS F Input: Host Name LENGTH
TCPPGRETHOSTNAMELEN DS F Returned: Host Name LENGTH
TCPPGRETHOSTNAME DS CL35 Returned: Host Name
*

BPXYTCPP

1038 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

TCPPGETHOSTNAME#LEN EQU *-TCPPGETHOSTNAME Length of TCPPGETHOSTNAME

*The following constant is used with TCPPGRETHOSTNAME. If the value *
*of TCPP#MAXHOSTNAMELEN changes then change TCPPGRETHOSTNAME. *

TCPP#MAXHOSTNAMELEN EQU 35 HostName Length
* 35 chars=wwwwwwww.xxxxxxxx.yyyyyyyy.zzzzzzzz

* GetPeerName: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPGETPEERNAME DS 0F GetPeerName
TCPPGPRETADDRNPLEN DS X Returned: Length of Pee

ORG TCPPGPRETADDRNPLEN Set back for NPORT
TCPPGPRETADDRNPORT DS CL16 Returned: Address of Peer
*
TCPPGETPEERNAME#LEN EQU *-TCPPGETPEERNAME Length of TCPPGETPEERNAME
*

* GetSockName: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPGETSOCKNAME DS 0F GetSockName
TCPPGSRETADDRNPLEN DS X Returned: Lenght of sel

ORG TCPPGSRETADDRNPLEN Set back for NPORT
TCPPGSRETADDRNPORT DS CL16 Returned: Address of self
*
TCPPGETSOCKNAME#LEN EQU *-TCPPGETSOCKNAME Length of TCPPGETSOCKNAME
*

* GetsockOpt: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPGETSOCKOPT DS 0F GetSockOpt
TCPPGSOLEVEL DS F Level
TCPPGSOOPTNAME DS F Option name
TCPPGSOOPTLEN DS F Option value length
TCPPGSORETOPTVALUE DS CL8 Option value
TCPPGSORETOPTLEN DS F Returned opt val len
*
TCPPGETSOCKOPT#LEN EQU *-TCPPGETSOCKOPT Length of TCPPGETSOCKOPT
*

* Ioctl: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPIOCTL DS 0F Ioctl
TCPPIREQUESTTYPE DS F Ioctl Request Type
TCPPIARGPLEN DS 0F Argp Length (Input)
TCPPIRETARGPLEN DS F Argp Length (Output)
TCPPIARGP DS 0CL48 Argp (Input)
TCPPIRETARGP DS CL48 Argp (Output)
*
TCPPIOCTL#LEN EQU *-TCPPIOCTL Length of TCPPIOCTL
*

ORG TCPPIARGP
TCPPIOCTLARGP DS 0F
TCPPIFCLEN DS F Length of returning IArgp area
TCPPIFRIFRU DS F
TCPPIWAADDR DS A WORK AREA ADDRESS OF TEMP BUF
*

ORG TCPPIRETARGP
TCPPIRETIOCTLARGP DS 0F
TCPPIRETIFCADDR DS A Address of buffers in home AS
TCPPIRETIFCLEN DS F Size of buffers returned
TCPPIRETWAADDR DS A WORK AREA ADDRESS OF TEMP BUF
*

BPXYTCPP

Appendix B. Mapping macros 1039

TCPP#MAXSIOCGIFCONF EQU 3200 Maximum Ioctl SIOCGIFCONF
* Reply length (32*100)

* Listen: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPLISTEN DS 0F Listen
TCPPLBACKLOGCT DS F Back log count
*
TCPPLISTEN#LEN EQU *-TCPPLISTEN Length of TCPPLISTEN
*

* Read/Readv/Recv/RecvFrom/RecvMsg: *
* Write/Writev/Send/SendTo/SendMsg: *
* *
* All of the Read/Readv/Recv/RecvFrom/RecvMsg and Write/WriteV/ *
* Send/SendTo/SendMsg declarations are consolidated into one *
* declare, which is mapped by TcppSndRecv. *
* *
* The flags field, TcppSRFlags, is specifically broken down in *
* TcppSendFlags for send(etc) and TcppRecvFlags for recv(etc). *
* *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSNDRECV DS 0F Send/Recv etc
TCPPSRFLAGS DC F’0’ Send/Recv Flags: See below
TCPPSRADDRNPLEN DS X Send: Address of msg rec len

ORG TCPPSRADDRNPLEN
TCPPSRADDRNPORT DS CL16 Send: Address of msg receiver
* Recv: Address of msg source
*
TCPPSRLEN DS 0F Send/Recv buffer length
TCPPSRVECTCNT DC F’0’ Number of Vector Pairs
*
TCPPSRADDR DS 0F Send/Recv buffer address
TCPPSRVECTADDR DC F’0’ Vector buffer address
*
TCPPSRVECTALET DC F’0’ Vector Alet
TCPPSRBUFFALET DC F’0’ Buffer Alet
*
TCPPSRKEY DS X Send: Key of Source buffer
* Recv: Key of Destination buf
TCPPSRKEY4 EQU X’F0’ Key (upper 4 bits)
* EQU X’0F’ Reserved (lower 4 bits)
*
TCPPSRTFLAGS DC X’00’ Non-Socket Flags (1 byte)
TCPPSFSMALL EQU X’80’ Small Msg (Send*,Write Only)
TCPPSRFLUSH EQU X’40’ Flush buffers, don’t copy
TCPPSRSENDEND EQU X’20’ Send Complete
TCPPSRDOFLUSH EQU X’10’ Flush required from RW2
TCPPSRZEROBYTES EQU X’08’ Zero Byte Send/Recv
TCPPSRNOPRIMECK EQU X’04’ Data not chked til move
TCPPSRBULK EQU X’02’ Bulkmode request
* EQU X’01’ Reserved
*
TCPPSRRESERV DS CL2 Reserved (2 bytes)
*
TCPPSRRETLEN DC F’0’ Returned: Bytes Read/Write
*
TCPPSRRETSMFRECCNT DC F’0’ Returned: Approximate number
* of IOs per send
TCPPSRMSGHFLAGS DC F’0’ Returned: Output flags
* EQU X’FFFFFFC0’ Reserved (26 bits)
TCPPSRMSGHCTRUNC EQU X’00000020’ MSG_CTRUNC Flag
TCPPSRMSGHTRUNC EQU X’00000010’ MSG_TRUNC Flag
TCPPSRMSGHEOR EQU X’00000008’ MSG_EOR Flag
* EQU X’00000004’ Reserved

BPXYTCPP

1040 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* EQU X’00000002’ Reserved
TCPPSRMSGHOOB EQU X’00000001’ MSG_OOB Flag
*
TCPPSNDRECV#LEN EQU *-TCPPSNDRECV Length of TCPPSNDRECV
*

*Declare send bit flags mapped over TcppSRFlags *

ORG TCPPSRFLAGS
TCPPSENDFLAGS DS F Send Flags
* EQU X’FFFFFFF8’ Reserved (29 bits)
TCPPSFMDNTRT EQU X’00000004’ MSG_DONTROUTE FLAG (1 bit)
* EQU X’00000002’ Reserved (1 bit)
TCPPSFMOOB EQU X’00000001’ MSG_OOB flag (1 bit)
*

*Declare recv bit flags mapped over TcppSRFlags *

ORG TCPPSRFLAGS
TCPPRECVFLAGS DS F Recv Flags
* EQU X’FFFFFFFC’ Reserved (30 bits)
TCPPREFMPEEK EQU X’00000002’ MSG_PEEK Flag
TCPPREFMOOB EQU X’00000001’ MSG_OOB Flag
*

* Select: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSELECT DS 0F Select
TCPPSLNFDS DC F’0’ Current # Sockets per Path
TCPPSLTOFLAGS DS X Timer Flags
TCPPSLTOQUICK EQU X’80’ No wait if on
* EQU X’7F’ Reserved (7 bits)
*
TCPPSLFLAGS DC X’0’ Select flags
* EQU X’80’ Reserved - do not use
TCPPSLREADFDS EQU X’40’ Readfds flags
TCPPSLWRITEFDS EQU X’20’ Writefds flags
TCPPSLEXCEPTFDS EQU X’10’ Exceptfds flags
* EQU X’0F’ Reserved (4 bits)
*
TCPPSLRETFLAGS DC X’0’ Select Return Flags
* EQU X’80’ Reserved - do not use
TCPPSLRETREADFDS EQU X’40’ Return Readfds flags
TCPPSLRETWRITEFDS EQU X’20’ Return Writefds flags
TCPPSLRETEXCEPTFDS EQU X’10’ Return Exceptfds flags
* EQU X’0F’ Reserved (4 bits)
*
TCPPRESERVED1 DS 1C Reserved
*
TCPPSLTBSIPTR DS A TBSI Ptr on Batch Select
*
*---
* Poll Events
*---
TCPPPOLLEVENTS DS XL2 Mapped by PollEvents (BPXYPOLL)
*
*---
* Poll Returned Events
*---
TCPPPOLLREVENTS DS XL2 Mapped by PollRevents (BPXYPOLL)
*
TCPPSELECT#LEN EQU *-TCPPSELECT Length of TCPPSELECT
*

* SetIBMSockOpt:

BPXYTCPP

Appendix B. Mapping macros 1041

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSETISOCKOPT DS 0F SetIBMSockOpt
TCPPSISOLEVEL DS F Level
TCPPSISOOPTNAME DS F Option name
TCPPSISOOPTLEN DC F’0’ Option value length
TCPPSISOOPTVAL DS CL32 Option value
*
TCPPSETISOCKOPT#LEN EQU *-TCPPSETISOCKOPT Length of TCPPSETIBMSOCKOPT
*

* SetsockOpt: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSETSOCKOPT DS 0F SetSockOpt
TCPPSSOLEVEL DS F Level
TCPPSSOOPTNAME DS F Option name
TCPPSSOOPTLEN DC F’0’ Option value length
TCPPSSOOPTVAL DS CL8 Option value
*
TCPPSETSOCKOPT#LEN EQU *-TCPPSETSOCKOPT Length of TCPPSETSOCKOPT
*

* Shutdown: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSHUTDOWN DS 0F Shutdown
TCPPSHHOW DS F Shutdown flags
*
TCPPSHUTDOWN#LEN EQU *-TCPPSHUTDOWN Length of TCPPSHUTDOWN
*

* Socket: *

ORG TCPPSPECIFIC Follows TcpParm Header
TCPPSOCKET DS 0F Socket
TCPPSODOMAIN DC F’0’ Domain of socket
TCPPSOTYPE DC F’0’ Type of socket
TCPPSOPROTOCOL DC F’0’ Protocol of socket
TCPPSORETSOCKID DC F’0’ Returned: Socket Id
*
TCPPSOCKET#LEN EQU *-TCPPSOCKET Length of TCPPSOCKET
*

* CONSTANTS *

*
TCPP#REQUESTPATHID EQU -1 IUCV Connect pathid for Tcp/Ip
* to assign
*
TCPP#REQUESTSOCKID EQU -1 Socket/Accept SockId to have
* Tcp/Ip assign SockId for the
* caller
*
TCPP#OMVSNAME DC C’OMVS ’ OMVS Userid
*
TCPP#MAXSOCKPERPATH EQU 2000 Maximum sockets per Tcp/Ip path
*
TCPP#MAXPAIDE EQU 65535 Maximum number of pathids used
* with subtask Id assignment in
* BPXTUNWK
*
*

BPXYTCPP

1042 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* Tcp/Ip PC Catcher Return Code Constants *

TCPPARM#OK EQU 0 Request queued to processor
*
TCPPARM#RESNOTAVAILABLE EQU 4 Tcp/Ip not able to field
* request due to resource
* contraints
*
TCPPARM#BADTYPECODE EQU 8 Bad type code passed to PC
* routine
*
TCPPARM#BADDATA EQU 12 Bad data passed to Tcp/Ip
*
TCPPARM#UNEXPECTEDABEND EQU 16 Unexpected Abend in Tcp/Ip
*

* TcppType constants: *

TCPPTYPE#INITSEND EQU 0 INITIAL SEND
TCPPTYPE#ACCEPT EQU 1 ACCEPT
TCPPTYPE#BIND EQU 2 BIND
TCPPTYPE#CLOSE EQU 3 CLOSE
*
TCPPTYPE#CONNECT EQU 4 CONNECT
TCPPTYPE#FCNTL EQU 5 FCNTL
TCPPTYPE#GETHOSTID EQU 7 GETHOSTID
TCPPTYPE#GETHOSTNAME EQU 8 GETHOSTNAME
*
TCPPTYPE#GETPEERNAME EQU 9 GETPEERNAME
TCPPTYPE#GETSOCKNAME EQU 10 GETSOCKNAME
TCPPTYPE#GETSOCKOPT EQU 11 GETSOCKOPT
TCPPTYPE#IOCTL EQU 12 IOCTL
*
TCPPTYPE#LISTEN EQU 13 LISTEN
*
TCPPTYPE#PRIMEREAD EQU 14 PRIME FOR READ
TCPPTYPE#PRIMEREADV EQU 15 PRIME FOR READV
TCPPTYPE#PRIMERECV EQU 16 PRIME FOR RECV
TCPPTYPE#PRIMERECVFROM EQU 17 PRIME " RECVFROM
TCPPTYPE#PRIMERECVMSG EQU 18 PRIME " RECVMSG
*
TCPPTYPE#READ EQU 19 READ
TCPPTYPE#READV EQU 20 READV
TCPPTYPE#RECV EQU 21 RECV
TCPPTYPE#RECVFROM EQU 22 RECVFROM
TCPPTYPE#RECVMSG EQU 23 RECVMSG
*
TCPPTYPE#PRIMEWRITE EQU 24 PRIME FOR WRITE
TCPPTYPE#PRIMEWRITEV EQU 25 PRIME FOR WRITEV
TCPPTYPE#PRIMESEND EQU 26 PRIME FOR SEND
TCPPTYPE#PRIMESENDTO EQU 27 PRIME FOR SENDTO
TCPPTYPE#PRIMESENDMSG EQU 28 PRIME SENDMSG
*
TCPPTYPE#WRITE EQU 29 WRITE
TCPPTYPE#WRITEV EQU 30 WRITEV
TCPPTYPE#SEND EQU 31 SEND
TCPPTYPE#SENDTO EQU 32 SENDTO
TCPPTYPE#SENDMSG EQU 33 SENDMSG
*
TCPPTYPE#SETSOCKOPT EQU 34 SETSOCKOPT
TCPPTYPE#SHUTDOWN EQU 35 SHUTDOWN
TCPPTYPE#SOCKET EQU 36 SOCKET
*
TCPPTYPE#SELECT EQU 37 SELECT WAIT
*
TCPPTYPE#CANCEL EQU 38 CANCEL
TCPPTYPE#IUCVCONNECT EQU 39 IUCV CONNECT

BPXYTCPP

Appendix B. Mapping macros 1043

TCPPTYPE#SEVER EQU 40 SEVER TYPE CODE
*
TCPPTYPE#SELECTBATCH EQU 41 BATCH SELECT
TCPPTYPE#POLL EQU 42 POLL WAIT
TCPPTYPE#POLLBATCH EQU 43 BATCH POLL
TCPPTYPE#SETISOCKOPT EQU 44 SETIBMSOCKOPT
** BPXYTCPP End

BPXYTCPX — Map TcpX structure
BPXYTCPX maps the TcpX structure for initialization of communication between the
TCP/IP address space and the kernel.

BPXYTCPX ,
** BPXYTCPX: Tcp/Ip Initialization Parameter List
** Used By: callers of Tcp/Ip
TCPXPARM DSECT ,
TCPXPARMBEGIN DS 0D
**
* TcpXParm Assembler Declarations *
**
* TcpXParm Header *
**
TCPXHEADER DS 0F Header
TCPXEYE DC C’TCPX’ Eye Catcher
TCPXLEN DC AL4(TCPXPARM#LEN) Length of the structure
TCPXBODY DS 0F Body
TCPXEXTOKEN DS F Token to be passed back to
* Tcp/IP in the reg 2 of PC
TCPXAXNUMBER DS H Ax value for Tcp/Ip AS
TCPXRESV1 DS H RESERVED
TCPXLXNUMBER DS F Lx value for Tcp/Ip AS
TCPXETTOKEN DS F Et Token for Tcp/Ip AS
TCPXASCBPTR DS A(0) Pointer to Ascb of Tcp/Ip AS
TCPXECBPTR DS A(0) Miscellaneous Ecb Ptr

* Constants used in the Header *

TCPXPARM#LEN EQU *-TCPXPARM Constant - Length of TcpXParm

* TcpXReturn *

ORG TCPXBODY Follows TcpX Header
TCPXRETURN DS 0F Area returned by OE to Tcp
TCPXSOCKETSTOKEN DS CL8 Dataspace Stoken
TCPXTCPPGARBQPTR DS F TcpParm Garbage (Free) Q
*
TCPXRETURN#LEN EQU *-TCPXRETURN Length of TCPXRETURN
** BPXYTCPX End

BPXYTHDQ — Mapping of THDQ structure for BPX1PQG
BPXYTHDQ maps the THDQ structure that is supplied to the BPX1PQG callable
service.

BPXYTHDQ ,
**/ BPXYTHDQ_1:;
*/****START OF SPECIFICATIONS**
*
* $MAC (BPXYTHDQ) COMP(SCPX1) PROD(BPX):
*
01 MACRO NAME: BPXYTHDQ
*
01 DSECT NAME: THDQ
*
01 DESCRIPTIVE NAME: Mapping of THDQ structure for the BPX1PQG
* callable service

BPXYTCPP

1044 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
02 ACRONYM: THDQ
**/
*/*01* PROPRIETARY STATEMENT= */
*/***PROPRIETARY_STATEMENT**/
/ */
/ */
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ THIS MACRO IS "RESTRICTED MATERIALS OF IBM" */
/ 5694-A01 (C) COPYRIGHT IBM CORP. 2001, 2002 */
/ */
/ STATUS= HBB7707 */
/ */
*/***END_OF_PROPRIETARY_STATEMENT*************************************/
/
01 EXTERNAL CLASSIFICATION: GUPI
01 END OF EXTERNAL CLASSIFICATION:
*
01 FUNCTION:
*
* The THDQ maps the THDQ structure that is supplied to the
* BPX1PQG callable service.
*
*
01 METHOD OF ACCESS:
*
02 PL/X:
*
* %INCLUDE SYSLIB(BPXYTHDQ)
* By default, the THDQ is based on THDQPtr. If
* other basing is desired, use %THDQBASE=’BASED(XXXXXX)’.
* If %THDQBASE=’BASED(THDQPtr)’ is coded, a Declare for
* THDQPtr is also generated.
*
*
02 ASM:
* With DSECT=NO, storage is allocated in line
* and addressability is provided thru that DSECT or CSECT.
* With DSECT=YES, a DSECT is produced and "USING THDQ,reg"
* is required for addressability. Here "reg" contains the
* address of THDQ#LENGTH bytes of storage.
* The default is DSECT=YES.
*
01 SIZE: THDQ#LENGTH
* THDQ -- X’0130’ bytes
*
01 POINTED TO BY: THDQPtr
*
01 CREATED BY: Storage obtained by caller of BPX1PQG callable service
*
01 DELETED BY: Caller of BPX1PQG callable service
*
01 STORAGE ATTRIBUTES:
02 SUBPOOL/DATASPACE: User Subpool
02 KEY: Key of Caller of BPX1PQG
02 RESIDENCY: Anywhere
*
01 FREQUENCY: 1 per call to BPX1PQG
*
01 SERIALIZATION: N/A
*
01 DEPENDENCIES: None
*
01 NOTES: None
*
01 COMPONENT: OpenMVS (SCPX1)
*

BPXYTHDQ

Appendix B. Mapping macros 1045

01 DISTRIBUTION LIBRARY: AMACLIB
*
01 EYE-CATCHER: THDQ
02 OFFSET: 0
02 LENGTH: 4
*
01 CHANGE-ACTIVITY:
* $D0=DXVA409 HBB7704 000315 PDI6: Fast Pthread Quiesce A409.01
* $P1=DXV0206 HBB7704 000605 PDJI: Add ThdqNoData
* $D1=DYVA551 HBB7707 010221 PDJI: A551.00 Enhanced pthread quiesce
*
****END OF SPECIFICATIONS***/
% /
THDQ DSECT THDQ - THDQ structure for BPX1PQG callable X

service
THDQHDR DS 1CL0048 +0 Header section

ORG THDQHDR
THDQEYE DS 1CL0004 +0 eye catcher - ’THDQ’
THDQLENGTH DS 1FL2 +4 Length of THDQ structure
THDQVERSION DS 1FL2 +6 Version number
THDQNUMENTS DS 1FL4 +8 Number of entries in thread array X

ThdqArray
THDQFLAGS DS 1FL4 +C Flags relating to contents of structure

ORG THDQFLAGS
THDQFLAGS1 DS 1FL1 +C 1st flag byte

ORG THDQFLAGS1
THDQALLSAFE EQU X’80’ All threads are frozen in a safe state

ORG THDQFLAGS1+X’00000001’
THDQFLAGS2 DS 1FL1 +D 2nd flag byte
THDQFLAGS3 DS 1FL1 +E 3rd flag byte (used by exit). Cleared on X

initial call to LE exit
THDQFLAGS4 DS 1FL1 +F 4th flag byte

ORG THDQFLAGS4
THDQGETSTATE EQU X’80’ Get State Data requested by caller (input to X

exit)
ORG THDQFLAGS+X’00000004’

THDQEXITWKA DS 1CL0016 +10 Reserved for registered LE exit
DS 1CL0016 +20 Reserved

THDQDYN DS 0C +30 Dynamic section
*
* ***
* * *
* * Declare array of thread areas *
* * *
* ***
*
*
THDQARRAY DS 1CL0256 Array of Thread Areas

ORG THDQARRAY
THDQATHID DS 1CL0008 Thread ID of target thread
THDQAFLAGS DS 1FL4 Flags returned for target thread

ORG THDQAFLAGS
THDQAFLAGS1 DS 1FL1 Flag1 returned for target thread

ORG THDQAFLAGS1
THDQANOTFOUND EQU X’80’ Thread was not found, no data was returned
THDQAQFRZSAFE EQU X’40’ Thread is now frozen in a safe state X

determined by Language Env Exit
THDQAOTHERLE EQU X’20’ Thread is part of other language environment X

process
THDQANODATA EQU X’10’ Status data is not available for this thread X

(if Get State is requested). The PSW/Regs and X
other status info are not valid. The thread X
may be in the process of being created.

THDQACONDWAIT EQU X’08’ Task is in Condition Wait. X
If this bit is set, only the DSA ptr -- X
Reg13 or Reg4 -- is returned. ThdQAPswIA X
and all the other regs in ThdQARegs are set X

BPXYTHDQ

1046 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

to 0. (Caller should already have properly X
saved the PSW and registers information.)

ORG THDQAFLAGS1+X’00000001’
THDQAFLAGS2 DS 1FL1 Flag2 returned for target thread
THDQAFLAGS3 DS 1FL1 Flag3 returned for target thread
THDQAFLAGS4 DS 1FL1 Flag4 -- internal flags used by system

ORG THDQAFLAGS4
THDQAQUICKFRZ EQU X’80’ Thread was frozen without going through the X

RTL SIR or the slow freeze exit routine. X
1=quick freeze (Status stopped) 0=traditional X
freeze

THDQAREGSOK EQU X’40’ Registers and PSW retrieved OK
THDQASKIP EQU X’20’ 1 = LE exit should not look at this thread.

ORG THDQAFLAGS+X’00000004’
THDQAREGSSRC DS 1FL2 (Internal) Source from which the regs are X

retrieved. Valid if ThdqARegsOK set.
DS 1CL0002 Reserved

THDQAREGS DS 1CL0128 Registers of target thread
ORG THDQAREGS

THDQAREGSH DS 1CL0064 High registers 0-15
THDQAREGSL DS 1CL0064 Low registers 0-15
THDQADOWNSTACKPTR DS 1CL0008 Down Stack start address of target thread X

(For XPLINK)
ORG THDQADOWNSTACKPTR

THDQADSTACKPTRH DS 1AL4 High part of Stack address
THDQADSTACKPTRL DS 1AL4 Low part of Stack address
THDQAUPSTACKPTR DS 1CL0008 Up Stack start address of target thread

ORG THDQAUPSTACKPTR
THDQAUSTACKPTRH DS 1AL4 High part of Stack address
THDQAUSTACKPTRL DS 1AL4 Low part of Stack address
THDQAPSWIA DS 1CL0008 Instruction address of target thread

ORG THDQAPSWIA
THDQAPSWIAH DS 1AL4 High part of instruction addr
THDQAPSWIAL DS 1AL4 Low part of instruction addr
THDQACAAPTR DS 1CL0008 LE CAA pointer for thread

ORG THDQACAAPTR
THDQACAAPTRH DS 1AL4 High part of CAA pointer
THDQACAAPTRL DS 1AL4 Low part of CAA pointer

DS 1CL0004 Reserved
THDQATCBPTR DS 1AL4 TCB Pointer for target thread
THDQAEXITWKA DS 1CL0008 Thread work area used by LE exit (for PD)

DS 1CL0064 Reserved
*
* Declare constants
*
*
THDQ#REGSPPSD EQU 1 Regs from PPSD
THDQ#REGSIRB EQU 2 Regs from IRB
THDQ#REGSUSTA EQU 3 Regs from USTA
THDQ#REGSLS EQU 4 Regs from link stack
THDQ#REGSTCB EQU 5 Regs from TCB/STCB
THDQ#REGSRB EQU 6 Regs from RB/XSB
THDQ#REGSCW EQU 7 Regs for CondWait. Status returned as zeroes
THDQ#ID EQU C’THDQ’ Eye catcher
THDQ#VER EQU 1 Current version of control block
THDQ#VER01 EQU 1 Version 1 of control block
THDQ_LEN EQU *-THDQ

BPXYTHLI — Thread-level Information
BPXYTHLI ,

** BPXYTHLI: Thread Level Information
** Used to avoid selected syscalls.
** Based on OtcbTHLI - See BPXZOTCB.
THLI DSECT ,
THLIID DC C’THLI’ EBCDIC ID
THLISP DS FL1 Subpool number of this Thli

BPXYTHDQ

Appendix B. Mapping macros 1047

THLILEN DS FL3 Length of this Thli
THLIFLAGS DS BL4 Flag bits

ORG THLIFLAGS
THLISIGPENDING EQU X’80’ Signal pending flag
THLICANCELDISABLED EQU X’40’ Cancel request type 0=enabled, 1=disabled
THLICANCELPENDING EQU X’20’ Cancel pending for thread
THLICANCELASYNC EQU X’10’ Cancelation request state 0 = controlled, 1 X

= async
THLIITERATESIR EQU X’08’ Iterate SIR with new signal in PPSD
THLINOSIG EQU X’04’ Suppress signals for socket caller
THLITIMEOUTSET EQU X’02’ Kernel Time Out Service requested
THLITIMERPOPPED EQU X’01’ Kernel Time Out Service timer popped

ORG THLIFLAGS+X’00000001’
THLIPTQTIMEOUT EQU X’80’ Kernel will fail BPX1PTQ if timeout
THLIFREEZESTOP EQU X’40’ Thread has been frozen via status stop
THLIDEFERSIGNALS EQU X’20’ Signals are to be deferred
THLIPOSTANDDEFER EQU X’10’ Post but defer deleivery for bad key
THLITCBEXITPERC EQU X’08’ Set by application to allow tcbexit abends X

to perc to the TCB
THLIIRBNORETRY EQU X’04’ Set by NSSIR to indicate the calling IRB is X

to not retry any abends
THLISIGIRBABEND EQU X’02’ Abend on sigkill regardless of state

ORG THLIFLAGS+X’00000004’
THLIPPSD DS F Address of PPSD
THLISIGMASK DS BL8 Signal mask. Primarliy set by sigprocmask().
THLIPRLI DS A -> Prli. Process related information
THLIWORKPTR DS A -> To user work area specified on pt_create
THLICOMECB DS F User communication ECB
THLICOMFLAGS DS BL4 ECB control flags

ORG THLICOMFLAGS
THLICOMFLAGSB1 DS 1BL1 reserved
THLICOMFLAGSB2 DS 1BL1 reserved
THLICOMFLAGSB3 DS 1BL1 reserved for user
THLICOMFLAGSU0 EQU X’80’ reserved for user
THLICOMFLAGSU1 EQU X’40’ reserved for user
THLICOMFLAGSU2 EQU X’20’ reserved for user
THLICOMFLAGSU3 EQU X’10’ reserved for user
THLICOMFLAGSU4 EQU X’08’ reserved for user
THLICOMFLAGSU5 EQU X’04’ reserved for user
THLICOMFLAGSU6 EQU X’02’ reserved for user
THLICOMFLAGSU7 EQU X’01’ reserved for user
THLICOMFLAGSB4 DS 1BL1
THLIWILLFREEZEME EQU X’08’ LE will issue freeze-me for this X

task
THLIFROZEN EQU X’04’ Task is frozen via BPX1PQG
THLISIGPOSTED EQU X’02’ User posted due to signal
THLISIGWAIT EQU X’01’ User wants ECB posted when X

a signal will be delivered
ORG THLICOMFLAGS+X’00000004’

THLIKEY DS 1BL1 PSW key of Thli control block. The X
key is in bits 0-3, bits 4-7 are zero

THLIIP
THLIFLAGS2 DS BL1 Flag byte
THLIF2_SETAPPL EQU X’80’ Set RACROUTE APPL parm
THLICVTON EQU X’40’ Activates auto conversion
THLICVTOFF EQU X’20’ Deactivates auto conversion

DS CL1 Reserved
THLITIMERECB DS F ECB posted when timer pops from X

BPX1STE call
THLIASPIRBECB DS F ECB posted when AIO event completes
THLIJAVA DS A JAVA thread control block address X

THLIIP
THLITIMEOUT DS D Kernel Time Out parameters

ORG THLITIMEOUT
THLISECS DS F Seconds to wait for event
THLINANOS DS F Nanoseconds to wait for event

BPXYTHLI

1048 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

THLICCSID DS H Program character set ID for X
filesystem reads/writes

DS CL30 Reserved
THLIEND DS 0C End of Thli
THLI#ID EQU C’THLI’ Control Block Acronym
THLI#LEN EQU *-THLI Length of this structure
THLI#SP EQU 230 Subpool for the Thli
THLI_LEN EQU *-THLI
** BPXYTHLI End

BPXYTIMS — Map the Response Structure for times
BPXYTIMS ,

** BPXYTIMS: times syscall structure
** Used By: TIM
TIMS DSECT ,
TIMSBEGIN DS 0F
TIMSUTIME DS F User CPU time of current process
* in hundredths of a second.
* This includes the TCB and SRB time
* of the calling process minus the
* TCB time accumulated while running
* in the kernel address space.
TIMSSTIME DS F System CPU time of current process
* in hundredths of a second.
* This is the TCB time accumulated
* while running in the
* kernel address space.
TIMSCUTIME DS F Sum of user CPU time values (as
* defined in TIMSUTIME) and child user
* CPU time values (as defined in
* TIMSCUTIME) for all waited-for
* child processes. Zero if the
* current process has no waited-for
* children.
TIMSCSTIME DS F Sum of system CPU time values (as
* defined in TIMSSTIME) and child
* system CPU time values (as defined in
* TIMSCSTIME) for all waited-for
* child processes. Zero if the
* current process has no waited-for
* children.
TIMS#LENGTH EQU *-TIMS Length of this structure
** BPXYTIMS End

BPXYTIOS — Map the termios Structure
Use PREFIX to make the labels unique. The characters specified will be appended
before each label.

BPXYTIOS , PREFIX=
** BPXYTIOS: Termios structure
** Used By: TGA TSA TFH TFW
BPXYTIOS DSECT , Define DSECT
* baud rate values
B0 EQU 0 0 baud (hang-up)
B50 EQU 1 50 baud
B75 EQU 2 75 baud
B110 EQU 3 110 baud
B134 EQU 4 134.5 baud
B150 EQU 5 150 baud
B200 EQU 6 200 baud
B300 EQU 7 300 baud
B600 EQU 8 600 baud
B1200 EQU 9 1200 baud
B1800 EQU 10 1800 baud
B2400 EQU 11 2400 baud

BPXYTHLI

Appendix B. Mapping macros 1049

B4800 EQU 12 4800 baud
B9600 EQU 13 9600 baud
B19200 EQU 14 19200 baud
B38400 EQU 15 38400 baud
* c_cflag offsets for baud rate. These values are
* used to refer to the correct byte within c_cflag. For
* instance, "MVI C_CFLAG+ISPEED_O,B50".
OSPEED_O EQU 0 Offset to OUTPUT baud rate
ISPEED_O EQU 1 Offset to INPUT baud rate
* Values for c_cflag field are bitwise distinct except for
* character size bits - which form a number.
CLOCAL EQU X’01’ Ignore modem status lines
CREAD EQU X’02’ Enable receiver
CSIZE EQU X’30’ Character size bits
CS5 EQU X’00’ B’00’ - 5 bits/character
CS6 EQU X’10’ B’01’ - 6 bits/character
CS7 EQU X’20’ B’10’ - 7 bits/character
CS8 EQU X’30’ B’11’ - 8 bits/character
CSTOPB EQU X’80’ Send two stop bits, else one
HUPCL EQU X’01’ Hang up on last close
PARENB EQU X’02’ Parity enable
PARODD EQU X’04’ Odd parity, else even
PACKET EQU X’08’ Packet mode enabled
PKT3270 EQU X’10’ 3270 Passthru mode allowed
PTU3270 EQU X’20’ 3270 Passthru mode enabled
PKTXTND EQU X’40’ Extended Packet mode enabled
* c_cflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_cflag. For
* instance, "TM C_CFLAG+HUPCL_O,HUPCL".
CLOCAL_O EQU 3
CREAD_O EQU 3
CSIZE_O EQU 3
CS5_O EQU 3
CS6_O EQU 3
CS7_O EQU 3
CS8_O EQU 3
CSTOPB_O EQU 3
HUPCL_O EQU 2
PARENB_O EQU 2
PARODD_O EQU 2
PACKET_O EQU 2
PKT3270_O EQU 2
PTU3270_O EQU 2
PKTXTND_O EQU 2
* Values for c_lflag field are bitwise distinct.
ECHO EQU X’08’ Enable echo
ECHOE EQU X’02’ Echo ERASE as error correcting X

backspace
ECHOK EQU X’04’ Echo KILL
ECHONL EQU X’01’ Echo new line
ICANON EQU X’10’ Canonical input
IEXTEN EQU X’20’ Enable extended functions
ISIG EQU X’40’ Enable signals
NOFLSH EQU X’80’ Disable flush after interrupt, X

quit, or suspend
TOSTOP EQU X’40’ Send SIGTTOU for background X

output
XCASE EQU X’80’ Canonical Upper/Lower X

presentation
* c_lflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_lflag. For
* instance, "TM C_LFLAG+TOSTOP_O,TOSTOP".
ECHO_O EQU 3
ECHOE_O EQU 3
ECHOK_O EQU 3
ECHONL_O EQU 3
ICANON_O EQU 3

BPXYTIOS

1050 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

IEXTEN_O EQU 3
ISIG_O EQU 3
NOFLSH_O EQU 0
TOSTOP_O EQU 1
XCASE_O EQU 3
* Values for c_iflag field are bitwise distinct.
BRKINT EQU X’01’ Signal interrupt on break
ICRNL EQU X’02’ Map CR to NL on input
IGNBRK EQU X’04’ Ignore break condition
IGNCR EQU X’08’ Ignore CR
IGNPAR EQU X’10’ Ignore characters with parity X

errors
INLCR EQU X’20’ Map NL to CR in input
INPCK EQU X’40’ Enable input parity check
ISTRIP EQU X’80’ Strip character
IXOFF EQU X’01’ Enable start/stop input X

control
IXON EQU X’02’ Enable start/stop output X

control
PARMRK EQU X’04’ Mark parity errors
IUCLC EQU X’08’ Map UC->LC on input
IXANY EQU X’10’ Any char restarts output
* c_iflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_iflag. For
* instance, "TM C_IFLAG+BRKINT_O,BRKINT".
BRKINT_O EQU 3
ICRNL_O EQU 3
IGNBRK_O EQU 3
IGNCR_O EQU 3
IGNPAR_O EQU 3
INLCR_O EQU 3
INPCK_O EQU 3
ISTRIP_O EQU 3
IXOFF_O EQU 2
IXON_O EQU 2
PARMRK_O EQU 2
IUCLC_O EQU 2
IXANY_O EQU 2
* Values for c_oflag are bitwise distinct.
OPOST EQU X’01’ Perform output processing
OLCUC EQU X’02’ Map LC->UC on output
ONLCR EQU X’04’ Map NL->CR on output
OCRNL EQU X’08’ Map CR->NL on output
ONOCR EQU X’10’ No CR at column 0
ONLRET EQU X’20’ NL performs CR function
OFILL EQU X’40’ Use fill chars for delay
OFDEL EQU X’80’ Use DEL, not NUL, for fill
NLDLY EQU X’01’ Newline delay type
NL0 EQU X’00’ NL delay type 0
NL1 EQU X’01’ NL delay type 1
TABDLY EQU X’0C’ Tab delay type
TAB0 EQU X’00’ Tab delay type 0
TAB1 EQU X’04’ Tab delay type 1
TAB2 EQU X’08’ Tab delay type 2
TAB3 EQU X’0C’ Expand tabs to spaces
CRDLY EQU X’30’ CR delay type
CR0 EQU X’00’ CR delay type 0
CR1 EQU X’10’ CR delay type 1
CR2 EQU X’20’ CR delay type 2
CR3 EQU X’30’ CR delay type 3
FFDLY EQU X’40’ Form-feed delay type
FF0 EQU X’00’ FF delay type 0
FF1 EQU X’40’ FF delay type 1
BSDLY EQU X’80’ Backspace delay type
BS0 EQU X’00’ BS delay type 0
BS1 EQU X’80’ BS delay type 1
VTDLY EQU X’01’ Vertical-tab delay type

BPXYTIOS

Appendix B. Mapping macros 1051

VT0 EQU X’00’ VT delay type 0
VT1 EQU X’01’ VT delay type 1
*
* c_oflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_oflag. For
* instance, "TM C_OFLAG+OPOST_O,OPOST".
*
OPOST_O EQU 3
OLCUC_O EQU 3
ONLCR_O EQU 3
OCRNL_O EQU 3
ONOCR_O EQU 3
ONLRET_O EQU 3
OFILL_O EQU 3
OFDEL_O EQU 3
NLDLY_O EQU 2
NL0_0 EQU 2
NL1_0 EQU 2
TABDLY_O EQU 2
TAB0_O EQU 2
TAB1_O EQU 2
TAB2_O EQU 2
TAB3_O EQU 2
CRDLY_O EQU 2
CR0_0 EQU 2
CR1_0 EQU 2
CR2_0 EQU 2
CR3_0 EQU 2
FFDLY_O EQU 2
FF0_0 EQU 2
FF1_0 EQU 2
BSDLY_O EQU 2
BS0_0 EQU 2
BS1_0 EQU 2
VTDLY_O EQU 1
VT0_0 EQU 1
VT1_0 EQU 1
* Optional actions used by tcsetattr()
TCSANOW EQU 0 Change occurs immediately
TCSADRAIN EQU 1 Change occurs after all output X

has been written
TCSAFLUSH EQU 2 Change occurs after all output X

has been written and input X
has been discarded

* queue selector values for tcflush
TCIFLUSH EQU 0 Flush data received but not read
TCOFLUSH EQU 1 Flush data written but not sent
TCIOFLUSH EQU 2 Flush both data received but not X

read and data written but not sent
* action values for tcflow()
TCOOFF EQU 0 Suspend output
TCOON EQU 1 Restart suspended output
TCIOFF EQU 2 Transmit STOP character
TCION EQU 3 Transmit START character
* Special Control Characters subscripts for cc_c
* field
VINTR EQU 0 INTR character
VQUIT EQU 1 QUIT character
VERASE EQU 2 ERASE character
VKILL EQU 3 KILL character
VEOF EQU 4 EOF character
VEOL EQU 5 EOL character
VMIN EQU 6 MIN value
VSTART EQU 7 START character
VSTOP EQU 8 STOP character
VSUSP EQU 9 SUSP character
VTIME EQU 10 TIME value

BPXYTIOS

1052 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

NCCS EQU 11 Number of special control chars
C_CFLAG DC F’0’ Control modes
C_IFLAG DC F’0’ Input modes
C_LFLAG DC F’0’ Local modes
C_OFLAG DC F’0’ Output modes
C_CC DC (NCCS)X’0’ Control characters and values
BPXYTIOS#LENGTH EQU *-BPXYTIOS Length of this structure
** BPXYTIOS End

BPXYUTSN — Map the Response Structure for uname
BPXYUTSN ,

** BPXYUTSN: uname() structure
** Used By: UNA
UTSN DSECT ,
UTSNAMESYSNAMELEN DS F Length of UTSNAMESYSNAME string
UTSNAMESYSNAME DS CL16 Name of this implementation of the
* operating system (MVS)
UTSNAMENODENAMELEN DS F Length of UTSNAMENODENAME string
UTSNAMENODENAME DS CL32 Name of this node within the
* communications network
UTSNAMERELEASELEN DS F Length of UTSNAMERELEASE string
UTSNAMERELEASE DS CL8 Current release level of this
* implementation
UTSNAMEVERSIONLEN DS F Length of UTSNAMEVERSION string
UTSNAMEVERSION DS CL8 Current version level of this release
UTSNAMEMACHINELEN DS F Length of UTSNAMEMACHINE string
UTSNAMEMACHINE DS CL16 Name of the hardware type on which
* the system is running
UTSN#LENGTH EQU *-UTSN Length of this structure
** BPXYUTSN End

BPXYWAST — Map the Wait Status Word
BPXYWAST ,

** BPXYWAST: Wait status word
** Used By: EXI MPC WAT
WAST DSECT ,

DS XL2 Reserved - set to zeros
WASTEXITSTATUS DS 0XL2 Exit Status value passed on the
* BPX1EXI or BPX1MPC system calls
WASTEXITCODE DS 0XL1 Exit return code for ending process
WASTSIGSTOP DS XL1 Signal that stopped process
WASTSIGTERM DS 0XL1 Signal that terminated process
WASTSTOPFLAG DS XL1 Special flag value that qualifies the
* reason for the process being stopped
* or if the process is continued
* from stop, the value would be
* set to WastStopFlagContinued
* * WASTSTOPFLAG Values *
WASTDUMP EQU X’80’ Bit 0 of WASTSTOPFLAG on, a core dump
* was taken when the process terminated
WASTSTOPFLAGSIG EQU X’7F’ Process stopped for a signal
WASTSTOPFLAGFORK EQU X’7E’ Process stopped for a fork
WASTSTOPFLAGEXEC EQU X’7D’ Process stopped for an exec
WASTSTOPFLAGLOCALFORK EQU X’7B’ Process stopped for a local fork
WASTSTOPFLAGEXTENDED EQU X’7A’ Process stopped for extended event
*
WASTSTOPFLAGCONTINUED EQU X’79’ Process continued from stop
WASTSTOPFLAGLOAD EQU X’78’ Process stopped for a loadHFS
WASTSTOPFLAGDELETE EQU X’77’ Process stopped for a deleteHFS
WAST#LENGTH EQU *-WAST Length of this structure
** BPXYWAST End

BPXYTIOS

Appendix B. Mapping macros 1053

BPXYWLM — WLM Constants and Parameter List DSECTs
BPXYWLM work load manager constants and DSECTs.

BPXYWLM ,
** BPXYWLM: BPX1WLM Interface Declares
** Used By: Callers of the BPX1WLM Interface
*
* BPX1WLM Function Code Constants
*
WLM_QUERY_METRICS EQU 1
WLM_QUERY_SCHEDENV EQU 2
WLM_CHECK_SCHEDENV EQU 3
WLM_DISCONNECT EQU 4
WLM_DELETE_WORKUNIT EQU 5
WLM_JOIN_WORKUNIT EQU 6
WLM_LEAVE_WORKUNIT EQU 7
WLM_CONNECT_WORKMGR EQU 8
WLM_CONNECT_SERVERMGR EQU 9
WLM_CREATE_WORKUNIT EQU 10
WLM_CONTINUE_WORKUNIT EQU 11
WLM_EXTRACT_WORKUNIT EQU 12
WLM_EXPORT_WORKUNIT EQU 13
WLM_UNDOEXPORT_WORKUNIT EQU 14
WLM_IMPORT_WORKUNIT EQU 15
WLM_UNDOIMPORT_WORKUNIT EQU 16
WLM_QUERY_ENCLAVECLASS EQU 17
WLM_CONNECT_EXPORTIMPORT EQU 18
*
* BPX1WLM Parameter List Mappings
*
_WQM DSECT , WLM_QUERY_METRICS Parameter List
_WQM_SYSI_PTR DS A Address of a fullword pointer that
* contains the address of the buffer
* to return the WLM system information.
* This data is returned in the format
* of the IWMWSYSI mapping macro.
_WQM_SYSI_LEN DS A Address of a fullword that contains
* the length of the buffer to return
* the WLM system information
_WQM_END DS 0C End of WQM
*
_WQS DSECT , WLM_QUERY_SCHEDENV Parameter List
_WQS_SETH_PTR DS A Address of a fullword pointer that
* contains the address of the buffer
* to return the WLM scheduling
* environment information.
* This data is returned in the format
* of the IWMSET mapping macro.
_WQS_SETH_LEN DS A Address of a fullword that contains
* the length of the buffer to return
* the WLM scheduling environment data.
_WQS_END DS 0C End of _WQS
*
_WCS DSECT , WLM_CHECK_SCHEDENV Parameter List
_WCS_SCH_ENV DS A Address of a 16 byte character string
* that contains the scheduling
* environment to be checked.
_WCS_SYS_NAME DS A Address of a 8 byte character string
* that contains the system name to be
* checked.
_WCS_END DS 0C End of _WCS
*
_WDC DSECT , WLM_DISCONNECT Parameter List
_WDC_CONN_TKN DS A Address of an fullword that contains
* the connect token to be disconnected
* from.

BPXYWLM

1054 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

_WDC_END DS 0C End of _WDC
*
_WDW DSECT , WLM_DELETE_WORKUNIT Parameter List
_WDW_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* work unit to be deleted.
_WDW_END DS 0C End of _WDW
*
_WJW DSECT , WLM_JOIN_WORKUNIT Parameter List
_WJW_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* work unit to join.
_WJW_END DS 0C End of _WJW
*
_WLW DSECT , WLM_LEAVE_WORKUNIT Parameter List
_WLW_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* work unit to leave.
_WLW_END DS 0C End of _WLW
*
_WNW DSECT , WLM_CONTINUE_WORKUNIT Parameter List
_WNW_ENC_TKN DS A Address of a doubleword to return the
* the WLM enclave token of the created
* work unit.
_WNW_END DS 0C End of _WNW
*
_WCW DSECT , WLM_CREATE_WORKUNIT Parameter List
_WCW_ENC_TKN DS A Address of a doubleword to return the
* the WLM enclave token of the created
* work unit.
_WCW_CLASSIFY DS A Address of a fullword pointer that
* contains the address of a IWMCLSFY
* Parameter List.
_WCW_ARR_TIME DS A Address of a doubleword field that
* contains the arrival time of the
* work request in STCK format.
_WCW_FUNC_NAME DS A Address of a 8 byte character string
* that contains the descriptive function
* name of the work request.
_WCW_END DS 0C End of _WCW
*
_WSC DSECT , WLM_CONNECT_SERVERMGR Parameter List
_WSC_SUB_SYS DS A Address of a 4 byte character string
* that contains the subsystem type the
* server manager is requesting connection
* for.
_WSC_SUB_SYS_NM DS A Address of a 8 byte character string
* that contains the subsystem name the
* server manager is requesting connection
* for.
_WSC_APPL_ENV DS A Address of a 32 byte character string
* that contains the application
* environment name associated with the
* server.
_WSC_PAR_EU DS A Address of a fullword that contains
* number of parallel execution units
* in the server environment.
_WSC_END DS 0C End of _WSC
*
_WWC DSECT , WLM_CONNECT_WORKMGR Parameter List
_WWC_SUB_SYS DS A Address of a 4 byte character string
* that contains the subsystem type the
* work manager is requesting connection
* for.
_WWC_SUB_SYS_NM DS A Address of a 8 byte character string
* that contains the subsystem name the
* work manager is requesting connection

BPXYWLM

Appendix B. Mapping macros 1055

* for.
_WWC_END DS 0C End of _WWC
*
_WEW DSECT , WLM_EXTRACT_WORKUNIT Parameter List
_WEW_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* active work unit.
_WEW_END DS 0C End of _WEW
*
_WXW DSECT , WLM_EXPORT_WORKUNIT Parameter List
_WXW_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* work unit to be exported.
_WXW_EXP_TKN DS A Address of the 32 bytes to return the
* WLM export token of the exported work
* unit.
_WXW_CONN_TKN DS A Address of a fullword that contains
* the connect token associated with the
* workmanager.
_WXW_END DS 0C End of _WXW
*
_WUXW DSECT , WLM_UNEXPORT_WORKUNIT Parameter List
_WUXW_EXP_TKN DS A Address of the 32 bytes that contains
* the WLM export token representing the
* exported work unit.
_WUXW_CONN_TKN DS A Address of a fullword that contains
* the connect token associated with the
* workmanager.
_WUXW_END DS 0C End of _WUXW
*
_WIW DSECT , WLM_IMPORT_WORKUNIT Parameter List
_WIW_EXP_TKN DS A Address of the 32 bytes that contains
* the WLM export token representing the
* exported work unit.
_WIW_ENC_TKN DS A Address of a doubleword to return the
* WLM enclave token of the imported work
* unit.
_WIW_CONN_TKN DS A Address of a fullword that contains
* the connect token associated with the
* workmanager.
_WIW_END DS 0C End of _WIW
*
_WUIW DSECT , WLM_UNIMPORT_WORKUNIT Parameter List
_WUIW_EXP_TKN DS A Address of the 32 bytes that contains
* the WLM export token representing the
* imported work unit.
_WUIW_CONN_TKN DS A Address of a fullword that contains
* the connect token associated with the
* workmanager.
_WUIW_END DS 0C End of _WUIW
*
_WQEC DSECT , WLM_QUERY_ENCLAVECLASS Parameter List
_WQEC_ENC_TKN DS A Address of a doubleword that contains
* the WLM enclave token representing the
* work unit to be queried.
_WQEC_SYSEC_PTR DS A Address of a fullword pointer that
* contains the address of the buffer
* to return the WLM Query Enclave Data.
* This data is returned in the format
* of the IWMECD mapping macro.
_WQEC_SYSEC_LEN DS A Address of a fullword that contains
* the length of the buffer to return
* the WLM Query Enclave Data.
_WQEC_END DS 0C End of WQEC
*
_WCEI DSECT , WLM_CONNECT_EXPORTIMPORT Parameter List
_WCEI_SUB_SYS DS A Address of a 4 byte character string

BPXYWLM

1056 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

* that contains the subsystem type the
* work manager is requesting connection
* for.
_WCEI_SUB_SYS_NM DS A Address of a 8 byte character string
* that contains the subsystem name the
* work manager is requesting connection
* for.
_WCEI_END DS 0C End of _WCEI
** BPXYWLM End

BPXYWNSZ — Map the winsize Structure
BPXYWNSZ maps window/terminal size information. It corresponds to the C
winsize structure, which is in sys/ioctl.h.

BPXYWNSZ ,
** BPXYWNSZ: Winsize structure
** Used By: ioctl with TIOCGWINSZ and TIOCSWINSZ
BPXYWNSZ DSECT , Define DSECT
WS_ROW DC H’0’ Rows, in characters
WS_COL DC H’0’ Columns, in characters
WS_XPIXEL DC H’0’ Horizontal size, pixels
WS_YPIXEL DC H’0’ Vertical size, pixels
BPXYWNSZ#LENGTH EQU *-BPXYWNSZ Length of this structure
** BPXYWNSZ End

BPXZOAPB — USS address space per-process extension
BPXZOAPB maps USS space per-process extension. Only the following fields are
externally documented. All other fields are reserved for IBM use only.

v OapbDefaultUseridLen

v OapbDefaultUserid

v OapbDefaultGroupidLen

v OapbDefaultGroupid
BPXZOAPB

OAPB DSECT
OAPB1 DS 1CL0256
*
*
OAPB2 DS 1CL0020

ORG OAPB2
OAPBDEFAULTUSERIDLEN DS 1FL1 Length of default userid
OAPBDEFAULTUSERID DS 1CL0008 Default userid
OAPBDEFAULTGROUPIDLEN DS 1FL1 Length default groupid
OAPBDEFAULTGROUPID DS 1CL0008 Default groupid

DS 1CL0002 reserved
OAPB3 DS 1CL0132
OAPB_LEN EQU *-OAPB

BPXZOTCB — USS extension to the TCB
BPXZOTCB maps USS extensions to the TCB. Only the following fields are
externally documented. All other fields are reserved for IBM use only.

v OtcbThli

v OtcbWLMEToken

v OtcbSigPending

v OtcbOapb
BPXZOTCB

OTCB DSECT
OTCBID DS 1CL0004 EBCDIC ID - OTCB
OTCBSP DS 1FL1 Subpool number of this OTCB

BPXYWLM

Appendix B. Mapping macros 1057

OTCBLEN DS 1FL3 Length of this OTCB
OTCBPTXL DS 1AL4 -> pthread parameters
OTCBKSER DS 1AL4 -> KSER
OTCBMEDCLEAR DS 0CL0084 Section of Otcb we clear for medium weight X

processes
OTCBFLAGS DS 0BL4 Compare and swap flg
OTCBFLAGSB1 DS 0BL1
OTCBINITIALTHREAD EQU X’80’ Initial thread of a process
OTCBINKERNELCALL EQU X’40’ moved to PPRT
OTCBSLEEP EQU X’20’ Signal sleep() flag which is checked by X

pause().
OTCBCALLEDKERNEL EQU X’10’ At sometime in its life, this thread has X

made a system call /CS
OTCBNOPTLSIR EQU X’08’ Signal is being sent from the ptrace PtlSir X

(Ptrace Signal Interface Routine), so signal X
delivery should not deliver the signal to the X
PtlSir if ptrace mode is on (we’re already X
there)

OTCBPROCESSCLEANUP EQU X’04’ Process being torn down. /CS
OTCBINTASKTERM EQU X’02’ Thread is in the process of task termination. X

Set by BPXRRTRM during task term
OTCBBYPASSRACF EQU X’01’ Do not do RACF check in kill() routine

ORG OTCBFLAGSB1+X’00000001’
OTCBFLAGSB2 DS 0BL1
OTCBPTEXITONLY EQU X’80’ Thread did XAG exitonly
OTCBTHREADPTEXITED EQU X’40’ Marked Ptexited
OTCBTHREADTERM EQU X’20’ Thread in terminated state
OTCBIPT EQU X’10’ Indicates this thread is or was the Initial X

Pthread Task, used by BPXPRMPC to check for X
IPT cleanup

OTCBPROCESSCREATOR EQU X’08’ 1=>Indicates the dubbing of this thread X
caused the creation of the process

OTCBCANCELINTR EQU X’04’ Cancel interrupt point
OTCBQUIESCEPOSTED EQU X’02’ This task posted by qut
OTCBDUBNEWPROCESS EQU X’01’ 0=>Dub as thread, 1=>Dub as process

ORG OTCBFLAGSB2+X’00000001’
OTCBFLAGSB3 DS 0BL1
OTCBATTACHEXEC EQU X’80’ attach_exec in progress
OTCBMULTIPROCCLP EQU X’40’ 1=> Lower level processes are to be cleaned X

up by this thread
OTCBACTIVEACEEMANAGED EQU X’20’ 1=Active ACEE managed by RACF X

(initACEE)
OTCBTOGGLEACEEMANAGED EQU X’10’ 1=Toggled ACEE managed by RACF X

(initACEE)
OTCBSAVEDACEEMANAGED EQU X’08’ MrPwd saved ACEE managed
OTCBINPROCESSTERM EQU X’04’ 1=> When PRTRM is terminating a process. X

Used to tell F.S. Termination when PRTRM is X
cleaning up.

OTCBTASKACEEUSP EQU X’02’ USP created by TLS_TASK_ACEE#
OTCBMRPWDUIDSET EQU X’01’ OtcbMrPwdUID field set

ORG OTCBFLAGSB3+X’00000001’
OTCBFLAGSB4 DS 0BL1
OTCBPSEUDODUBBED EQU X’80’ Thread is a pseudo-dubbed kernel task
OTCBTASKSEC EQU X’40’ Thread called BPX1TLS to build a task level X

Acee
OTCBENCLAVEOWNER EQU X’20’ Thread is an owner of a WLM Enclave
OTCBWLMEMANAGED EQU X’10’ Enclave managed by WLM
OTCBTASKACEEINIT EQU X’08’ InitUsp done for Task Level ACEE
OTCBDUBTASKACEE EQU X’04’ 0=>Don’t Dub Task Level ACEE 1=>Dub Task X

Level ACEE
OTCBPTCREACEE EQU X’02’ 0=> No ACEE propagated on Ptcre 1=> ACEE was X

propagated
OTCBPROCINITACEE EQU X’01’ 0=> No INITACEE done during dub 1=> X

INITACEE done during dub
ORG OTCBFLAGS+X’00000004’

OTCBTHID DS 0CL0008 Thread ID
OTCBPPRT DS 0AL4 -> PPRT

BPXZOTCB

1058 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

OTCBLIGHTWEIGHT EQU X’80’ 1 Light weight thread
ORG OTCBPPRT+X’00000004’

OTCBSEQNO DS 0FL4 Sequence number
OTCBSEQNOHIGHERHALF DS 1FL2 higher half of seq num
OTCBSEQNOLOWERHALF DS 1FL2 lower half of seq num
OTCBSIGFLAGS DS 0BL4 Signal Flags1 that are modified by signal X

IRBs. Serialized by Compare & Swap
OTCBSIGFLAGSB1 DS 0BL1
OTCBSIGDISABLE EQU X’80’ Signal Delivery is disabled
OTCBSIGPENDING EQU X’40’ Signal pending flag
OTCBTIMERSIGNAL EQU X’20’ SIGXCPU or SIGKILL is to be generated by the X

syscall layer. Either OtcbSIGXCPU or X
OtcbSIGKILL is on. This flag exists for X
sycall layer performance.

OTCBSIGALRM EQU X’10’ generate in SC layer
OTCBALRMACTIVE EQU X’08’ ALR & setitimer REAL
OTCBIGNRBSTATE EQU X’04’ Ignore RB state
OTCBSIGDUMP EQU X’02’ Dump for terminating signal
OTCBRAISETIMERIRB EQU X’01’ Raise() function from Timer IRB

ORG OTCBSIGFLAGSB1+X’00000001’
OTCBSIGFLAGSB2 DS 0BL1
OTCBIRBSIGNAL EQU X’80’ Signal Checker routine should recheck signals X

because one of the signal IRBs may have X
changed the signals pending

OTCBPTDELAYIRB EQU X’40’ Delay IRB for PTRACE
OTCBSIRDISABLE EQU X’20’ Disable invocation of SIR
OTCBCANCELASYNC EQU X’10’ Cancelation request state 0 = controlled, 1 X

= async
OTCBCANCELDISABLED EQU X’08’ Cancelation request type 0=enabled, X

1=disabled
OTCBSETSIGDISABLE EQU X’04’ Syscall must turn on OtcbSigDisable on X

return
OTCBCTWACTIVE EQU X’02’ cond_timed_wait (BPX1CTW) is active
OTCBIGNDLVKEY EQU X’01’ Ignore Dlv key

ORG OTCBSIGFLAGSB2+X’00000001’
OTCBSIGFLAGSB3 DS 0BL1
OTCBCANCELPENDING EQU X’80’ Cancel pending for thrd
OTCBPTREGSINUSTA EQU X’40’ Ptrace regs/PSW are in the Usta
OTCBSIGXCPU EQU X’20’ SIGXCPU is to be generated by syscall layer
OTCBSIGKILL EQU X’10’ SIGKILL is to be generated by syscall layer
OTCBSIGVTALRM EQU X’08’ generate in SC layer
OTCBSIGPROF EQU X’04’ generate in SC layer
OTCBALLSIGSBLOCKED EQU X’02’ All signals are blocked, the same as if X

all bits were on in PpstSigMask
OTCBUDPINKERNEL EQU X’01’ In UDP syscall

ORG OTCBSIGFLAGSB3+X’00000001’
OTCBSIGFLAGSB4 DS 0BL1
OTCBVTALRMACTIVE EQU X’80’ setitimer VIRTUAL
OTCBPROFACTIVE EQU X’40’ setitimer PROF
OTCBRETURNPPSD EQU X’20’
OTCBCALLRTM EQU X’10’ CallRTM done by IR1
OTCBNOIRB EQU X’08’ Avoid Irb interrupts
OTCBREDRIVE EQU X’04’ IRB redrive is in prog
OTCBCPUTIMEOUT EQU X’02’ A terminating signal is to be generated due X

to the process time limit being exceeded
OTCBDLVTERM EQU X’01’ This thread is terminating due to a X

terminating signal
ORG OTCBSIGFLAGS+X’00000004’

OTCBSIR2ID DS 1FL4 Alarm ID set by STIMERM. Changed by X
incrementing at start of alarm() and sleep()

OTCBRACGROUP DS 1AL4 Pointer to RACF structure to be deleted by X
next getgr* call

OTCBRACPASSWD DS 1AL4 Pointer to RACF structure to be deleted by X
next getpw* call

OTCBCOMMREQ DS 1AL4 Address of communications resource associated X
with this task (only valid when there is an X
active request)

BPXZOTCB

Appendix B. Mapping macros 1059

OTCBPTMULTISTATUS DS 1BL1 Ptrace multi process mode status word value X
- will be one of the WastStopFlag... values

OTCBFLAGS2 DS 0CL0003 2nd Set of flags
OTCBFLAGS2B1 DS 0BL1
OTCBSTAXDEFERRED EQU X’80’ Stax defer performed
OTCBLUKWKEY0 EQU X’40’ User Kernwait caller is KEY 0
OTCBKSERWAITINGF EQU X’20’ Is Kser waiting?
OTCBAFFINPGMRUNNING EQU X’10’ An IPT/thread affinity program is X

running on this thread, do no joblogging
OTCBREGSINPPSD EQU X’08’ User regs are in Ppsd at time of X

Freeze_This_Thread
OTCBREGSINIRB EQU X’04’ User regs are in IRB at time of X

Freeze_This_Thread
OTCBTIMEDKERNWAIT EQU X’02’ Task is in Timed Kernwait
OTCBSLOWPATHSYSCALL EQU X’01’ This is a slow-path syscall. User regs X

are in USTA
ORG OTCBFLAGS2B1+X’00000001’

OTCBFLAGS2B2 DS 0BL1
OTCBOSENVACTIVE EQU X’80’ Task is active in the osenv
OTCBOSENVGET EQU X’40’ Task issued osenv_get
OTCBOSENVWLMJOIN EQU X’20’ Task is joined to a WLM enclave as a result X

of osenv_set
OTCBOSENVSECURITY EQU X’10’ Security environment was saved by osenv
OTCBSPBUPDATE EQU X’01’ Serialize SPB/IR1

ORG OTCBFLAGS2B2+X’00000001’
OTCBFLAGS2B3 DS 1BL1
OTCBALRMGTYEAR DS 1FL4 Alarm time in seconds greater than 365 days X

used by alarm() and sleep() functions
OTCBCOFPTR DS 1AL4 Address of CopyOnFork area
OTCBDLVIRB DS 1AL4 Address of RB that called Signal Delivery
OTCBDUBRBSQN DS 1FL4 Sequence number of RB that was DUBed
OTCBREGRBSQN DS 1FL4 Sequence number of RB that registered for X

signals
OTCBSPB

the ALET for this SPB is PRIMARY. For X
BPXJCSA, the ALET is HOME.

OTCBSYSCALLCODE DS 1FL4 System call number
OTCBLECB DS 1AL4 Ptr to ECB used to wait for a latch to be X

obtained
OTCBPPSDPTR DS 0AL4 -> PPSD
OTCBPPSD DS 1AL4 -> PPSD
OTCBCTWID DS 1FL4 cond_timed_wait stimerm ID
OTCBSTACKNONSW DS 1AL4 Dynamic stack for Non-space switched X

syscalls. Only valid when OTCBSYSCALLCODE is X
non-zero. Contains address of 1st #SAMAP area X
following RUCA. Addressable in user home X
space.

OTCBOTIM DS 1AL4 -> interval timers
OTCBOAPB DS 1AL4 -> OAPB
OTCBMEDCLEAR2 DS 0CL0248 We can’t clear Oapb, multiproc quiesce X

references
OTCBPTPICPARMSPTR DS 1AL4 Pointer to ptrace recovery environment X

parameters (PIC parms
OTCBPTEVENTID DS 1FL4 Ptrace event ID, that identifies why this X

thread stopped for ptrace
OTCBPTLCLPPSDPTR DS 1AL4 Ptrace local Ppsd pointer
OTCBMVSPAUSEECBLIST DS 1AL4 Pointer to the BPXZECBL - System copy of X

user ECB addresses passed to MVSpauseInit
OTCBSAVEDSCB DS 1AL4 Saved SCB addr of STAI on entry to Local X

Child Process
OTCBUECBLIST DS 1AL4 Pointer to the BPXZECBL - System copy of user X

and system ECBs address for the BPXLUKW - X
User KernWait service

OTCBUIDS DS 0CL0012 User IDs for Thread
OTCBRUID DS 1FL4 Real Uid
OTCBEUID DS 1FL4 Effective Uid
OTCBSUID DS 1FL4 Saved Uid

BPXZOTCB

1060 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

OTCBSAVEDACEE DS 1AL4 MRPWD saved Acee
OTCBPPRX DS 1AL4 Address of the Pprx, an extension of the Pprt
OTCBMRPWDUID DS 1FL4 Password verified UID
OTCBPSWBYT03 DS 1FL4 Caller’s PSW bytes 0-4 (Used by JCPR to setup X

BPXZUSTA)
OTCBMRPWDUSERNAME DS 1CL0008 Password verified userid
OTCBSAVEDSECENV DS 1AL4 Pointer to ACEE saved by BPX1ENV for a toggle X

request
OTCBMVSUSERIDPTR DS 1AL4 Pointer to userid of this thread, points to X

either OtcbLoginNInfo or OasbLoginNInfo
OTCBLOGINNINFO DS 0CL0013 Task userid and length
OTCBLOGINNLEN DS 1FL4 Task userid length
OTCBLOGINNAME DS 1CL0009 Tasks userid, must be ’00’x (null) X

terminated. Preceding length does not include X
’ terminating null

OTCBPRIN2FLAGS DS 1BL1 This field is modified by BPXPRIN1, and it is X
used by BPXPRIN2. See PPSQ for the mapping X
and more details

DS 1CL0002 Reserved, keep word bdy
OTCBTHLI DS 1AL4 -> Thli. This field must never change offsets X

within the Otcb since the Thli is an external X
control block and the user will have to go X
through the Otcb to get to the Thli

OTCBACTSCTBNODEPTR DS 1AL4 Active Acee SCTB node ptr, zero if ACEE is X
private

OTCBTOGGLEDSCTBNODEPTR DS 1AL4 Toggled Acee SCTB node ptr, zero if X
ACEE is private

OTCBPAG DS 1FL4 Process Auth Groups
OTCBGIDS DS 0CL0012 Group IDs for Thread
OTCBRGID DS 1FL4 Real Gid
OTCBEGID DS 1FL4 Effective Gid
OTCBSGID DS 1FL4 Saved Gid
OTCBRACGIDSPTR DS 1AL4 Addr of saved group list
OTCBWLMETOKEN DS 1BL8 WLM Enclave token associated with the thread
OTCBSAVEDGID DS 1FL4 Gid set by getpwname, used by setgid
OTCBALIASNINFO DS 0CL0013
OTCBALIASNLEN DS 1FL4 Task alias length
OTCBALIASNAME DS 1CL0009 Tasks alias, must be ’00’x (null) terminated. X

Preceding length does not include ’ X
terminating null

DS 1CL0003 Reserved, keep word bdy
OTCBOSENVTOKEN DS 0CL0008 osenv environment token
OTCBOSENVCELLPTR DS 1AL4 Ptr to osenv environment cell element
OTCBOSENVSEQN DS 1FL4 seq number associated with the osenv cell
OTCBREDRIVETIME DS 1FL4 Time to delay signal IRB
OTCBSHLLOADERINFO DS 0CL0048 Shared Library data
OTCBSHLLOADER1DSPADDR DS 1AL4 Shared Library loader data1 addr in data X

space
OTCBSHLLOADER1DSPPAGES DS 1FL4 Shared Library loader data1 len in data X

space
OTCBSHLLOADER1DSPALET DS 1FL4 Shared Library loader data1 alet of data X

space
OTCBSHLLOADER1DSPSTOKEN DS 1CL0008 Shared Library loader data1 stkn of X

data space
OTCBSHLLOADER2DSPADDR DS 1AL4 Shared Library loader data1 addr in data X

space
OTCBSHLLOADER2DSPPAGES DS 1FL4 Shared Library loader data1 len in data X

space
OTCBSHLLOADER2DSPALET DS 1FL4 Shared Library loader data1 alet of data X

space
OTCBSHLLOADER2DSPSTOKEN DS 1CL0008 Shared Library loader data1 stkn of X

data space
OTCBSHLLOADERTOK DS 1CL0008 Shared Library loader token len used by X

BPXXSHLB INIT
OTCBSMKLATCHFLAGCOUNT DS 1FL4 OcvtSMKLatchCount incremented
OTCBSAVEPPRT DS 1AL4 Saved Pprt

DS 1CL0036 Reserved for future use

BPXZOTCB

Appendix B. Mapping macros 1061

OTCB_END DS 0C Make CB end on doubleword
OTCB_LEN EQU *-OTCB
*
* **
* * *
* * NOTE: The "OtcbCopyOnFork" is contiguous to the end of the Otcb. *
* * IPCS modules respecify its base on the address of Otcb_End *
* * because the field OtcbCofPtr does NOT contain an address *
* * that is usable by IPCS without another ?ASAXACC. *
* * *
* **
*
*
OTCBCOPYONFORK DSECT These fields will be copied to the child Otcb X

on fork()
OTCBSYSCALLENTRYSTATUS DS 1AL4 Ptr to regs and stuff at entry to the X

syscall layer
OTCBUSTAPTR DS 1AL4 Pointer to user status area containing the X

syscall issuer’s regs and PSW. (Mapped by X
BPXZUSTA. Used by ptrace.)

OTCBGROUPDBSEARCH DS 1CL0008 Group name for group data base search X
(getgrent)

OTCBUSERDBSEARCH DS 1CL0008 User name for user data base search X
(getpwent)

OTCBSTORAGEFORCPR DS 1AL4 Dynamic area for BPXJCPR
OTCBSTORAGEFORCPRKEY DS 1FL1 Storage key of dynamic area for JCPR
OTCBSTORAGEFORCPRLEN DS 1FL3 Length of JCPR dynamic area
OTCBSTORAGEFORCPRSP DS 1FL1 Storage SP of dynamic area
OTCBCOPYFLAGS DS 0BL1 Copy on Fork Flags
OTCBSETUIDEXEC EQU X’80’ Setuid Exec in progress
OTCBMVSAUTHLIB EQU X’40’ Pgm loaded from MVS authorized library by X

exec/execmvs
OTCBEXECPROCESS EQU X’20’ This process image was created by X

exec/execmvs
OTCBSIGPOSTINPC EQU X’10’ Post ThliComEcb even with linkage stack

ORG OTCBCOPYFLAGS+X’00000001’
DS 1CL0002 Reserved

OTCBDAEMONINFO DS 0CL0012 This info will be set and reused to improve X
performance by bypassing multiple RACF calls X
for the same info

OTCBSAVEDUID DS 1FL4 Remembered UID
OTCBSAVEDUSERNAME DS 1CL0008 Remembered UserID
OTCBWLMUSERDATAINFO DS 0CL0016 WLM Server information. These fields X

are needed to manage the application data and X
file descriptor list. A single area is X
obtained for both needs. The area is pointed X
to by OtcbWLMUserDataPtr. The application X
data is always first in the area followed by X
the FDL area.

OTCBWLMUSERDATAPTR DS 1AL4 Address of user data storage
OTCBWLMUSERDATALEN DS 1FL4 Length of user data storage -- the entire X

area
OTCBWLMUSERDATAKEY DS 1FL1 Key of user data area

DS 1CL0003 reserved
OTCBWLMAPPLLEN DS 1FL4 Length of the application data portion of the X

user data area. The file descriptors occupy X
the remainder of the user data area

OTCBSMFBUFFPTR DS 1AL4 Address of key 0 copy of user SMF record
OTCBSMFBUFFLEN DS 1FL4 Length of key 0 copy of user SMF record
OTCBCOFEND DS 0C Make CB end on dword
OTCBCOPYONFORK_LEN EQU *-OTCBCOPYONFORK
*
* ***
* * *
* * **** This is end of "OtcbCopyOnFork" area **** *
* * *
* ***

BPXZOTCB

1062 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

*
*
*
* ***
* * *
* * The following based area is used by BPXPRGUG and BPXPRSGR. A *
* * copy of the last getgroupsbyname will be saved here if done *
* * after a __passwd() with the same name.
* * *
* ***
*
*
OTCBRACGIDS DSECT
OTCBRACGIDSHEADER DS 0CL0008
OTCBRACGIDSTOTNUM DS 1FL4
OTCBRACGIDSCURNUM DS 1FL4
OTCBRACGIDSLIST DS 1FL4
OTCB#ID EQU C’OTCB’ Control Block Acronym
OTCB#MEDCLEAR2LEN EQU 320 Length to clear
OTCB#LEN EQU 424
*
* Length of OTCB
*
OTCB#SP EQU 230 Subpool for the OTCB
OTCBRACGIDS_LEN EQU *-OTCBRACGIDS

BPXZOTCB

Appendix B. Mapping macros 1063

BPXZOTCB

1064 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix C. Callable services examples

For an example using nonreentrant code, see Appendix D and the example for the
w_getpsent service BPX1GPS, Examples. These examples follow the rules of
reentrancy. They use DSECT=NO and place the variables in the program’s dynamic
storage DSECT which is allocated upon entry.

The examples are arranged alphabetically and have references to the mapping
macros they use. The declaration for all local variables used in the examples
follows the examples.

© Copyright IBM Corp. 1996, 2002 1065

Reentrant entry linkage
This entry linkage is reentrant and saves the caller’s registers, allocates a save
area and dynamic storage, and establishes program and dynamic storage base
registers. This entry linkage is paired with the return linkage that is located at the
end of the executable program; see “Reentrant Return Linkage” on page 1310. For
an example of nonreentrant entry and return linkage, see Appendix D, “Example
with nonreentrant entry linkage” on page 1315.

TITLE ’Alphabetical Syscall of OS/390 UNIX Callable Services’
BPXB1SM1 CSECT , Reentrant entry linkage
BPXB1SM1 AMODE 31
BPXB1SM1 RMODE ANY

USING *,R15 Program addressability
@ENTRY0 B @ENTRY1 Branch around program header

DROP R15 R15 not needed for addressability
DC C’BPXB1SM1 - Reentrant callable service examples’
DS 0H Ensure half word boundary

@ENTRY1 STM R14,R12,12(R13) Save caller’s registers
LR R2,R13 Hold address of caller’s area
LR R3,R1 Hold parameter register
LR R12,R15 R12 program base register
LA R11,2048(,R12) Second program base register
LA R11,2048(,R11) Second program base register
LA R9,2048(,R11) Third program base register
LA R9,2048(,R9) Third program base register
LA R4,2048(,R9) Fourth program base register
LA R4,2048(,R4) Fourth program base register
LA R7,2048(,R4) Fifth program base register
LA R7,2048(,R7) Fifth program base register
USING @ENTRY0,R12,R11,R9,R4,R7 Program addressability
L R0,@SIZEDAT Size this program’s getmain area
GETMAIN RU,LV=(0) Getmain storage
LR R13,R1 R13 -> this program’s save area
LA R10,2048(,R13) Second getmain base register
LA R10,2048(,R10) Second getmain base register
LA R6,2048(,R10) Third getmain base register
LA R6,2048(,R6) Third getmain base register
USING @STORE,R13,R10,R6 Getmain addressability
ST R2,@BACK Save caller’s save area pointer
ST R13,8(,R2) Give caller our save area
LR R1,R3 Restore parameter register

@ENTRY2 EQU * * * * * * * End of the entry linkage code
SPACE ,

PSEUDO EQU * Dummy label used throughout

1066 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ACC (access) Example
The following code determines if file /usr/inv/network.t can be accessed. For the
callable service, see “access (BPX1ACC) — Determine If a File Can Be Accessed”
on page 18. For the data structure, see “BPXYACC — Map Flag Values for access”
on page 951.

MVC BUFFERA(18),=CL18’/usr/inv/network.t’
MVC BUFLENA,=F’18’
XC ACC(ACC#LENGTH),ACC
MVI ACCINTENTFLAGS,ACC_R_OK+ACC_W_OK Read and write access
SPACE ,
CALL BPX1ACC, Determine accessibility of a file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
ACC, Input: Access, BPXYACC +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
ICM R15,B’1111’,RETVAL Set condition code for RETVAL
BZ PSEUDO Branch if RETVAL is zero
CLC RETCODE,=A(EACCES) Compare RETCODE to EACCES
BE PSEUDO Branch if access denied

BPX1ACC (access) Example

Appendix C. Callable services examples 1067

BPX1ACK (auth_check_resource_np) Example
The following code determines if user ’JOEUSER’ has UPDATE access to the
FACILITY class profile ’TEST.THIS.PROFILE’. For the callable service, see
“auth_check_resource_np (BPX1ACK) — Determine a User’s Access to a
RACF-Protected Resource” on page 60.

MVI CELLUUID,X’00’
MVI PRINUUID,X’00’
MVC USERNLEN,=F’7’
MVC USERNAME(7),=CL7’JOEUSER’
MVC CLSLEN,=F’8’
MVC CLS(8),=CL8’FACILITY’
MVC ENTLEN,=F’17’
MVC ENT(17),=CL17’TEST.THIS.PROFILE’
SPACE ,
CALL BPX1ACK, Determine access to a resource +

(CELLUUID, Input: Cell UUID +
PRINUUID, Input: Principal UUID +
USERNLEN, Input: Userid length +
USERID, Input: Userid +
CLSLEN,, Input: Class length +
CLS, Input: Class +
ENTLEN, Input: Entity length +
ENT, Input: Entity +
=A(ACK_UPDATE#), Input: Access type to check for +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1ACK (auth_check_resource_np) Example

1068 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ACP (accept) Example
The following code does an accept to accept a connect request from a client.
SOCKDESC was previously set by a call to BPX1SOC. A bind and a listen must
also have been previously done. The SOCKADDR was built by the call to
BPX1BND. For the callable service, see “accept (BPX1ACP) — Accept a
Connection Request from a Client Socket” on page 10. For the data structure, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027.

CALL BPX1ACP, Accept a socket connect request +
(SOCKDESC, Input: Socket descriptor +
=A(SOCK#LEN+SOCK_SUN#LEN), Input: Length - Sockaddr +
SOCKADDR, Input: Sockaddr structure +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R2,RETVAL
ST R2,SOCKDES2 Store the new socket descriptor

BPX1ACP (accept) Example

Appendix C. Callable services examples 1069

BPX1AIO (asyncio) Example
The following code will accept the next conversation. For the callable service, see
“asyncio (BPX1AIO) — Asynchronous I/O for Sockets” on page 27.

XC AIO,AIO Null AIO control block
MVC AIOCMD,=A(AIO#ACCEPT) Command = Accept
MVC AIOFD,FILEDESC File descriptor
MVC AIONOTIFYTYPE,=AL2(AIO#MVS) Notify type = MVS
XC ECB01,ECB01 ECB = 0
LA R15,ECB01 ECB Address
ST R15,AIOECBPTR Null AIO control block
MVC AIOSOCKADDRLEN,=A(SOCK#LEN)
LA R15,SOCKADDR From recvform (see BPX1RFM)
ST R15,AIOSOCKADDRPTR
SPACE ,
CALL BPX1AIO, Asynchronous I/O for Sockets +

(=A(AIO#LENGTH), Input: Time before SIGAIOM +
AIO, Input: Time before SIGAIOM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1AIO (asyncio) Example

1070 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ALR (alarm) Example
The following code schedules an alarm in 5 seconds. For the callable service, see
“alarm (BPX1ALR) — Set an Alarm” on page 25.

MVC SECONDS,=F’5’
SPACE ,
CALL BPX1ALR, Schedule Alarm +

(SECONDS, Input: Time before SIGALRM +
RETVAL), Return value: 0 or -1 +
VL,MF=(E,PLIST) ----------------------------------

BPX1ALR (alarm) Example

Appendix C. Callable services examples 1071

BPX1ANR (accept_and_recv) Example
The following code accepts a connection and reads the first block of data from a
client. The new socket’s descriptor, the peer’s remote address and the caller’s local
address are also returned. SOCKDESC was previously set by a call to BPX1SOC.
ACPSOCK must be set to -1 and the system will assign a new descriptor for the
accepted connection in this parameter. A bind and a listen must also have been
previously done. The SOCKADDR was built by the call to BPX1BND. For the
callable service, see :HDREF REFID=ANR. For the data structure, see :HDREF
REFID=YSOCK.

L R8,=XL4’FFFFFFFF’ Set ACPSOCK = -1
ST R8,ACPSOCK
CALL BPX1ANR, Accept_and_receive request +

(SOCKDESC, Input: Socket descriptor +
ACPSOCK, Input: -1 Output: accepted soc des+
SOCK#LEN+SOCK_SUN#LEN, Input/Output: Len of Remote_addr +
RSOCKADR, Input: Remote sockaddr structure +
SOCK#LEN+SOCK_SUN#LEN, Input/Output: Len of Local_addr +
LSOCKADR, Input: Local sockaddr structure +
=A(L’BUFFERA), Input: Length of the buffer +
BUFFERA, Input/Output: Addr of the buffer +
PRIMARYALET, Input: Alet of the buffer +
RETVAL, Return value: -1 or num bytes recd+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R2,RETVAL
ST R2,BYTERECD Store number of bytes received

BPX1ANR (accept_and_recv) Example

1072 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ASP (aio_suspend) Example
The following code will wait up to 10 seconds for one of the events specified in the
AIOCB. For the callable service, see “aio_suspend (BPX1ASP) — Wait for an
Asynchronous I/O Request” on page 21.

LA R15,AIO
ST R15,ARGSLST
MVC ARGCNT,=F’1’
MVC SECONDS,=F’10’
XC NANOSECONDS,NANOSECONDS
SPACE ,
CALL BPX1ASP, Suspend for an aio request +

(ARGSLST, Input: List of pointers to AIOCBs +
ARGCNT, Input: Count of pointers in list +
SECONDS, Input: Seconds to wait +
NANOSECONDS, Input: Nanoseconds to wait +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1ASP (aio_suspend) Example

Appendix C. Callable services examples 1073

BPX1ATM (attach_execmvs) Example
The following code invokes program APPL92 on a subtask and as a child process
of the caller, passing the length and parameter MONTH9,PRELIM,(232/74.99).
There is no exit routine associated with program APPL92. For the callable service,
see “attach_execmvs (BPX1ATM) — Attach an MVS Program” on page 54.

MVC PGMNAMEL,=F’6’
MVC PGMNAME(06),=CL6’APPL92’
MVC BUFLENA,=F’24’
MVC BUFFERA(24),=CL24’MONTH9,PRELIM,(232/74.99)’
SPACE ,
CALL BPX1ATM, Invoke a MVS program +

(PGMNAMEL, Input: Length of program name +
PGMNAME, Input: Program name +
BUFLENA, Input: Length of program argument +
BUFFERA, Input: Program argument +
=A(0), Input: Exit routine address or 0 +
=A(0), Input: Exit Parm list address or 0+
RETVAL, Return value: Child PID Or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1ATM (attach_execmvs) Example

1074 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ATX (attach_exec) Example
The program ictasma located at ict/bin gets control on a subtask and as a child
process of the caller, and is passed arguments WK18, DEPT37A, and
RATE(STD,NOEXC,NOSPEC). No environment arguments are passed. For the
callable service, see “attach_exec (BPX1ATX) — Attach a z/OS UNIX Program” on
page 45.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=C’/ict/bin/ictasma’
MVC ARGCNT,=F’3’

* First
LA R15,=F’4’ Length
ST R15,ARGLLST+00 Length parm list
LA R15,=CL4’WK18’ Argument
ST R15,ARGSLST+00 Argument address parm list

* Second
LA R15,=F’7’ Length
ST R15,ARGLLST+04 Length parm list
LA R15,=CL7’DEPT37A’ Argument
ST R15,ARGSLST+04 Argument address parm list

* Third
LA R15,=F’22’ Length
ST R15,ARGLLST+08 Length parm list
LA R15,=CL22’RATE(STD,NOEXC,NOSPEC)’ Argument
ST R15,ARGSLST+08 Argument address parm list

*
MVC ENVCNT,=F’0’ Number of env. data items passed
MVC ENVLENS,=F’0’ Addr of env. data length list
MVC ENVPARMS,=F’0’ Add of env. data

*
MVC EXITRTNA,=V(EXITRTN) ->exit routine

* MVC EXITPLA,=A(exit paramter list as expected by EXITRTN)
SPACE ,
CALL BPX1ATX, +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
ARGCNT, Input: Argument count +
ARGLLST, Input: Argument length list +
ARGSLST, Input: Argument address list +
ENVCNT, Input: Environment count +
ENVLENS, Input: Environment length list +
ENVPARMS, Input: Environment address list +
EXITRTNA, Input: Exit routine address or 0 +
EXITPLA, Input: Exit Parm list address or 0+
RETVAL, Return value: Child PID or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1ATX (attach_exec) Example

Appendix C. Callable services examples 1075

BPX1BND (bind) Example
The following code does a bind to associate a name with a socket. SOCKDESC
was previously set by a call to BPX1SOC. For the callable service, see “bind
(BPX1BND) — Bind a Unique Local Name to a Socket Descriptor” on page 65. For
the data structure, see “BPXYSOCK — Map SOCKADDR Structure and Constants”
on page 1027.

SPACE ,
MVI SOCK_LEN,12 Store the length of the address
MVI SOCK_FAMILY,AF_UNIX Set the domain to AF_UNIX
MVC SOCK_SUN_NAME(12),=CL12’/tmp/socket1’ Set the name
CALL BPX1BND, Bind a name to a socket +

(SOCKDESC, Input: Socket Descriptor +
=A(SOCK#LEN+SOCK_SUN#LEN), Input: Length - Sockaddr +
SOCKADDR, Input: Sockaddr structure +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1BND (bind) Example

1076 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPXICCA (cond_cancel) Example
The following code demonstrates how to cancel a program’s interest in events that
were selected by a call to the cond_setup service. For the callable service, see
“cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 102.

CALL BPX1CCA, Cancel cond_setup +
(RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

* The return value (RETVAL) does not matter. When your program
* receives control following the call to cond_cancel, it is no
* longer eligible to receive event notifications via cond_post.

BPX1CCA (cond_cancel) Example

Appendix C. Callable services examples 1077

BPX1CCS (__console()) Example
The following code sends a message to the console. For the callable service, see
“__console() (BPX1CCS) — Communicate with Console (Modify/Stop/WTO/DOM)”
on page 120. For the data structure, see “BPXYCCA — Map Input/Output Structure
for __console()” on page 955.

CALL BPX1CCS, Send msg to console +
(MSGATTRLEN, Input: BPXYCCA length +
MSGATTR, Input: BPXYCCA +
MODSTRINGPTR, Output: Modify msg from console +
MODIFYSTGLEN, Output: Length of modify msg +
CONMSGTYPE, Output: Console msg type +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CCS (__console()) Example

1078 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CHA (chaudit) Example
The following code changes the audit flags for the file identified by pathname. For
the callable service, see “chaudit (BPX1CHA) — Change Audit Flags for a File by
Path” on page 75. For the data structure, see “BPXYAUDT — Map Flag Values for
chaudit and fchaudit” on page 954.

MVC BUFFERA(18),=CL18’/usr/inv/network.t’
MVC BUFLENA,=F’18’
MVI AUDTREADACCESS,AUDTREADFAIL
MVI AUDTWRITEACCESS,AUDTWRITEFAIL
MVI AUDTEXECACCESS,AUDTEXECFAIL
MVI AUDTRSRV,0
SPACE ,
CALL BPX1CHA, Change audit +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
AUDT, Input: Audit flags, BPXYAUDT +
=F’0’, Input: 0 user, 1 security auditor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CHA (chaudit) Example

Appendix C. Callable services examples 1079

BPX1CHD (chdir) Example
The following code changes the working directory for the task. For the callable
service, see “chdir (BPX1CHD) — Change the Working Directory” on page 79.

MVC BUFFERA(8),=CL8’/usr/inv’
MVC BUFLENA,=F’8’
SPACE ,
CALL BPX1CHD, Change working directory +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CHD (chdir) Example

1080 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CHM (chmod) Example
The following code changes the file mode for the file identified by pathname. For
the callable service, see “chmod (BPX1CHM) — Change the Mode of a File or
Directory” on page 82. For the data structure, see “BPXYMODE — Map the Mode
Constants of the File Services” on page 986.

MVC BUFFERA(26),=CL26’newprogs/path/eightfold.c’
MVC BUFLENA,=F’26’
XC S_MODE,S_MODE
MVI S_MODE2,S_IRUSR All read and write
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
SPACE ,
CALL BPX1CHM, Change File Modes +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
S_MODE, Input: Mode, mapped by BPXYMODE +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CHM (chmod) Example

Appendix C. Callable services examples 1081

BPX1CHO (chown) Example
The following code changes the owner of /somedir/somefile.c from the current
owner to that specified by USERID and GROUPID. For the callable service, see
“chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on
page 86.

MVC BUFFERA(20),=CL20’/somedir/somefile.c’
MVC BUFLENA,=F’20’

MVC USERID,.. New owner UID from stat
MVC GROUPID,.. New owner GID from stat
SPACE ,
CALL BPX1CHO, Change owner and group of a file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
USERID, Input: New owner UID +
GROUPID, Input: New owner GID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CHO (chown) Example

1082 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CHP (chpriority) Example
The following code changes the CPU priority based on the input which, who, and
priority type values. The which value used is PRIO_PROCESS, indicating that the
priority will be set by process ID. The who value used is 7, to set the priority for
process ID 7. The priority type is CPRIO_ABSOLUTE, indicating that the priority will
be set to the value specified, 1. For the callable service, see “chpriority (BPX1CHP)
— Change the Scheduling Priority of a Process” on page 90.

MVC PROCID,=XL4’00000007’ Process ID to change priority for
MVC PRIORITY,=XL4’00000001’ Priority value of 1
SPACE ,
CALL BPX1CHP, Change priority value +

(=A(PRIO_PROCESS), Input: Set by Process ID +
PROCID, Input: PID to set priority for +
=A(CPRIO_ABSOLUTE), Input: Change by absolute value +
PRIORITY, Input: Priority value to change to+
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1CHP (chpriority) Example

Appendix C. Callable services examples 1083

BPX1CHR (chattr) Example
The following code changes the attributes of /somedir/somefile.c . The owning user
and group ids are changed; the file change time is set to the current time; and the
user read-execute, group write, and other read-execute permissions are set. For the
callable service, see “chattr (BPX1CHR) — Change the Attributes of a File or
Directory” on page 68. For the data structures, see “BPXYATT — Map File
Attributes for chattr and fchattr” on page 953, and “BPXYMODE — Map the Mode
Constants of the File Services” on page 986.

MVC BUFFERA(20),=CL20’/somedir/somefile.c’
MVC BUFLENA,=F’20’
MVC ATTID,=CL4’ATT ’ Eye Catcher
MVC ATTVERSION,=AL2(ATT#VER) version
XC S_MODE,S_MODE Clear mode
MVI S_MODE2,S_IRUSR Read-execute/write/read-execute
MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH
MVC ATTMODE,S_MODE Move mode data to attribute +

structure
MVC ATTUID,=F’7’ Specify new UID
MVC ATTGID,=F’77’ Specify new GID
OI ATTSETFLAGS1,ATTMODECHG+ATTOWNERCHG +

Flag Mode, UID and GID changes
OI ATTSETFLAGS2,ATTCTIMETOD +

Set change time to current time
SPACE ,
CALL BPX1CHR, Change file attributes +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
=A(ATT#LENGTH), Input: BPXYATT length +
ATT, Input/output: BPXYATT +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CHR (chattr) Example

1084 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CID (convert_id_np) Example
The following code retrieves the principal and cell UUIDs (assuming both are
defined) associated with the userid ’JOEUSER’. For the callable service, see
“convert_id_np (BPX1CID) — Convert a DCE UUID to a userid or a userid to a
DCE UUID” on page 124.

MVC USERNAME(7),=CL7’JOEUSER’
MVC USERNLEN,=F’7’
SPACE ,
CALL BPX1CID, Convert userid < -- > UUID +

(=A(CID_GET_UUID#), Input: pathname length +
PRINUUID, Output: principal UUID +
CELLUUID, Output: cell UUID +
USERNLEN, Input: user name length +
USERNAME, Input: user name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CID (convert_id_np) Example

Appendix C. Callable services examples 1085

BPX1CLD (closedir) Example
The following code closes the directory identified by FILEDESC. For the callable
service, see “closedir (BPX1CLD) — Close a Directory” on page 100.

MVC FILEDESC,.. Directory descriptor from opendir
SPACE ,
CALL BPX1CLD, Close a directory +

(FILEDESC, Input: Directory file descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CLD (closedir) Example

1086 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CLO (close) Example
The following code closes the standard input file. For the callable service, see
“close (BPX1CLO) — Close a File” on page 97.

CALL BPX1CLO, Close a file +
(=A(STDIN_FILENO), Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CLO (close) Example

Appendix C. Callable services examples 1087

BPX1CON (connect) Example
The following code connects to a socket. SOCKDESC was returned by a previous
call to BPX1SOC, and SOCKADDR contains the name of the peer, possibly
obtained by a call to BPX1GNM. For the callable service, see “connect (BPX1CON)
— Establish a Connection Between Two Sockets” on page 117. For the data
structure, see “BPXYSOCK — Map SOCKADDR Structure and Constants” on
page 1027.

SPACE ,
MVI SOCK_LEN,12 Store the length of the address
MVI SOCK_FAMILY,AF_UNIX Set the domain to AF_UNIX
MVC SOCK_SUN_NAME(12),=CL12’/tmp/socket1’ Set the name
CALL BPX1CON, Connect to a socket +

(SOCKDESC, Input: Socket Descriptor +
SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
SOCKADDR, Input: Sockaddr structure +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CON (connect) Example

1088 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CPO (cond_post) Example
The following code demonstrates how to send an event notification to a thread
waiting in the cond_wait or cond_timed_wait service. For the callable service, see
“cond_post (BPX1CPO) — Post a Thread for an Event” on page 104.
The following code notifies thread (THID) that a CW_CONDVAR event
has occurred.

CALL BPX1CPO, Send condition event notification +
(THID, Input: Thread ID of target pgm +
=A(CW_CONDVAR), Input: Event in BPXYCW +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CPO (cond_post) Example

Appendix C. Callable services examples 1089

BPX1CRT (chroot) Example
The following code changes the root directory for the task. For the callable service,
see “chroot (BPX1CRT) — Change the Root Directory” on page 94.

MVC BUFFERA(8),=CL8’/usr/inv’
MVC BUFLENA,=F’8’
SPACE ,
CALL BPX1CRT, Change root directory +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CRT (chroot) Example

1090 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CSE (cond_setup) Example
The following code sets up the invoker to suspend processing until any of the
specified events (CW_INTRPT or CW_CONDVAR) occurs. The BPX1CTW
(cond_timed_wait) or BPX1CWA (cond_wait) service is used to actually suspend
processing. For the callable service, see “cond_setup (BPX1CSE) — Set Up to
Receive Event Notifications” on page 107.

MVC EVENTLIST,=A(CW_INTRPT+CW_CONDVAR)
CALL BPX1CSE, Condition setup +

(EVENTLIST, Input: Event list BPXYCW +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CSE (cond_setup) Example

Appendix C. Callable services examples 1091

BPX1CTW (cond_timed_wait) Example
The following code suspends the calling thread until a signal arrives (CW_INTRPT),
or else 2.5 seconds have elapsed. For the callable service, see “cond_timed_wait
(BPX1CTW) — Suspend a Thread for a Limited Time or an Event” on page 110.

MVC EVENTLIST,=A(CW_INTRPT) Signals
CALL BPX1CTW, Wait for condition events +

(=A(2), Input: Number of seconds +
=A(500000000), Input: Number of nanoseconds +
EVENTLIST, Input: Event list BPXYCW +
SECONDS, Output: Unexpired seconds +
NANOSECONDS, Output: Unexpired nanoseconds +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CTW (cond_timed_wait) Example

1092 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1CWA (cond_wait) Example
The following code suspends the calling thread until either of two events occurs: the
arrival of a signal (CW_INTRPT) or some other thread using the cond_post service
to send this thread a CW_CONDVAR notification. For the callable service, see
“cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 114.

MVC EVENTLIST,=A(CW_INTRPT+CW_CONDVAR)
CALL BPX1CWA, Wait for condition events +

(EVENTLIST, Input: Event list BPXYCW +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1CWA (cond_wait) Example

Appendix C. Callable services examples 1093

BPX1DEL (deleteHFS) Example
The program ictasma located at ict/bin is loaded into storage using BPX1LOD,
branched to and then deleted from storage using BPX1DEL. For the callable
service, see “deletehfs (BPX1DEL) — Delete a Program from Storage” on
page 131.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=C’/ict/bin/ictasma’
MVC OPTIONS,=A(0)
MVC LIBPTHLN,=A(0)
SPACE ,
CALL BPX1LOD, Load Program +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
OPTIONS, Input: Options +
LIBPTHLN, Input: Library Path Length +
LIBPATH, Input: Library Path +
EPADDR, Return value: -1 or entry pt addr +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,EPADDR Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error
SPACE ,
L R15,EPADDR
BALR R14,R15 Branch to loaded program
SPACE ,
CALL BPX1DEL, Delete program +

(EPADDR, Input: Entry point address +
RETVAL, Return value: -1 or 0 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1DEL (deleteHFS) Example

1094 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1ENV (oe_env_np) Example
The following code enables interruption of threads waiting in MVS ENQs in the
caller’s process. For the callable service, see “oe_env_np (BPX1ENV) — Examine,
Change, or Examine and Change an Environmental Attribute” on page 425. For the
data structure, see “BPXYCONS — Constants Used by Services” on page 956.

LA R15,=F’1’
ST R15,INARG
LA R15,INARG
ST R15,INARGLIST
LA R15,INARGLIST
ST R15,INARGLISTPTR
SPACE ,
CALL BPX1ENV, oe_env_np +

(=A(ENQWAIT_PROCESS), Input: Function_code BPXYCONS +
=A(1), Input: InArgCount +
INARGLISTPTR, Input: InArgListPtr +
=A(0), Input: OutArgCount +
=A(0), Input: OutArgListPtr +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1ENV (oe_env_np) Example

Appendix C. Callable services examples 1095

BPX1EXC (exec) Example
The program ictasma located at ict/bin gets control and is passed arguments
WK18, DEPT37A, and RATE(STD,NOEXC,NOSPEC). No environment arguments
are passed. For the callable service, see “exec (BPX1EXC) — Run a Program” on
page 133.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=C’/ict/bin/ictasma’
MVC ARGCNT,=F’3’

* First
LA R15,=F’4’ Length
ST R15,ARGLLST+00 Length parm list
LA R15,=CL4’WK18’ Argument
ST R15,ARGSLST+00 Argument address parm list

* Second
LA R15,=F’7’ Length
ST R15,ARGLLST+04 Length parm list
LA R15,=CL7’DEPT37A’ Argument
ST R15,ARGSLST+04 Argument address parm list

* Third
LA R15,=F’22’ Length
ST R15,ARGLLST+08 Length parm list
LA R15,=CL22’RATE(STD,NOEXC,NOSPEC)’ Argument
ST R15,ARGSLST+08 Argument address parm list

*
MVC ENVCNT,=F’0’ Number of env. data items passed
MVC ENVLENS,=F’0’ Addr of env. data length list
MVC ENVPARMS,=F’0’ Add of env. data

*
MVC EXITRTNA,=V(EXITRTN) ->exit routine

* MVC EXITPLA,=A(exit parameter list as expected by EXITRTN)
SPACE ,
CALL BPX1EXC, +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
ARGCNT, Input: Argument count +
ARGLLST, Input: Argument length list +
ARGSLST, Input: Argument address list +
ENVCNT, Input: Environment count +
ENVLENS, Input: Environment length list +
ENVPARMS, Input: Environment address list +
EXITRTNA, Input: Exit routine address or 0 +
EXITPLA, Input: Exit Parm list address or 0+
RETVAL, Return value: -1 or not return +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1EXC (exec) Example

1096 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1EXI (_exit) Example
The following code ends the program and returns an exit code of 44 to the waiting
parent process. For the callable service, see “_exit (BPX1EXI) — End a Process
and Bypass the Cleanup” on page 150.

XC WAST(WAST#LENGTH),WAST
MVI WASTEXITCODE,44 User defined exit code
SPACE
CALL BPX1EXI, End a process +

(WAST), Input: Status field +
VL,MF=(E,PLIST) ----------------------------------

BPX1EXI (_exit) Example

Appendix C. Callable services examples 1097

BPX1EXM (execmvs) Example
The following code invokes program APPL92 and passes the length and parameter
MONTH9,PRELIM,(232/74.99). There is no exit routine associated with program
APPL92. For the callable service, see “execmvs (BPX1EXM) — Run an MVS
Program” on page 144.

MVC PGMNAMEL,=F’6’
MVC PGMNAME(06),=CL6’APPL92’
MVC BUFLENA,=F’24’
MVC BUFFERA(24),=CL24’MONTH9,PRELIM,(232/74.99)’
SPACE ,
CALL BPX1EXM, Invoke a MVS program +

(PGMNAMEL, Input: Length of program name +
PGMNAME, Input: Program name +
BUFLENA, Input: Length of program argument +
BUFFERA, Input: Program argument +
=A(0), Input: Exit routine address or 0 +
=A(0), Input: Exit Parm list address or 0+
RETVAL, Return value: -1 or not return +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1EXM (execmvs) Example

1098 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1EXT (extlink_np) Example
The following code creates an external link to data set MY.DATASET for pathname
/mvs/mydataset . For the callable service, see “extlink_np (BPX1EXT) — Create an
External Symbolic Link” on page 153.

MVC BUFFERA(10),=CL10’MY.DATASET’
MVC BUFLENA,=F’10’
MVC BUFFERB(14),=CL14’/mvs/mydataset’
MVC BUFLENB,=F’14’
SPACE ,
CALL BPX1EXT, Create external link to name +

(BUFLENA, Input: External name length +
BUFFERA, Input: External name +
BUFLENB, Input: Link name length +
BUFFERB, Input: Link name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1EXT (extlink_np) Example

Appendix C. Callable services examples 1099

BPX1FAI(freeaddrinfo)Example
The following code frees the Addr_Info structure(s) that were obtained by the
getaddrinfo callable service. For the callable service, see “freeaddrinfo (BPX1FAI)
— Free Addr_Info Structures” on page 193.

SPACE ,
CALL BPX1FAI, Free Addr_Info +

(ADDR_INFO_PTR, Input: -> Addr_Info structure +
RETVAL, Return code +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FAI(freeaddrinfo)Example

1100 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FCA (fchaudit) Example
The following code changes the audit for the standard input file to ReadFail,
WriteFail and ExecFail. For the callable service, see “fchaudit (BPX1FCA) —
Change Audit Flags for a File by Descriptor” on page 163. For the data structure,
see “BPXYAUDT — Map Flag Values for chaudit and fchaudit” on page 954.

MVI AUDTREADACCESS,AUDTREADFAIL
MVI AUDTWRITEACCESS,AUDTWRITEFAIL
MVI AUDTEXECACCESS,AUDTEXECFAIL
MVI AUDTRSRV,X’00’
SPACE ,
CALL BPX1FCA, Change audit +

(=A(STDIN_FILENO), Input: File descriptor +
AUDT, Input: Audit flags, BPXYAUDT +
=A(0), Input: 0 user, 1 security auditor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCA (fchaudit) Example

Appendix C. Callable services examples 1101

BPX1FCD (fchdir) Example
The following code changes the working directory for the task to the directory
identified by FILEDESC. For the callable service, see “fchdir (BPX1FCD) — Change
the Working Directory” on page 166.

MVC FILEDESC,.. Directory descriptor from opendir
SPACE ,
CALL BPX1FCD, Change working directory +

(FILEDESC, Input: Directory file descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCD (fchdir) Example

1102 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FCM (fchmod) Example
The following code changes the permissions for the standard input file. For the
callable service, see “fchmod (BPX1FCM) — Change the Mode of a File or
Directory by Descriptor” on page 168. For the data structure, see “BPXYMODE —
Map the Mode Constants of the File Services” on page 986 and “BPXYFTYP — File
Type Definitions” on page 969.

XC S_MODE,S_MODE
MVI S_MODE2,S_IRUSR All permissions
MVI S_MODE3,S_IRWXU2+S_IRWXG+S_IRWXO
SPACE ,
CALL BPX1FCM, Change file modes +

(=A(STDIN_FILENO), Input: File descriptor +
S_MODE, Input: Mode, BPXYMODE, BPXYFTYP +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCM (fchmod) Example

Appendix C. Callable services examples 1103

BPX1FCO (fchown) Example
The following code changes the owner and group for the standard input file. For the
callable service, see “fchown (BPX1FCO) — Change the Owner and Group of a
File or Directory by Descriptor” on page 171. For the data structure, see
“BPXYCONS — Constants Used by Services” on page 956.

MVC GROUPID,.. Group ID
MVC USERID,.. User ID
SPACE ,
CALL BPX1FCO, Change the owner and group of file+

(=A(STDIN_FILENO), Input: File descriptor +
USERID, Input: New user ID for file +
GROUPID, Input: New group ID for file +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCO (fchown) Example

1104 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FCR (fchattr) Example
The following code changes the attributes of the standard input file. The owning
user and group ids are changed; the file change time is set to the current time; and
the user read-execute, group write, and other read-execute permissions are set. For
the callable service, see “fchattr (BPX1FCR) — Change the Attributes of a File or
Directory by Descriptor” on page 156. For the data structures, see “BPXYATT —
Map File Attributes for chattr and fchattr” on page 953, and “BPXYMODE — Map
the Mode Constants of the File Services” on page 986.

MVC ATTID,=CL4’ATT ’ Eye Catcher
MVC ATTVERSION,=AL2(ATT#VER) version
XC S_MODE,S_MODE Clear mode
MVI S_MODE2,S_IRUSR Read-execute/write/read-execute
MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH
MVC ATTMODE,S_MODE Move mode data to attribute +

structure
MVC ATTUID,=F’7’ Specify new UID
MVC ATTGID,=F’77’ Specify new GID
OI ATTSETFLAGS1,ATTMODECHG+ATTOWNERCHG +

Flag Mode, UID and GID changes
OI ATTSETFLAGS2,ATTCTIMETOD +

Set change time to current time
SPACE ,
CALL BPX1FCR, Change file attributes +

(=A(STDIN_FILENO), Input: File descriptor +
=A(ATT#LENGTH), Input: BPXYATT length +
ATT, Input/output: BPXYATT +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCR (fchattr) Example

Appendix C. Callable services examples 1105

BPX1FCT (fcntl) Example
The code for the first example duplicates the standard error file descriptor to a file
descriptor greater than or equal to FILEDES2.

The code for the second example sets a shared byte range lock. For the callable
service, see “fcntl (BPX1FCT) — Control Open File Descriptors” on page 174. For
the data structure, see “BPXYFCTL — Command Values and Flags for fcntl” on
page 968, “BPXYBRLK — Map Byte Range Lock Request for fcntl” on page 955,
and “BPXYOPNF — Map Flag Values for open” on page 993.
* for 2nd parm F_DUPFD, F_DUPFD2 3rd parm file desc no..
* for 2nd parm F_GETFD, F_GETFL 3rd parm 0
* for 2nd parm F_SETFD 3rd parm BPXYFCTL
* for 2nd parm F_GETLK, F_SETLK, F_SETLKW 3rd parm BPXYBRLK
* for 2nd parm F_SETFL 3rd parm BPXYOPNF

SPACE ,
* Example 1 - duplicate file descriptor

MVC FILEDES2,=F’20’ Get free file descriptor >= 20
SPACE ,
CALL BPX1FCT, General purpose file control +

(=A(STDERR_FILENO), Input: File descriptor +
=A(F_DUPFD), Input: Action, BPXYFCTL +
FILEDES2, Input: Argument #/0/FCTL/BRLK/OPNF+
RETVAL, Return value: 0, -1 or action +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
* Example 2 - duplicate file descriptor

MVC FILEDES2,=F’20’ Get next higher file descriptor
LA R15,BRLK
ST R15,BRLKA
XC BRLK(BRLK#LENGTH),BRLK Null out BRLK
MVC L_TYPE,=AL2(F_RDLCK) Lock type = shared
MVC L_WHENCE,=AL2(SEEK_CUR) Whence = from current cursor
SPACE ,
CALL BPX1FCT, General purpose file control +

(=A(STDERR_FILENO), Input: File descriptor +
=A(F_SETLK), Input: Action, BPXYFCTL +
BRLKA, Input: Argument #/0/FCTL/BRLK/OPNF+
RETVAL, Return value: 0, -1 or action +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FCT (fcntl) Example

1106 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FPC (fpathconf) Example
The following code obtains the configurable option associated with the pipe buffer.
For the callable service, see “fpathconf (BPX1FPC) — Determine Configurable
Pathname Variables Using a Descriptor” on page 189. For the data structure, see
“BPXYPCF — Command Values for pathconf and pathconf” on page 993.

MVC FILEDESC,.. From opendir
SPACE ,
CALL BPX1FPC, Get configurable pathname variable+

(FILEDESC, Input: Directory file descriptor +
=A(PC_PIPE_BUF), Input: Configurables BPXYPCF +
RETVAL, Return value: 0, -1 or variable +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FPC (fpathconf) Example

Appendix C. Callable services examples 1107

BPX1FRK (fork) Example
The following code forks a new process. The next sequential instruction gets control
from both the parent process (RETVAL=child process ID) and from the child
process (RETVAL=0). If RETVAL=-1, the fork failed. For the callable service, see
“fork (BPX1FRK) — Create a New Process” on page 184.

CALL BPX1FRK, Create a new process (fork) +
(RETVAL, Return value: -1, 0, child’s PID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FRK (fork) Example

1108 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FST (fstat) Example
The following code gets the file status for the file opened as FILEDESC. For the
callable service, see “fstat (BPX1FST) — Get Status Information about a File by
Descriptor” on page 195. For the data structure, see “BPXYSTAT — Map the
Response Structure for stat” on page 1034.

MVC FILEDESC,.. File descriptor from open
SPACE ,
CALL BPX1FST, Get file status of file descriptor+

(FILEDESC, Input: File descriptor +
STATL, Input: Length of buffer needed +
STAT, Buffer, mapped by BPXYSTAT +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FST (fstat) Example

Appendix C. Callable services examples 1109

BPX1FSY (fsync) Example
The following code writes file descriptor changes to permanent storage. For the
callable service, see “fsync (BPX1FSY) — Write Changes to Permanent Storage”
on page 201.

MVC FILEDESC,.. File descriptor from open
SPACE ,
CALL BPX1FSY, Write changes to permanent storage+

(FILEDESC, Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FSY (fsync) Example

1110 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1FTR (ftruncate) Example
The following code truncates the file described by FILEDESC after 512 bytes. For
the callable service, see “ftruncate (BPX1FTR) — Change the Size of a File” on
page 203.

MVC FILEDESC,.. File descriptor from open
MVC NEWLEN(8),=FL8’512’
SPACE ,
CALL BPX1FTR, Truncate a file +

(FILEDESC, Input: File descriptor +
NEWLEN, Input: Length to keep +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FTR (ftruncate) Example

Appendix C. Callable services examples 1111

BPX1FTV (fstatvfs) Example
The following code obtains information about the file system containing the file
identified by FILEDESC. For the callable service, see “fstatvfs (BPX1FTV) — Get
the File System Status” on page 198. For the data structure, see “BPXYSSTF —
Map Response Structure for File System Status” on page 1033.

MVC FILEDESC,.. File descriptor from open
SPACE ,
CALL BPX1FTV, Get file system status +

(FILEDESC, Input: File descriptor +
SSTFL, Input: Length of BPXYSSTF +
SSTF, Buffer, BPXYSSTF +
RETVAL, Return value: -1 or length status +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1FTV (fstatvfs) Example

1112 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GAI (getaddrinfo) Example
The following code returns the IP address and other associated information for the
specified node name. For the callable service, see “getaddrinfo (BPX1GAI) — Get
the IP Address and Information for a Service Name or Location” on page 206.

SPACE ,
CALL BPX1GAI, Get Addr_info +

(NODE_NAME, Input: Name of Host being queried +
NODE_NAME_LENGTH, Input: Length of host name +
SERVICE_NAME, Input: Service name being queried +
SERVICE_NAME_LENGTH, Input: Length of service name +
HINTS_PTR, Input: Ptr to Addr_Info Structure +
RESULTS_PTR, Output:Ptr to Addr_Info Structure +
CANONICAL_LENGTH, Output: Length canonical name +
RETVAL, Return code +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GAI (getaddrinfo) Example

Appendix C. Callable services examples 1113

BPX1GCL (getclientid) Example
The following code obtains the clientid information for caller. This information is
used on givesocket (BPX1GIV) and takesocket (BPX1TAK) services. For the
callable service, see “getclientid (BPX1GCL) — Obtain the Calling Program’s
Identifier” on page 213. For the data structure, see “BPXYCID — Map the Returning
Structure for getclientid()” on page 956.

CALL BPX1GCL, get clientid information +
(=F’2’, Input: Function code of 2 +
=A(AF_INET), Input: Domain of AF_INET +
CID, Output: Clientid information +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GCL (getclientid) Example

1114 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GCW (getcwd) Example
The following code gets the working directory for the caller. For the callable service,
see “getcwd (BPX1GCW) — Get the Pathname of the Working Directory” on
page 216.

MVC BUFLENA,=F’1024’ Max directory name return area
SPACE ,
CALL BPX1GCW, Get working directory name +

(BUFLENA, Input: Length directory work area +
BUFFERA, Buffer +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GCW (getcwd) Example

Appendix C. Callable services examples 1115

BPX1GEG (getegid) Example
The following code gets the effective group ID of the caller. For the callable service,
see “getegid (BPX1GEG) — Get the Effective Group ID” on page 218.

CALL BPX1GEG, Get the effective group ID +
(RETVAL), Return value: effective group ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GEG (getegid) Example

1116 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GEP (getpgid) Example
The following code returns the process group ID for the process identified by the
input process ID. The process ID value is set to 1. For the callable service, see
“getpgid (BPX1GEP) — Get the Process Group ID” on page 255.

MVC PROCID,=XL4’00000001’ Value of process ID
SPACE ,
CALL BPX1GEP, Get process group ID +

(PROCID, Input: Process ID +
RETVAL, Return value: process group ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1GEP (getpgid) Example

Appendix C. Callable services examples 1117

BPX1GES (getsid) Example
The following code returns the process group ID for the session leader of the
process identified by the input process ID. The process ID value is set to 1. For the
callable service, see “getsid (BPX1GES) — Get the Process Group ID of the
Session Leader” on page 276.

MVC PROCID,=XL4’00000000’ Value of process ID
SPACE ,
CALL BPX1GES, Get group ID of session leader +

(PROCID, Input: Process ID +
RETVAL, Return value: process group ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1GES (getsid) Example

1118 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GET (w_getipc) Example
The following code retrieves information on the first semaphore defined to the
system to which the caller has read access. For the callable service, see “w_getipc
(BPX1GET) — Query Interprocess Communications” on page 901. For the data
structure, see “BPXYIPCQ — Map w_getipc Structure” on page 978.

XC TOKEN,TOKEN Zero, token for 1st member
LA R5,BUFFERA Area for query IPC return data
ST R5,BUFA R5 -> IPCQ
SPACE ,
CALL BPX1GET, Interprocess Communications +

(TOKEN, Input: member token +
BUFA, Input: ->IPCQ BPXYIPCQ+
=A(IPCQ#LENGTH), Input: Length of IPCQ BPXYIPCQ+
=A(IPCQ#SEM), Input: Request BPXYIPCQ+
RETVAL, Return value: 0, -1 or value +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error
LTR R15,R15 Test for 0 return
BZ PSEUDO Branch on end of file
ST R15,TOKEN Save token for next w_semipc

BPX1GET (w_getipc) Example

Appendix C. Callable services examples 1119

BPX1GEU (geteuid) Example
The following code gets the effective user ID of the caller. For the callable service,
see “geteuid (BPX1GEU) — Get the Effective User ID” on page 219.

CALL BPX1GEU, Get the effective user ID +
(RETVAL), Return value: effective user ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GEU (geteuid) Example

1120 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GGE (getgrent) Example
The following code accesses the group database starting with the next available
entry and continuing until end of file on the database. It returns a structure
identifying information about each group entry in the database. For the callable
service, see “getgrent (BPX1GGE) — Sequentially Access the Group Database” on
page 221. For the data structure, see “BPXYGIDS — Map Data Returned for
getgrnam and getgrpid” on page 972.
GGELOOP DS 0H

CALL BPX1GGE, Access the group database +
(RETVAL, Return value: 0 or ->BPXYGIDS +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R8,B’1111’,RETVAL
BZ CHKGGERR Error or end of file
USING GIDS,R8

* access the group structure
DROP R8
B GGELOOP Check next group entry

CHKGGERR DS 0H
ICM R8,B’1111’,RETCODE
BZ GGEEOF End of file

* handle error as needed
GGEEOF DS 0H

BPX1GGE (getgrent) Example

Appendix C. Callable services examples 1121

BPX1GGI (getgrgid) Example
The following code accesses the group database by the ID of the caller and returns
a structure identifying the groups by ID. The group ID value is set to 5. For the
callable service, see “getgrgid (BPX1GGI) — Access the Group Database by ID” on
page 224. For the data structure, see “BPXYGIDS — Map Data Returned for
getgrnam and getgrpid” on page 972.

MVC GROUPID,=XL4’00000005’ Value of group ID
SPACE ,
CALL BPX1GGI, Access the group database +

(GROUPID, Input: Group ID +
RETVAL, Return value: 0 or ->BPXYGIDS +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R8,B’1111’,RETVAL
BZ NOGIDS
USING GIDS,R8

* access the group structure
DROP R8

NOGIDS EQU *

BPX1GGI (getgrgid) Example

1122 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GGN (getgrnam) Example
The following code accesses the group database by the name of the caller and
returns a structure identifying the groups by ID. For the callable service, see
“getgrnam (BPX1GGN) — Access the Group Database by Name” on page 227. For
the data structure, see “BPXYGIDS — Map Data Returned for getgrnam and
getgrpid” on page 972.

MVC GRNAMELN,=F’7’
MVC GRPGMNAME(7),=CL7’EXTSERV’
SPACE ,
CALL BPX1GGN, Access the group database +

(GRNAMELN, Input: Length of group name +
GRPGMNAME, Input: Name of group +
RETVAL, Return value: 0 or ->BPXYGIDS +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GGN (getgrnam) Example

Appendix C. Callable services examples 1123

BPX1GGR (getgroups) Example
The following code provides the caller with a list of supplementary group IDs. The
code sets BUFW size to 256. The actual BUFW size is determined from the
previous BPX1GGR RETVAL when BUFW was 0. For the callable service, see
“getgroups (BPX1GGR) — Get a List of Supplementary Group IDs” on page 230.
* MVC BUFW,=XL4’00000256’ Value of buffer BUFW

LA R15,BUFFERA Space for BUFW words
ST R15,BUFA ->Array for group IDs
SPACE ,
CALL BPX1GGR, Get list of supplementary grp IDs +

(BUFW, Input: Group ID list size +
BUFA, ->Buffer for Group ID list address+
RETVAL, Return value: -1, 0, ID count +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GGR (getgroups) Example

1124 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GHA (gethostbyaddr) Example
The following code returns a pointer to a HOSTENT structure, which contains the
alias names and the internet addresses of a host whose address is specified as
input. For the callable service, see “gethostbyaddr (BPX1GHA) — Get the IP
Address and Alias of a Host Name for the Specified IP Address” on page 236. The
HOSTENT structure has the following format:
v h_name - The address of the host name returned by the service. The host name

is a variable length field that is ended by x’00’.
v h_aliases - The address of a list of addresses that point to the alias names

returned by the service. The list is ended by the pointer x’00000000’. Each alias
name is a variable length field that is ended by x’00’.

v h_addrtype - The value 2, which signifies AF_INET.
v h_length - The length of the host internet addresses pointed to by h_addr_list.
v h-addr_list - The address of a list of addresses that point to the host internet

addresses returned by this service. The list is ended by the pointer x’00000000’.
* MVC HOST_ADDR,=XL4’C90E0256’ IP Address of Host

MVC HOST_ADDRLEN,=F’4’ Address length
SPACE ,
CALL BPX1GHA, Get host by address +

(HOST_ADDR, Input: IP address of queried HOST +
HOST_ADDRLEN, Input: Length of IP address +
HOSTENT_PTR, Output: 0 or -> HOSTENT structure +
=A(AF_INET), Input: Domain - AF_INET +
RETVAL, Return code +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GHA (gethostbyaddr) Example

Appendix C. Callable services examples 1125

BPX1GHN (gethostbyname) Example
The following code returns a pointer to a HOSTENT structure, which contains the
alias names and the internet addresses of a host whose domain name is specified
as input. For the callable service, see “gethostbyname (BPX1GHN) — Get the IP
Address and Alias of a Host Name for the Specified Host Domain Name” on
page 239.

The HOSTENT structure has the following format:
v h_name - The address of the host name returned by the service. The host name

is a variable length field that is ended by x’00’.
v h_aliases - The address of a list of addresses that point to the alias names

returned by the service. The list is ended by the pointer x’00000000’. Each alias
name is a variable length field that is ended by x’00’.

v h_addrtype - The value 2, which signifies AF_INET.
v h_length - The length of the host internet addresses pointed to by h_addr_list.
v h-addr_list - The address of a list of addresses that point to the host internet

addresses returned by this service. The list is ended by the pointer x’00000000’.
MVC HOST_NAME(8),=CL8’HOST1234’
MVC HOST_NAMELEN,=F’8’
SPACE ,
CALL BPX1GHN, Get host by name +

(HOST_NAME, Input: Name of Host being queried +
HOST_NAMELEN, Input: Length of host name +
HOSTENT_PTR, Output: 0 or -> HOSTENT structure +
RETVAL, Return code +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GHN (gethostbyname) Example

1126 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GID (getgid) Example
The following code gets the real group ID of the caller. For the callable service, see
“getgid (BPX1GID) — Get the Real Group ID” on page 220.

CALL BPX1GID, Get the real group ID +
(RETVAL), Return value: real group ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GID (getgid) Example

Appendix C. Callable services examples 1127

BPX1GIV (givesocket) Example
The following code gives a socket to the program identified by CID (clientid). The
target program may then use takesocket (BPX1TAK) to take the socket.
SOCKDESC was previously set by a call to BPX1ACP. CID is set by the getclientid
(BPX1GCL) service. For the callable service, see “givesocket (BPX1GIV) — Give a
Socket to Another Program” on page 292. For the data structure, see “BPXYCID —
Map the Returning Structure for getclientid()” on page 956.

CALL BPX1GIV, give a socket to another program +
(SOCKDESC, Input: Socket descriptor +
CID, Input: Clientid of recipient +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GIV (givesocket) Example

1128 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GLG (getlogin) Example
The following code gets the login name of the caller. For the callable service, see
“getlogin (BPX1GLG) — Get the User Login Name” on page 248.

CALL BPX1GLG, Get the login name +
(RETVAL), Returns value, 0 or ->login name +
VL,MF=(E,PLIST) ----------------------------------

BPX1GLG (getlogin) Example

Appendix C. Callable services examples 1129

BPX1GMN (w_getmntent) Example
The following code gets the mount entries for the caller. For the callable service,
see “w_getmntent (BPX1GMN) — Get Information on Mounted File Systems” on
page 905. For the data structure, see “BPXYMNTE — Map Response and Element
Structure of w_getmntent” on page 983.

If BPXYMNTE is assembled with MNTE2=YES, fields MNTEHID and MNTEHBLEN
must be initialized.

LA R14,MNTEH R14->MNTEH and MNTE
L R15,MNTEL R15 = Length of MNTEH and MNTE
XR R0,R0 Dummy 2nd operand
XR R1,R1 Pad=null, length=0
MVCL R14,R0 Null out MNTEH and MNTE
MVC MNTEHID,=CL4’MNT2’ Version indicator
MVC MNTEHBLEN,=A(MNTE#LENGTH) Length of MNTE
CALL BPX1GMN, Get mount entries +

(MNTEL, Input: Length BPXYMNTE + MNTEH +
MNTEH, Header in BPXYMNTH +
RETVAL, Return value: -1 or mount entries +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GMN (w_getmntent) Example

1130 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GNI (getnameinfo) Example
The following code resolves a socket address into a host name and a service
name. For the callable service, see “getnameinfo (BPX1GNI) — Get the Host Name
and Service Name from a Socket Address” on page 251.

SPACE ,
CALL BPX1GNI, Get name info +

(SOCKADDR, Input: Socket address +
SOCKADDR_LENGTH, Input: Length of socket address +
SERVICE_BUFFER, I/O: Buffer for service name +
SERVICE_BUFFER_LENGTH, I/O: Length of service buffer +
HOST_BUFFER, I/O: Buffer for host name +
HOST_BUFFER_LENGTH, I/O: Length of host buffer +
FLAGS, Input: Flags +
RETVAL, Return code +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GNI (getnameinfo) Example

Appendix C. Callable services examples 1131

BPX1GPG (getpgrp) Example
The following code gets the process group ID of the caller. For the callable service,
see “getpgrp (BPX1GPG) — Get the Process Group ID” on page 257.

CALL BPX1GPG, Get the process group ID +
(RETVAL), Return value: group ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GPG (getpgrp) Example

1132 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GNM (getpeername or getsockname) Example
The following code gets the peer name, and then requests the socket name.
SOCKDESC was returned by a previous call to BPX1SOC. For the callable service,
see “getsockname or getpeername (BPX1GNM) — Get the Name of a Socket or of
the Peer Connected to a Socket” on page 278. For the data structure, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027.

SPACE ,
CALL BPX1GNM, Get peername +

(SOCKDESC, Input: Socket Descriptor +
SOCK#GNMOPTGETPEERNAME, Input: Indicate getpeername +
SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
SOCKADDR, Input: Sockaddr structure +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
CALL BPX1GNM, Get sockname +

(SOCKDESC, Input: Socket Descriptor +
SOCK#GNMOPTGETSOCKNAME, Input: Indicate getpeername +
SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
SOCKADDR, Input: Sockaddr structure +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GNM (getpeername or getsockname) Example

Appendix C. Callable services examples 1133

BPX1GPE (getpwent) Example
The following code accesses the user database starting with the next available
entry and continuing until end of file on the database. It returns a structure
identifying information about each user entry in the database. For the callable
service, see “getpwent (BPX1GPE) — Sequentially Access the User Database” on
page 263. For the data structure, see “BPXYGIDN — Map Data Returned for
getpwnam and getpwuid” on page 971.
GPELOOP DS 0H

CALL BPX1GPE, Access the user database +
(RETVAL, Return value: 0 or ->BPXYGIDN +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R8,B’1111’,RETVAL
BZ CHKGPERR Error or end of file
USING GIDN,R8

* access the user structure
DROP R8
B GPELOOP Check next user entry

CHKGPERR DS 0H
ICM R8,B’1111’,RETCODE
BZ GPEEOF End of file

* handle error as needed
GPEEOF DS 0H

BPX1GPE (getpwent) Example

1134 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GPI (getpid) Example
The following code gets the process ID of the caller. For the callable service, see
“getpid (BPX1GPI) — Get the Process ID” on page 258.

CALL BPX1GPI, Get the process ID +
(RETVAL), Returns value, Process ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GPI (getpid) Example

Appendix C. Callable services examples 1135

BPX1GPN (getpwnam) Example
The following code accesses the group database by the user ID of the caller and
returns a structure identifying the groups by name. For the callable service, see
“getpwnam (BPX1GPN) — Access the User Database by User Name” on page 266.
For the data structure, see “BPXYGIDN — Map Data Returned for getpwnam and
getpwuid” on page 971.

MVC USERNLEN,=F’8’
MVC USERNAME(8),=CL8’Pebbles’
SPACE ,
CALL BPX1GPN, Access the user database +

(USERNLEN, Input: Length of user name +
USERNAME, Input: Name of user +
RETVAL, Return value 0 or ->BPXYGIDN +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GPN (getpwnam) Example

1136 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GPP (getppid) Example
The following code gets the process ID of the caller’s parent. For the callable
service, see “getppid (BPX1GPP) — Get the Parent Process ID” on page 259.

CALL BPX1GPP, Get PID of the parent process +
(RETVAL), Returns value, parent’s process ID+
VL,MF=(E,PLIST) ----------------------------------

BPX1GPP (getppid) Example

Appendix C. Callable services examples 1137

BPX1GPS (w_getpsent) Example
The following code gets process data associated with the first relative process
(PROCTOK=0) to which the caller is authorized access (by the security access
facility). For the callable service, see “w_getpsent (BPX1GPS) — Get Process
Data” on page 908. For the data structure, see “BPXYPGPS — Map the Response
Structure for w_getpsent” on page 996.

LA R15,PGPS Getmain area mapped by BPXYPGPS
ST R15,PGPSA Hold pointer to this area
XC PROCTOK,PROCTOK First relative process (Zero)
LA R2,PGPSCONTTYBUF Controlling TTY ->buffer
ST R2,PGPSCONTTYPTR Store into PGPS
MVC PGPSCONTTYBLEN,=A(L’PGPSCONTTYBUF) Length
LA R2,PGPSPATHBUF Pathname ->buffer
ST R2,PGPSPATHPTR Store into PGPS
MVC PGPSPATHBLEN,=A(L’PGPSPATHBUF) Length
LA R2,PGPSCMDBUF Command ->buffer
ST R2,PGPSCMDPTR Store into PGPS
MVC PGPSCMDBLEN,=A(L’PGPSCMDBUF) Length
SPACE ,
CALL BPX1GPS, Get process data +

(PROCTOK, Input: Relative process token +
PGPSL, Input: Length of buffer needed +
PGPSA, I/O: ->Buffer, mapped by BPXYPGPS +
RETVAL, Return value: -1, 0, next proctok +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
ICM R15,B’1111’,RETVAL Test Return value: 0 or -1
ST R15,PROCTOK The next relative process token
BZ PSEUDO RETVAL = 0, end of file
BM PSEUDO RETVAL < 0, error
BP PSEUDO RETVAL > 0, next logical process

BPX1GPS (w_getpsent) Example

1138 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GPT (grantpt) Example
The following code grants access to the slave pseudoterminal device that is
identified by the file descriptor. For the callable service, see “grantpt (BPX1GPT) —
Grant Access to the Slave Pseudoterminal” on page 295.

CALL BPX1GPT, Grant access to slave pty +
(MASTER_FD, Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GPT (grantpt) Example

Appendix C. Callable services examples 1139

BPX1GPU (getpwuid) Example
The following code accesses the group database by the user name of the caller
and returns a structure identifying the groups by name. The code sets the user ID
value to 1. For the callable service, see “getpwuid (BPX1GPU) — Access the User
Database by User ID” on page 269. For the data structure, see “BPXYGIDN — Map
Data Returned for getpwnam and getpwuid” on page 971.

MVC USERID,.. Value of user ID
SPACE ,
CALL BPX1GPU, Access database by user ID +

(USERID, Input: User ID +
RETVAL, Return value 0 or ->BPXYGIDN +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GPU (getpwuid) Example

1140 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GPY (getpriority) Example
The following code gets the CPU priority based on the input which and who values.
The which value used is PRIO_PROCESS, which indicates to get the priority by
process ID. The who value used is 7, indicating to get the priority for process ID 7.
For the callable service, see “getpriority (BPX1GPY) — Get the Scheduling Priority
of a Process” on page 260.

MVC PROCID,=XL4’00000007’ Process ID to get priority for
SPACE ,
CALL BPX1GPY, Get priority value +

(=A(PRIO_PROCESS), Input: Get by Process ID +
PROCID, Input: PID to get priority for +
RETVAL, Return value: Priority of process +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1GPY (getpriority) Example

Appendix C. Callable services examples 1141

BPX1GRL (getrlimit) Example
The following code fills in the rlimit structure for the calling process based on the
input resource value. The resource value is set to RLIMIT_CPU. For the callable
service, see “getrlimit (BPX1GRL) — Get Resource Limits” on page 272. For the
data structure, see “BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures”
on page 1019.

MVC RESOURCE,=A(RLIMIT_CPU) Value of resource
SPACE ,
CALL BPX1GRL, Get resource limits +

(RESOURCE, Input: resource +
RLIMIT, Structure, mapped by BPXYRLIM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1GRL (getrlimit) Example

1142 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GRU (getrusage) Example
The following code fills in the rusage structure based on the input who value. The
who value is set to RUSAGE_SELF. For the callable service, see “getrusage
(BPX1GRU) — Get Resource Usage” on page 274. For the data structure, see
“BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures” on page 1019.

MVC WHO,=A(RUSAGE_SELF) Value of who
SPACE ,
CALL BPX1GRU, Get resource usage +

(WHO, Input: who +
RUSAGE, Structure, mapped by BPXYRLIM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1GRU (getrusage) Example

Appendix C. Callable services examples 1143

BPX1GTH (__getthent) Example
The following code retrieves information on the first process accessible to the caller.
For the callable service, see “__getthent (BPX1GTH) — Get Thread Data” on
page 285. For the data structure, see “BPXYPGTH — Map the Response Structure
for __getthent” on page 997.

LA R5,BUFFERB R5 -> Input parameters
ST R5,BUFB ->input buffer
USING PGTHA,R5 R5 base for PGTHA
XC PGTHA,PGTHA Null Input area
MVI PGTHAFLAG1,PGTHAPROCESS+PGTHACOMMAND+PGTHATHREAD
MVI PGTHAACCESSTHID,PGTH#LAST Last thread
LA R15,BUFFERA PgthB, Output buffer
ST R15,BUFA ->output buffer
DROP R5
SPACE ,
CALL BPX1GTH, __getthent +

(=A(PGTHA#LEN), Input: length input parms BPXYPGTH+
BUFA, Input: ->input parms BPXYPGTH+
=A(1024), Input: length output area BPXYPGTH+
BUFB, Input: ->output area BPXYPGTH+
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GTH (getitimer) Example

1144 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GTR (getitimer) Example
The following code returns the time remaining an alarm, or ITIMER_REAL as set by
setitimer. For the callable service, see “getitimer (BPX1GTR) — Get the Value of
the Interval Timer” on page 245. For the data structure, see “BPXYITIM — Map
getitimer, setitimer Structure” on page 980.

LA R15,ITIM Output mapping structure
ST R15,ITIMA ->structure
CALL BPX1GTR, Get process data +

(=A(ITIMER_REAL), Input: Relative process token +
ITIMA, Out: ->Buffer, mapped by BPXYITIM +
RETVAL, Return value: -1, 0 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GTR (getitimer) Example

Appendix C. Callable services examples 1145

BPX1GUG (getgroupsbyname) Example
The following code returns the number of supplementary group IDs, up to 9, for
user Pebbles. For the callable service, see “getgroupsbyname (BPX1GUG) — Get
a List of Supplementary Group IDs by User Name” on page 233.

MVC USERNLEN,=F’7’
MVC USERNAME(07),=CL07’Pebbles’
MVC BUFLENA,=F’9’
LA R15,BUFFERA
ST R15,BUFA
SPACE ,
CALL BPX1GUG, Get list of groups by user name +

(USERNLEN, Input: User name length +
USERNAME, Input: User name +
BUFLENA, Input: Group ID list size +
BUFA, Group ID list address +
RETVAL, Return value: -1, or # of grp IDs +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GUG (getgroupsbyname) Example

1146 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GUI (getuid) Example
The following code gets the invoker’s real user ID. For the callable service, see
“getuid (BPX1GUI) — Get the Real User ID” on page 288.

CALL BPX1GUI, Get the real user ID +
(RETVAL), Return value: real user ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1GUI (getuid) Example

Appendix C. Callable services examples 1147

BPX1GWD (getwd) Example
The following code gets the working directory for the caller. For the callable service,
see “getwd (BPX1GWD) — Get the Pathname of the Working Directory” on
page 289.

MVC BUFLENA,=F’1024’ Max directory name return area
SPACE ,
CALL BPX1GWD, Get working directory name +

(BUFLENA, Input: Length directory work area +
BUFFERA, Buffer +
RETVAL, Return value: length or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1GWD (getwd) Example

1148 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1HST (gethostid or gethostname) Example
The following code requests the host id and the host name for an AF_INET domain.
For the callable service, see “gethostid or gethostname (BPX1HST) — Get ID or
Name Information about a Socket Host” on page 242. For the data structure, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027.

XC BUFLENA,BUFLENA
CALL BPX1HST, Request host id +

(=A(AF_INET), Input: Domain - AF_INET +
BUFLENA, Input: Length - No buffer - get id+
BUFFERA, Output: (not used with Length=0) +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

MVC BUFLENA,=A(L’BUFFERA)
CALL BPX1HST, Request host name +

(=A(AF_INET), Input: Domain - AF_INET +
BUFLENA, Input: Length - for output name +
BUFFERA, Output: Buffer for host name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1HST (gethostid or gethostname) example

Appendix C. Callable services examples 1149

BPX1IOC (w_ioctl) Example
The following code conveys a command to the standard output device. To run
properly this example needs a command defined by the user for the COMMAND
parameter. This command must be understood by the device driver providing
support for the output device. For the callable service, see “w_ioctl (BPX1IOC) —
Control I/O” on page 914.

MVC BUFLENA,=F’1024’
MVC COMMAND,=F’123’ User defined command
SPACE ,
CALL BPX1IOC, I/O Control +

(=A(STDOUT_FILENO), Input: File descriptor +
COMMAND, Input: Command +
BUFLENA, Input: Argument length +
BUFFERA, Argument buffer name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1IOC (w_ioctl) Example

1150 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1IPT (mvsiptaffinity) Example
The following code executes the assembler routine EXITRTN on the IPT of the
requesting thread, and passes EXITPARM as input in R1. The requesting thread is
blocked until EXITRTN runs. For the callable service, see “mvsiptaffinity (BPX1IPT)
— Run a Program on the IPT Thread” on page 399.

MVC EXITRTNA,=V(EXITRTN) ->Routine address
* MVC EXITPLA,=A(EXITPARM) ->Input parameter list

SPACE ,
CALL BPX1IPT, +

(EXITRTNA, Input: Routine address +
EXITPLA, Input: Parm list address or 0 +
RETVAL, Return value: -1 or not return +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1IPT (mvsiptaffinity) Example

Appendix C. Callable services examples 1151

BPX1ITY (isatty) Example
The following code determines if the standard output device is a terminal. For the
callable service, see “isatty (BPX1ITY) (POSIX Version) — Determine Whether a
File Descriptor Represents a Terminal” on page 307.

CALL BPX1ITY, Determine if device is a TTY +
(=A(STDOUT_FILENO), Input: File descriptor +
RETVAL), Return value: 0 isn’t, 1 is +
VL,MF=(E,PLIST) ----------------------------------

ICM R15,B’1111’,RETVAL Test RETVAL
BZ PSEUDO RETVAL=0 means device not terminal

BPX1ITY (isatty) Example

1152 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX2ITY (isatty) Example
The following code determines if the standard output device is a terminal. For the
callable service, see “isatty (BPX1ITY) (POSIX Version) — Determine Whether a
File Descriptor Represents a Terminal” on page 307.

CALL BPX2ITY, Determine if device is a TTY +
(=A(STDOUT_FILENO), Input: File descriptor +
RETVAL, Return value: 0 isn’t, 1 is, -1 +
RETCODE, Return code: describes why VAL=-1 +
RSNCODE), Reason code: qualifier on RETCODE +
VL,MF=(E,PLIST) ----------------------------------

ICM R15,B’1111’,RETVAL Test RETVAL
BZ PSEUDO RETVAL=0 means device not terminal

BPX2ITY (isatty) Example

Appendix C. Callable services examples 1153

BPX1KIL (kill) Example
The following code sends a signal (SIGUSR1) to all processes for which access is
allowed in the invoker’s process group. For the callable service, see “kill (BPX1KIL)
— Send a Signal to a Process” on page 311. For the data structure, see
“BPXYSIGH — Signal Constants” on page 1024.

MVC PROCID,=A(0) Invoker’s process group
CALL BPX1KIL, Send a signal to a process +

(PROCID, Input: Process ID +
=A(SIGUSR1#), Input: Signal BPXYSIGH +
=A(0), Input: Signal options +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1KIL (kill) Example

1154 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1LCO (lchown) Example
The following code changes the owner of symbolic link /somedir/somesymlink.c
from the current owner to that specified by USERID and GROUPID. For the callable
service, see “lchown (BPX1LCO) — Change the Owner or Group of a File,
Directory, or Symbolic Link” on page 315.

MVC BUFFERA(22),=CL22’/somedir/somesymlink.c’
MVC BUFLENA,=F’22’

MVC USERID,.. New owner UID from stat
MVC GROUPID,.. New owner GID from stat
SPACE ,
CALL BPX1LCO, Change owner and group of a file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
USERID, Input: New owner UID +
GROUPID, Input: New owner GID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1LCO (lchown) Example

Appendix C. Callable services examples 1155

BPX1LNK (link) Example
The following code creates a new way for usr/dataproc.next.t to link to an existing
file, usr/user05/yearrecs.t . For the callable service, see “link (BPX1LNK) — Create
a Link to a File” on page 319.

MVC BUFLENA,=F’21’
MVC BUFFERA(21),=CL21’usr/user05/yearrecs.t’
MVC BUFLENB,=F’19’
MVC BUFFERB(19),=CL19’usr/dataproc.next.t’
SPACE ,
CALL BPX1LNK, Create a link to a file +

(BUFLENA, Input: Name length: existing +
BUFFERA, Input: Name of existing file +
BUFLENB, Input: Name length: link +
BUFFERB, Input: Name of link to file +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1LNK (link) Example

1156 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1LOD (loadHFS) Example
The program ictasma located at ict/bin is loaded into storage and then branched to.
For the callable service, see “loadhfs (BPX1LOD) — Load a Program into Storage
by HFS Pathname” on page 326.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=C’/ict/bin/ictasma’
MVC OPTIONS,=A(0)
MVC LIBPTHLN,=A(0)
SPACE ,
CALL BPX1LOD, Load program +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
OPTIONS, Input: Options +
LIBPTHLN, Input: Library Path Length +
LIBPATH, Input: Library Path +
EPADDR, Return value: -1 or entrypt addr +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
L R15,EPADDR Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error
SPACE ,
L R15,EPADDR
BALR R14,R15 Branch to loaded program

BPX1LOD (loadHFS) Example

Appendix C. Callable services examples 1157

BPX1LSK (lseek) Example
The following code changes the file (FILEDESC) offset to 80 bytes past the current
offset. For the callable service, see “lseek (BPX1LSK) — Change a File’s Offset” on
page 332. For the data structure, see “BPXYSEEK — Constants for lseek” on
page 1021.

MVC FILEDESC,.. File descriptor from open
MVC OFFSET(08),=FL8’80’ Forward 80 Bytes
MVC REFPT,=A(SEEK_CUR) Current offset of the file
SPACE ,
CALL BPX1LSK, Change a file’s offset +

(FILEDESC, File descriptor +
OFFSET, I/O: Offset in file +
REFPT, Input: Reference point, BPXYSEEK +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1LSK (lseek) Example

1158 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1LSN (listen) Example
The following code issues a listen on a socket that was previously created and that
had a bind done for it. SOCKDESC was returned from the call to BPX1SOC. Set
the backlog count to 5. For the callable service, see “listen (BPX1LSN) — Prepare
a Server Socket to Queue Incoming Connection Requests from Clients” on
page 323. For the data structure, see “BPXYSOCK — Map SOCKADDR Structure
and Constants” on page 1027.

CALL BPX1LSN, Listen on a socket +
(SOCKDESC, Input: Socket Descriptor +
=A(5), Input: Backlog count of 5 +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1LSN (listen) Example

Appendix C. Callable services examples 1159

BPX1LST (lstat) Example
The following code obtains the file status for the file described by the symbolic
name labrec/sym . For the callable service, see “lstat (BPX1LST) — Get Status
Information about a File or Symbolic Link by Pathname” on page 335. For the data
structure, see “BPXYSTAT — Map the Response Structure for stat” on page 1034.
* symbolic name established using symlink (BPX1SYM) system call

MVC BUFFERA(10),=CL10’labrec/sym’
MVC BUFLENA,=F’10’
SPACE ,
CALL BPX1LST, Get file status +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
STATL, Input: Length of buffer needed +
STAT, Buffer, mapped by BPXYSTAT +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1LST (lstat) Example

1160 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MAT (shmat) Example
The following code attaches a shared memory segment. For the callable service,
see “shmat (BPX1MAT) — Attach to a Shared Memory Segment” on page 723. For
the data structure, see “BPXYSHM—Map InterProcess Communication Shared
Memory Segments” on page 1024.

CALL BPX1MAT, Shared memory segment control +
(SHM_ID, Input: Shared memory segment ID +
SEGADDR, Input: ST loc for seg address +
=A(0), Input: Flags BPXYSHM +
RETVAL, Return value: 0, -1 or ->segment +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MAT (shmat) Example

Appendix C. Callable services examples 1161

BPX1MCT (shmctl) Example
The following code retrieves the size of the shared memory segment. For the
callable service, see “shmctl (BPX1MCT) — Perform Shared Memory Control
Operations” on page 727. For the data structure, see “BPXYSHM—Map
InterProcess Communication Shared Memory Segments” on page 1024.

LA R15,BUFFERA
ST R15,BUFA
SPACE ,
CALL BPX1MCT, Shared memory segment control +

(SHM_ID, Input: Shared memory segment ID +
=A(IPC_STAT), Input: Command BPXYIPC +
BUFA, Input: ->SHMID_DS or 0 BPXYSHM +
RETVAL, Return value: 0, -1 or value +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MCT (shmctl) Example

1162 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MDT (shmdt) Example
The following code detaches a shared memory segment. For the callable service,
see “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 731. For
the data structure, see “BPXYSHM—Map InterProcess Communication Shared
Memory Segments” on page 1024.

CALL BPX1MDT, Shared memory segment detach +
(SEGADDR, Input: Shared memory segment addr +
RETVAL, Return value: 0, -1 or value +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MDT (shmdt) Example

Appendix C. Callable services examples 1163

BPX1MGT (shmget) Example
The following code creates a private shared memory segment of 500 bytes. For the
callable service, see “shmget (BPX1MGT) — Create/Find a Shared Memory
Segment” on page 738. For the data structure, see “BPXYSEM — Map
InterProcess Communication Semaphores” on page 1022.

MVC KEY(4),=A(IPC_PRIVATE) Local to this family
MVI S_TYPE,IPC_CREAT+IPC_EXCL Must not already exist
MVI S_MODE1,0 Not used
MVI S_MODE2,S_IRUSR All read and write permissions
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
SPACE ,
CALL BPX1MGT, Create a set of semaphores +

(KEY, Input: Shared memory segment KEY +
=A(500), Input: Segment size +
S_MODE, Input: Creation flags BPXYIPC +
RETVAL, Return value: -1 or MessageQue ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
ICM R15,B’1111’,RETVAL Test return value
BNP PSEUDO Branch on shmget failure
ST R15,SHM_ID Store SHM_ID associated with key

BPX1MGT (shmget) Example

1164 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MKD (mkdir) Example
The following code creates a new and empty directory pathname of /usr/newprots/
with user read-execute, group write, other read-execute permissions. For the
callable service, see “mkdir (BPX1MKD) — Make a Directory” on page 349. For the
data structure, see “BPXYFTYP — File Type Definitions” on page 969 and
“BPXYMODE — Map the Mode Constants of the File Services” on page 986.

MVC BUFFERA(14),=CL14’/usr/newprots/’
MVC BUFLENA,=F’14’
XC S_MODE,S_MODE
MVI S_MODE2,S_IRUSR Read search write read search
MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH
SPACE ,
CALL BPX1MKD, Make a directory +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
S_MODE, Input: BPXYMODE and BPXYFTYP +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MKD (mkdir) Example

Appendix C. Callable services examples 1165

BPX1MKN (mknod) Example
The following code creates a FIFO (pipe) named /u/fifos/fifo1 and user read-write,
group read, other read permissions. For the callable service, see “mknod
(BPX1MKN) — Make a Directory, a FIFO, a Character Special, or a Regular File”
on page 353. For the data structure, see “BPXYFTYP — File Type Definitions” on
page 969 and “BPXYMODE — Map the Mode Constants of the File Services” on
page 986.

MVC BUFFERA(14),=CL14’/u/fifos/fifo1’
MVC BUFLENA,=F’14’
XC S_MODE,S_MODE
MVI S_TYPE,FT_FIFO First in - first out
MVI S_MODE2,S_IRUSR Read write read read
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IROTH
SPACE ,
CALL BPX1MKN, Create FIFO or char special file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
S_MODE, Input: BPXYMODE and BPXYFTYP +
=A(0), Input: Device id not used here +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MKN (mknod) Example

1166 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MMI (__map_init) Example
The following code creates a shared memory map with 10 map blocks each with a
size of 1 meg. For the callable service, see “__map_init (BPX1MMI) — Create a
Mapped Megabyte Area” on page 339. For the data structure, see “BPXYMMG —
Map Interface for _map_init and _map_service” on page 981.

LA R2,INITPARM Set address of init parm list
ST R2,INITADDR
USING _MMG_INIT_PARM,R2
XC _MMG_INIT_PARM(_MMG_INIT_PARM_LEN),_MMG_INIT_PARM
L R1,=F’10’ Map area to contain 10 blocks
ST R1,_MMG_NUMBLKS *
L R1,=F’1’ Each block is to be 1 meg in size
ST R1,_MMG_MEGSPERBLK *
SPACE ,
CALL BPX1MMI, +

(=A(MMG_INIT), Input: Function code +
INITADDR, Input: __map_init parameter list +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MMI (__map_init) Example

Appendix C. Callable services examples 1167

BPX1MMP (mmap) Example
The following code changes the protection of a memory mapped area. For the
callable service, see “mmap (BPX1MMP) — Map Pages of Memory” on page 357.

MVC FILEDESC,.. File descriptor
SPACE ,
CALL BPX1MMP, map pages of memory +

(MAP_ADDRESS, Input: address of mapped area +
MAP_LENGTH, Input: area length +
=A(MAP_PRIVATE), Input: Map type +
FILEDESC, Input: File descriptor +
=A(0), Input: File offset +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MMP (mmap) Example

1168 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MMS (__map_service) Example
The following code creates three new data blocks within a shared memory map. For
the callable service, see “__map_service (BPX1MMS) — Mapped Megabyte Area
Services” on page 344. For the data structure, see “BPXYMMG — Map Interface for
_map_init and _map_service” on page 981.

LA R3,SRVCPARM Set address of init parm list
ST R3,SRVCADDR
USING _MMG_SERVICE_PARM,R3
XC _MMG_SERVICE_PARM(_MMG_SERVICE_PARM_LEN),_MMG_SERVICE_PARM
LA R4,MMG_NEWBLOCK Request that a block be created
STH R4,_MMG_SERVICETYPE
LA R3,_MMG_SERVICE_PARM_LEN(R3) Bump to next entry
STH R4,_MMG_SERVICETYPE Create a second block
LA R3,_MMG_SERVICE_PARM_LEN(R3) Bump to next entry
STH R4,_MMG_SERVICETYPE Create the third block
SPACE ,
CALL BPX1MMS, +

(=A(MMG_SERVICE), Input: Function code +
SRVCADDR, Input: __map_service parm list +
=F’3’, Input: Three requests to process +
_MMG_MAPTOKEN, Map area token from INIT call +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MMS (__map_service) Example

Appendix C. Callable services examples 1169

BPX1MNT (mount) Example
The following code requests that the file system mount the system file
TESTLIB.FILESYS1 and ready it for use. For the callable service, see “mount
(BPX1MNT) — Make a File System Available” on page 365. For the data structure,
see “BPXYMTM — Map the Modes for mount and unmount” on page 989.

XC MTM(MTM#LENGTH),MTM
MVI MTM1,MTMRDWR Mount mode - read-write
MVC BUFLENA,=F’2’ Max 1023
MVC BUFFERA(02),=CL02’/u’
MVC FSNAME(44),=CL44’TESTLIB.FILESYS1’
MVC FSTYPE(8),=CL08’HFS’
CALL BPX1MNT, Ready a file system for use +

(BUFLENA, Input: Mount point length +
BUFFERA, Input: Mount point name +
FSNAME, Input: File system name (44 char) +
FSTYPE, Input: File system type (8 char) +
MTM, Input: Mount mode BPXYMTM +
=A(0), Input: Parm length, future +
=A(0), Input: Parm, future +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MNT (mount) Example

1170 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX2MNT (__mount) Example
The following code requests that the file system __mount the system file and ready
it for use. The filesystem name and mount parameters are encoded into the various
fields in the MNTE. See “mount (BPX1MNT) — Make a File System Available” on
page 365.

LA R14,MNTEH R14->MNTEH and MNTE
L R15,MNTEL R15 = Length of MNTEH and MNTE
XR R0,R0 Dummy 2nd operand
XR R1,R1 Pad=null, length=0
MVCL R14,R0 Null out MNTEH and MNTE
MVC MNTEHID,=CL4’MNT2’ Version indicator
MVC MNTEHBLEN,=A(MNTE#LENGTH) Length of MNTE
MVC MNTENTFSTNAME(08),=CL08’HFS’ HFS type name
MVC MNTENTFSNAME(44),=CL44’TESTLIB.FILESYS1’ Filesystem
MVC MNTENTMOUNTPOINT(02),=CL02’/u’ Mount point
MVC MNTENTPATHLEN,=F’2’
MVC MNTENTFSMODE4,=A(MNTENTFSMODERDONLY) Filesystem mode
CALL BPX2MNT, Ready a file system for use +

(MNTEL, Input: MNTE length (hdr + body) +
MNTEH, Input: MNTE +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX2MNT (__mount) Example

Appendix C. Callable services examples 1171

BPX1MP (mvspause) Example
The following code places this thread into an MVS WAIT, to be terminated when a
user ECB specified on a prior MVSpauseInit call is POSTed. The MVS WAIT is also
terminated if a signal occurs. For the callable service, see “mvspause (BPX1MP) —
Wait on User Events Plus Signals” on page 402.

CALL BPX1MP, MVS Pause +
(RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MP (mvspause) Example

1172 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MPC (mvsprocclp) Example
The following code causes all z/OS UNIX-related resources to be released for this
thread, and if this is the last thread in the process, for the process. For the callable
service, see “mvsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 408.
For the data structure, see “BPXYWAST — Map the Wait Status Word” on
page 1053.

XC WAST(WAST#LENGTH),WAST
MVI WASTEXITCODE,57 User defined exit code
SPACE ,
CALL BPX1MPC, MVS Process cleanup +

(WAST, Input: Ending status code 0-255 +
RETVAL, Return value: 0, -1 or 1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MPC (mvsprocclp) Example

Appendix C. Callable services examples 1173

BPX1MPI (mvspauseinit) Example
The following code prepares the thread for a subsequent MVSpause invocation. A
list of Event Control Block addresses is passed to the system with the last address
having the high order bit on. This syscall will use the first ECB pointed to from the
list as the signal ECB, therefore at least one ECB address must be passed to the
system. For the callable service, see “mvspause (BPX1MP) — Wait on User Events
Plus Signals” on page 402.

LA R15,BUFFERA Load address of ECB address list
ST R15,BUFA Save address for future parameter

* to be passed to BPX1MPI
SR R15,R15 Clear R15
ST R15,ECB01 Clear ECB01
ST R15,ECB02 Clear ECB02
LA R15,ECB01 Load address of first ECB
ST R15,BUFFERA Save ECB address in list of

* pointers
LA R15,ECB02 Load address of second ECB
ST R15,BUFFERA+4 Save ECB address in list of

* pointers
OI BUFFERA+4,X’80’ Denote end of ECB pointers
SPACE ,
CALL BPX1MPI, MVS Pause initialize +

(BUFA, Input ->list of ECB@, x’80’ ended +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MPI (mvspauseinit) Example

1174 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MPR (mprotect) Example
The following code changes the protection of a memory mapped area. For the
callable service, see “mprotect (BPX1MPR) — Set Protection of Memory Mapping”
on page 373.

CALL BPX1MPR, set protection of a mapped area +
(MAP_ADDRESS, Input: address of mapped area +
MAP_LENGTH, Input: area length +
=A(PROT_READ), Input: Protection options +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MPR (mprotect) Example

Appendix C. Callable services examples 1175

BPX1MSD (mvsunsigsetup) Example
The following code detaches the invoker from being able to catch signals. For the
callable service, see “mvsunsigsetup (BPX1MSD) — Detach the Signal Setup” on
page 419.

CALL BPX1MSD, Reregister MVS signals, this task +
(SIRTNA, Signal interface routine address +
USERWORD, User data +
INTMASK, Default override signal set +
TERMMASK, Default terminate signal set +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MSD (mvsunsigsetup) Example

1176 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MSS (mvssigsetup) Example
The following code allows the invoker to catch signals. For the callable service, see
“mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411.
* Each bit of the mask represents a signal 1-64.

MVC INTMASK(8),=XL8’F000000000000000’ Default sig 1-4
MVC TERMMASK(8),=XL8’F000000000000000’ Terminate sig 1-4
LA R15,BUFFERA
ST R15,USERWORD
SPACE ,
CALL BPX1MSS, Register MVS signals, this task +

(=V(SIRTN), Input: Signal interrupt routine +
USERWORD, Input: User data +
INTMASK, Input: Default override signals +
TERMMASK, Input: Default terminate signals +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MSS (mvssigsetup) Example

Appendix C. Callable services examples 1177

BPX1MSY (msync) Example
The following code causes the file associated with this mapped area to be updated
with the contents of storage. For the callable service, see “msync (BPX1MSY) —
Synchronize Memory with Physical Storage” on page 392.

MVC FILEDESC,.. File descriptor
SPACE ,
CALL BPX1MSY, synchronize memory with storage +

(MAP_ADDRESS, Input: address of mapped area +
MAP_LENGTH, Input: area length +
=A(MS_SYNC), Input: sync options +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MSY (msync) Example

1178 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1MUN (munmap) Example
The following code causes a mapped area to be unmapped. For the callable
service, see “munmap (BPX1MUN)— Unmap Previously Mapped Addresses” on
page 396.

CALL BPX1MUN, unmap previously mapped addresses +
(MAP_ADDRESS, Input: address of mapped area +
MAP_LENGTH, Input: area length +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1MUN (munmap) Example

Appendix C. Callable services examples 1179

BPX1NIC (nice) Example
The following code increases the priority value of the calling process by 1. For the
callable service, see “nice (BPX1NIC) — Change the nice Value of a Process” on
page 422.

MVC INCR,=F’1’ Increase priority by 1
SPACE ,
CALL BPX1NIC, Change priority value +

(INCR, Input: Priority change value +
RETVAL, Return value: new nice value or -1+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1NIC (nice) Example

1180 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1OPD (opendir) Example
The following code opens directory /etc/passwd so that it can be read by readdir.
For the callable service, see “opendir (BPX1OPD) — Open a Directory” on
page 439.

MVC BUFLENA,=F’11’
MVC BUFFERA(11),=CL11’/etc/passwd’
SPACE ,
CALL BPX1OPD, Open a directory +

(BUFLENA, Input: Directory name length +
BUFFERA, Input: Directory name +
RETVAL, Return value:-1 or directory f.d. +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R15,B’1111’,RETVAL Test RETVAL
BL PSEUDO Branch if negative (-1 = failure)
ST R15,DIRECTDES Store the directory descriptor

BPX1OPD (opendir) Example

Appendix C. Callable services examples 1181

BPX1OPN (open) Example
The following code opens file usr/inv/nov.d with user read-write, group read and
other read. A file descriptor (FILEDESC) is returned. For the callable service, see
“open (BPX1OPN) — Open a File” on page 434. For the data structure, see
“BPXYOPNF — Map Flag Values for open” on page 993, “BPXYMODE — Map the
Mode Constants of the File Services” on page 986, and “BPXYFTYP — File Type
Definitions” on page 969.

MVC BUFFERA(13),=CL13’usr/inv/nov.d’
MVC BUFLENA,=F’13’
XC S_MODE,S_MODE
MVI S_MODE2,S_IRUSR User read/write, group read,
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IROTH other read
XC O_FLAGS(OPNF#LENGTH),O_FLAGS
MVI O_FLAGS4,O_CREAT+O_RDWR Create, open for read and write
SPACE ,
CALL BPX1OPN, Open a file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
O_FLAGS, Input: Access BPXYOPNF +
S_MODE, Input: Mode BPXYMODE, BPXYFTYP +
RETVAL, Return value:-1 or file descriptor+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R15,B’1111’,RETVAL Test RETVAL
BL PSEUDO Branch if negative (-1 = failure)
ST R15,FILEDESC Store the file descriptor

BPX1OPN (open) Example

1182 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX2OPN (openstat) Example
The following code opens file :hp2.usr/inv/nov.d:ehp2. with user read-write, group
read and other read, and obtains status about the file. A file descriptor (FILEDESC)
is returned. For the callable service, see “openstat (BPX2OPN) — Open a File and
Obtain Status Information” on page 442. For the data structures, see “BPXYOPNF
— Map Flag Values for open” on page 993, “BPXYSTAT — Map the Response
Structure for stat” on page 1034, “BPXYMODE — Map the Mode Constants of the
File Services” on page 986, and “BPXYFTYP — File Type Definitions” on page 969.

MVC BUFFERA(13),=CL13’usr/inv/nov.d’
MVC BUFLENA,=F’13’
XC S_MODE,S_MODE
MVI S_MODE2,S_IRUSR User read/write, group read,
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IROTH other read
XC O_FLAGS(OPNF#LENGTH),O_FLAGS
MVI O_FLAGS4,O_CREAT+O_RDWR Create, open for read and write
SPACE ,
CALL BPX2OPN, Open a file and get status +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
O_FLAGS, Input: Access BPXYOPNF +
S_MODE, Input: Mode BPXYMODE, BPXYFTYP +
STATL, Input: Length of buffer needed +
STAT, Buffer, BPXYSTAT +
RETVAL, Return value:-1 or file descriptor+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

ICM R15,B’1111’,RETVAL Test RETVAL
BL PSEUDO Branch if negative (-1 = failure)
ST R15,FILEDESC Store the file descriptor

BPX2OPN (openstat) Example

Appendix C. Callable services examples 1183

BPX1OPT (getsockopt or setsockopt) Example
The following code gets and then sets socket options. SOCKDESC was returned on
a previous call to BPX1SOC. For the callable service, see “getsockopt or
setsockopt (BPX1OPT) — Get or Set Options Associated with a Socket” on
page 281. For the data structure, see “BPXYSOCK — Map SOCKADDR Structure
and Constants” on page 1027.

MVC BUFLENA,=A(L’BUFFERA)
CALL BPX1OPT, Get socket options +

(SOCKDESC, Input: Socket Descriptor +
=A(SOCK#OPTOPTGETSOCKOPT), Input: Indicate Get socket +
SOCK#SOL_SOCKET, Input: Level +
SOCK#SO_TYPE, Input: Option name +
BUFLENA, Input: Length - option value +
BUFFERA, Input: Option value +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
MVC BUFLENA,=A(4) SO_OOBINLINE has length=4
CALL BPX1OPT, Set socket options +

(SOCKDESC, Input: Socket Descriptor +
=A(SOCK#OPTOPTSETSOCKOPT), Input: Indicate set socket +
SOCK#SOL_SOCKET, Input: Level +
SOCK#SO_TYPE, Input: Option name +
BUFLENA, Input: Length - option value +
SOCK#SO_OOBINLINE, Input: Option value +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1OPT (getsockopt or setsockopt) Example

1184 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1OSE ((__osenv_get/set/unset/persist/unpersist)
Example

The following code shows the individual invocations of osenv_get, osenv_set,
osenv_unset, osenv_persist and osenv_unpersist. Osenv_unpersist can be
combined with osenv_set as a single call. For the callable service, see “osenv
(BPX1OSE) — Get or Set Security Attributes or WLM Enclave Membership
Attributes” on page 447.

MVC ATTRIBUTES,=A(OSENV_WLM+OSENV_SECURITY)
CALL BPX1OSE, __osenv_get +

(OSENV_GET, Input: osenv_get option +
ATTRIBUTES, Input: WLM+Security attributes +
LTOKEN, Output: osenv token +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
CALL BPX1OSE, __osenv_persist +

(OSENV_PERSIST, Input: osenv_persist option +
=A(0), Input: not used +
LTOKEN, Input: osenv token (Not used) +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
MVC ATTRIBUTES,=A(OSENV_WLM+OSENV_SECURITY)
CALL BPX1OSE, __osenv_set +

(OSENV_SET, Input: osenv_set option +
ATTRIBUTES, Input: WLM+Security attributes +
LTOKEN, Input: osenv token from osenv_get +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
CALL BPX1OSE, __osenv_unpersist +

(OSENV_UNPERSIST, Input: osenv_unpersist option +
=A(0), Input: not used +
LTOKEN, Input: osenv token (Not used) +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
CALL BPX1OSE, __osenv_unset +

(OSENV_UNSET, Input: osenv_unset option +
=A(0), Input: not used +
LTOKEN, Input: osenv token (Not used) +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
MVC ATTRIBUTES,=A(OSENV_WLM+OSENV_SECURITY)
CALL BPX1OSE, __osenv_set and osenv_unpersist +

(OSENV_SET+OSENV_UNPERSIST, Input: set + unpersist +
ATTRIBUTES, Input: WLM+Security attributes +
LTOKEN, Input: osenv token from osenv_get +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1OSE ((__osenv_get/set/unset/persist/unpersist) Example

Appendix C. Callable services examples 1185

BPX1PAF (__pid_affinity) Example
The following code will add your PID to the target process’ affinity list. For the
callable service, see “__pid_affinity (BPX1PAF) — Add or Delete an Entry in a
Process’s Affinity List” on page 471.
* MVC TARPID,.... PID of target
* MVC SIGPID,.... PID of this routine

CALL BPX1PAF, +
(=A(PAF_ADD_PID#), Function code (add entry) +
TARPID, PID of target +
SIGPID, PID to receive signal +
=A(SIGUSR1#), signal to be generated +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PAF (__pid_affinity) Example

1186 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PAS (pause) Example
The following code suspends execution of the invoker’s thread until a signal is
delivered. For the callable service, see “pause (BPX1PAS) — Suspend a Process
Pending a Signal” on page 463.

CALL BPX1PAS, Suspend execution +
(RETVAL, Return value: -1 or not return +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PAS (pause) Example

Appendix C. Callable services examples 1187

BPX1PCF (pathconf) Example
The following code extracts the current value for the configurable maximum number
of bytes in a file name associated with /usr/inv/network.t . For the callable service,
see “pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a
Pathname” on page 459. For the data structure, see “BPXYPCF — Command
Values for pathconf and pathconf” on page 993.

MVC BUFFERA(18),=CL18’/usr/inv/network.t’
MVC BUFLENA,=F’18’
SPACE ,
CALL BPX1PCF, Get configurable pathname variable+

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
=A(PC_NAME_MAX), Input: Options BPXYPCF +
RETVAL, Return value: 0, -1 or variable +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PCF (pathconf) Example

1188 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PCT (pfsctl) Example
The following code conveys a command to a Physical File System named
ACMEFILE. ACMEFILE doesn’t really exist; to actually run this example you would
need a real PFS product that supports this function. For the callable service, see
“pfsctl (BPX1PCT) — Physical File System Control” on page 465.

MVC FSTYPE(8),=CL08’ACMEFILE’
MVC BUFLENA,=F’25’
MVC BUFFERA(25),=CL25’COMPRESS(ON) CONVERT(OFF)’
MVC COMMAND,=F’123’ PFS product defined command
SPACE ,
CALL BPX1PCT, PFS Control +

(FSTYPE, Input: PFS Type Name +
COMMAND, Input: Command +
BUFLENA, Input: Argument length +
BUFFERA, Input/Output: Argument buffer +
RETVAL, Return value: product defined +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PCT (pfsctl) Example

Appendix C. Callable services examples 1189

BPX1PIP (pipe) Example
The following code creates a pipe. For the callable service, see “pipe (BPX1PIP) —
Create an Unnamed Pipe” on page 475.

CALL BPX1PIP, Create a pipe +
(READFD, Output: Read file descriptor +
WRITEFD, Output: Write file descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PIP (pipe) Example

1190 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1POL (poll) Example
The following code issues a poll. For the callable service, see “poll (BPX1POL) —
Monitor Activity on File Descriptors and Message Queues” on page 477. For the
data structure, see “BPXYPOLL — Map poll Syscall Parameters” on page 1000.

LA R15,BUFFERA
USING POLLFD,R15
ST R15,BUFA ->BPXYPOLL structure

* MVC POLLHFD(4),file_descriptor_number2
MVI POLLEVENTS,0
MVI POLLEVENTS+1,POLLERDNORM
A R15,=A(POLLFD#LENGTH)

* MVC POLLHFD(4),file_descriptor_number1
MVI POLLEVENTS,0
MVI POLLEVENTS+1,POLLEWRNORM
SPACE ,
CALL BPX1POL, Create a pipe +

(BUFA, Input: address of BPXYPOLL +
=A(2), Input: number of BPXYPOLL structs +
=A(0), Input: -1, 0, milliseconds +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1POL (poll) Example

Appendix C. Callable services examples 1191

BPX1PQG (Pthread_quiesce_and_get_np) Example
The following code issues a pthread_quiesce_and_get_np. Assume the THDQ data
area has been setup in BUFFERA. For the callable service, see
“pthread_quiesce_and_get_np (BPX1PQG) — pthread Quiesce and Get Service” on
page 508. For the data structure, see “BPXYTHDQ — Mapping of THDQ structure
for BPX1PQG” on page 1044.

SPACE ,
LA R15,BUFFERA Area mapped by BPXYTHDQ
ST R15,BUFA ->THDQ
MVC USERDATA,=A(1234) Unique user data
CALL BPX1PQG, Pthread_quiesce_and_get_np +

(=A(THDQ_FREEZE+THDQ_GET_STATE), Input: Request type +
BUFA, Input: THDQ data structure +
USERDATA, Input: User data +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PQG (Pthread_quiesce_and_get_np) Example

1192 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PSI (pthread_setintr) Example
The following code sets the interruption type of the calling thread. For the callable
service, see “pthread_setintr (BPX1PSI) — Examine and Change the Interrupt
State” on page 519. For the data structure, see “BPXYCONS — Constants Used by
Services” on page 956.

CALL BPX1PSI, Examine and change interrupt state+
(INTRSTATE, Input: Interrupt state BPXYCONS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PSI (pthread_setintr) Example

Appendix C. Callable services examples 1193

BPX1PST (pthread_setintrtype) Example
The following code sets the interruption type of the calling thread and returns the
previous interruption type. For the callable service, see “pthread_setintrtype
(BPX1PST) — Examine and Change the Interrupt Type” on page 522. For the data
structure, see “BPXYCONS — Constants Used by Services” on page 956.

CALL BPX1PST, Examine and change interrupt type +
(INTRTYPE, Input: Interrupt type BPXYCONS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PST (pthread_setintrtype) Example

1194 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTB (pthread_cancel) Example
The following code generates a cancelation request for the target thread (THID).
For the callable service, see “pthread_cancel (BPX1PTB) — Cancel a Thread” on
page 484.

CALL BPX1PTB, pthread_cancel +
(THID, Input: Thread ID +
RETVAL, Return Value: 0, -1, or Buf length+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTB (pthread_cancel) Example

Appendix C. Callable services examples 1195

BPX1PTC (pthread_create) Example
The following code creates a new thread. For the callable service, see
“pthread_cancel (BPX1PTB) — Cancel a Thread” on page 484. For the data
structure, see “BPXYPTAT — Map Attributes for pthread_exit_and_get” on
page 1003.

LA R15,BUFFERA Work area
ST R15,BUFA ->above
LA R15,PTAT Area mapped by BPXYPTAT
ST R15,PTATA ->above
MVC PTATEYE,=C’BPXYPTAT’ Set the eye-catcher
MVC PTATLENGTH,=A(PTATUSEROFFVAL) Length of structure
MVC PTATSYSOFFSET,=A(PTATSYSOFFVAL) Sys attr offset
MVC PTATSYSLENGTH,=A(PTATSYSLENVAL) Sys attr length
MVC PTATUSEROFFSET,=A(0) User attr offset
MVC PTATUSERLENGTH,=A(0) User attr length
LOAD EP=INITRTN Get address of Init Rtn
ST R0,INITRTNA
SPACE ,
CALL BPX1PTC, +

(INITRTNA, Input: Init routine address +
BUFA, Input: Work area address +
PTATA, Input: Attr area Address BPXYPTAT +
THID, Thread ID, if Return value = 0 +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTC (pthread_create) Example

1196 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTD (pthread_detach) Example
The following code detaches a thread (THID) in the calling process. For the callable
service, see “pthread_detach (BPX1PTD) — Detach a Thread” on page 492.

CALL BPX1PTD, pthread_detach +
(THID, Input: Thread ID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTD (pthread_detach) Example

Appendix C. Callable services examples 1197

BPX1PTI (pthread_testintr) Example
The following code causes a cancelation point. For the callable service, see
“pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur” on page 528.

CALL BPX1PTI, Cause an interrupt point to occur +
(RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTI (pthread_testintr) Example

1198 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTJ (pthread_join) Example
The following code gets the termination status of a specified thread (THID). For the
callable service, see “pthread_join (BPX1PTJ) — Wait on a Thread” on page 498.

CALL BPX1PTJ, pthread_join +
(THID, Input: Thread ID +
=A(0), Input: ->Status Field or 0 +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTJ (pthread_join) Example

Appendix C. Callable services examples 1199

BPX1PTK (pthread_kill) Example
The following code sends a signal to a specified thread (THID). For the callable
service, see “pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 501.
For the data structure, see “BPXYSIGH — Signal Constants” on page 1024.
* MVC SIGNAL,=A(SIGALRM#) Input: SIGALRM BPXYSIGH
* MVC SIGNALOPTIONS,=XL4’00000000’ Input: Signal options
* CALL BPX1PTK, pthread_kill +

(THID, Input: Thread ID +
SIGNAL, Input: Signal or 0 BPXYSIGH +
SIGNALOPTIONS, Input: Signal options +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTK (pthread_kill) Example

1200 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTQ (pthread_quiesce) Example
The following code terminates all other pthreads in the caller’s process. For the
callable service, see “pthread_quiesce (BPX1PTQ) — Quiesce Threads in a
Process” on page 504. For the data structure, see “BPXYCONS — Constants Used
by Services” on page 956.

CALL BPX1PTQ, pthread_quiesce +
(=A(QUIESCE_TERM), Input: Quiesce type BPXYCONS +
=A(0), Input: User data - Catch data PPSD+
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTQ (pthread_quiesce) Example

Appendix C. Callable services examples 1201

BPX1PTR (ptrace) Example
The following code enables a process (PROCID) to be debugged with ptrace. For
the callable service, see “ptrace (BPX1PTR) — Control Another Process for
Debugging” on page 530. For the data structure, see “BPXYPTRC — Map
Parameters for ptrace” on page 1004.
* MVC PROCID, Process ID from fork

SPACE ,
CALL BPX1PTR, Debug another process +

(=A(PT_ATTACH), Input: Request BPXYPTRC +
PROCID, Input: Process ID +
=A(0), Input: Address +
=A(0), Input: Data +
=A(0), Input: Buffer +
RETVAL, Return value: 0, -1, or Request +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTR (ptrace) Example

1202 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTS (pthread_self) Example
The following code gets the thread ID of the calling thread. For the callable service,
see “pthread_self (BPX1PTS) — Query the Thread ID” on page 518.

CALL BPX1PTS, pthread_self +
(THID), Output: Thread ID +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTS (pthread_self) Example

Appendix C. Callable services examples 1203

BPX1PTT (pthread_tag_np) Example
The following code updates the pthread tag. For the callable service, see
“pthread_tag_np (BPX1PTT) — Set, Query, or Both Set and Query the Caller’s
Thread Tag Data” on page 525.

LA R15,=CL30’UPDATING MONTH-END STATISTICS’
ST R15,PT_NEWA
LA R15,PT_OLD
ST R15,PT_OLDA
CALL BPX1PTT, pthread_tag_np +

(=A(30), Input: Length of New Tag +
PT_NEWA, Input: Address of New Tag +
PT_OLDL, Input: Length of Old Tag +
PT_OLDA, Input: Address to store Old Tag +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code: +
RSNCODE), Reason code: +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTT (pthread_tag_np) Example

1204 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1PTX (pthread_exit_and_get) Example
The following code terminates a thread and creates a new thread. For the callable
service, see “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on
page 494. For the data structure, see “BPXYCONS — Constants Used by Services”
on page 956

CALL BPX1PTX, pthread_exit_and_get +
(STATFLD, Input: Status field +
OPTIONS, Input: Options field +
SIGNALREG, Input: Signal registration usrdata+
RETVAL, Return value: 0 or -1 ->BPXYPTXL +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PTX (pthread_exit_and_get) Example

Appendix C. Callable services examples 1205

BPX1PWD (__passwd) Example
The following code queries/changes the password of a given user ID. For the
callable service, see “__passwd (BPX1PWD) — Verify/Change the User Password”
on page 455.

MVC USERNLEN,=F’8’
MVC USERNAME(8),=CL8’Myuserid’
MVC OLDPASSLEN,=F’8’
MVC OLDPASS(8),=CL8’MyOldPwd’
MVC NEWPASSLEN,=F’8’
MVC NEWPASS(8),=CL8’MyNewPwd’
SPACE ,
CALL BPX1PWD, Query/change user ID password +

(USERNLEN, Input: Length of user ID +
USERNAME, Input: User ID +
OLDPASSLEN, Input: Length of old password +
OLDPASS, Input: Old password +
NEWPASSLEN, Input: Length of new password +
NEWPASS, Input: New password +
RETVAL, Return value 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1PWD (__passwd) Example

1206 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1QCT (msgctl) Example
The following code removes the message queue from the system. For the callable
service, see “msgctl (BPX1QCT) — Perform Message Queue Control Operations”
on page 376. For the data structure, see “BPXYMSG — Map InterProcess
Communication Message Queues” on page 986.

CALL BPX1QCT, Message queue control (msgctl) +
(MSG_ID, Input: MessageQueueID +
=A(IPC_RMID), Input: Action to take BPXYIPC +
=A(0), Input: ->MSGID_DS or 0 BPXYMSG +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1QCT (msgctl) Example

Appendix C. Callable services examples 1207

BPX1QDB (querydub) Example
The following code obtains the dub status information for the current task. The
status indicates whether the current task has already been dubbed, is ready to be
dubbed, or cannot be dubbed as a process (or thread).

CALL BPX1QDB, Query DUB status for this task +
(RETVAL, Return value: -1 or see BPXYCONS +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1QDB (querydub) Example

1208 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1QGT (msgget) Example
The following code creates a private message queue. For the callable service, see
“msgget (BPX1QGT) — Create or Find a Message Queue” on page 380. For the
data structure, see “BPXYMSG — Map InterProcess Communication Message
Queues” on page 986.

MVI S_TYPE,IPC_CREAT+IPC_EXCL Error if exists
MVI S_MODE1,0 Not used
MVI S_MODE2,S_IRUSR All read and write permissions
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
SPACE ,
CALL BPX1QGT, Create a message queue +

(=A(IPC_PRIVATE), Input: Key +
S_MODE, Input: Creation flags BPXYMODE/IPC+
RETVAL, Return value: -1 or semaphore ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
ICM R15,B’1111’,RETVAL Test return value
BNP PSEUDO Branch on msgget failure
ST R15,MSG_ID Store MSG_ID associated with key

BPX1QGT (msgget) Example

Appendix C. Callable services examples 1209

BPX1QRC (msgrcv) Example
The following code adds a message to the message queue identified by MSG_ID.
For the callable service, see “msgrcv (BPX1QRC) — Receive from a Message
Queue” on page 384. For the data structure, see “BPXYMSG — Map InterProcess
Communication Message Queues” on page 986.

LA R15,BUFFERA R15 -> Utility buffer
ST R15,BUFA
USING MSGBUF,R15
MVC MSG_TYPE(4),=A(0)
MVC BUFLENA(4),=A(MSQ#LENGTH)
MVC FLAGS(4),=A(0) Wait for message
DROP R15
SPACE ,
CALL BPX1QSN, Send a message (msgrcv) +

(MSG_ID, Input: MessageQueueID +
BUFA, Input: ->MSGBUF BPXYMSG +
PRIMARYALET, Input: ALET of message buffer +
BUFLENA, Input: Length MSGBUF +
=A(0), Input: Message Type BPXYMSG +
FLAGS, Input: Flags BPXYIPC +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1QRC (msgrcv) Example

1210 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1QSE (quiesce) Example
The following code quiesces file system TESTLIB.FILESYS1, making the files in it
unavailable for use. For the callable service, see “quiesce (BPX1QSE) — Quiesce a
File System” on page 564.

MVC FSNAME(44),=CL44’TESTLIB.FILESYS1’
SPACE ,
CALL BPX1QSE, Quiesce a file system +

(FSNAME, Input: File system name (44 char) +
RETVAL, Return value: 0, -1, or 4 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1QSE (quiesce) Example

Appendix C. Callable services examples 1211

BPX1QSN (msgsnd) Example
The following code adds a message to the message queue identified by MSG_ID.
For the callable service, see “msgsnd (BPX1QSN) — Send to a Message Queue”
on page 388. For the data structure, see “BPXYMSG — Map InterProcess
Communication Message Queues” on page 986.

LA R15,BUFFERA R15 -> Utility buffer
ST R15,BUFA
USING MSGBUF,R15
MVC MSG_TYPE(4),=A(0)
MVC MSG_MTEXT(11),=CL11’QSN MSG TEXT’
MVC BUFLENA(4),=A(15)
MVC FLAGS(4),=A(IPC_NOWAIT) Don’t wait on queue full
DROP R15
SPACE ,
CALL BPX1QSN, Send a message (msgsnd) +

(MSG_ID, Input: MessageQueueID +
BUFA, Input: ->MSGBUF BPXYMSG +
PRIMARYALET, Input: ALET of message buffer +
BUFLENA, Input: Length MSGBUF +
FLAGS, Input: Flags BPXYIPC +
RETVAL, Return value: 0, -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1QSN (msgsnd) Example

1212 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RCV (recv) Example
The following code issues a recv for a socket. SOCKDESC was returned previously
from a call to either BPX1SOC or BPX1ACP. For the callable service, see “recv
(BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on page 592. For
the data structures, see “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 and “BPXYMSGF — Map the Message Flags” on
page 987.

SPACE ,
CALL BPX1RCV, Receive data on from a socket +

(SOCKDESC, Input: Socket Descriptor +
=A(L’BUFFERA), Input: Length of input buffer +
BUFFERA, Input: Address of input buffer +
PRIMARYALET, Input: Alet of input buffer +
MSG_FLAGS, Input: Flags +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RCV (recv) Example

Appendix C. Callable services examples 1213

BPX1RDD (readdir) Example
The following code reads multiple name entries from the specified directory
(DIRECTDES). For the callable service, see “readdir (BPX1RDD) — Read an Entry
from a Directory” on page 571. For the data structure, see “BPXYDIRE — Map
Directory Entries for readdir” on page 961.

MVC DIRECTDES,.. Directory descriptor from opendir
LA R15,BUFFERA
ST R15,BUFA
MVC BUFLENA,=F’1023’
CALL BPX1RDD, Read entries from a directory +

(DIRECTDES, Input: Directory file descriptor +
BUFA, Output: ->buffer BPXYDIRE +
PRIMARYALET, Input: buffer ALET +
BUFLENA, Input: buffer size +
RETVAL, Return value: 0, -1, entries read +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RDD (readdir) Example

1214 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RDL (readlink) Example
The following code reads the contents of symbolic link /personnel/templink into the
buffer provided. This will be the pathname that was specified when the symbolic link
was defined. For the callable service, see “readlink (BPX1RDL) — Read the Value
of a Symbolic Link” on page 581.

MVC BUFFERB(19),=CL19’/personnel/templink’
MVC BUFLENB,=F’19’
LA R15,BUFFERA
ST R15,BUFA
MVC BUFLENA,=F’1023’
SPACE ,
CALL BPX1RDL, Read the value of a symbolic link +

(BUFLENB, Input: Linkname length +
BUFFERB, Input: Link name +
BUFLENA, Input: Buffer size - 1023 +
BUFA, ->Buffer for symbolic link +
RETVAL, Return value: 0, -1 or char count +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RDL (readlink) Example

Appendix C. Callable services examples 1215

BPX1RDV (readv) Example
The following code issues a readv for a socket. SOCKDESC was returned
previously from a call to either BPX1SOC or BPX1ACP. For the callable service,
see “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 584.
For the data structures, see “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 and “BPXYIOV — Map the I/O Vector Structure” on
page 978.

SPACE ,
LA R2,BUFFERA
ST R2,IOV_BASE
LA R2,L’BUFFERA
ST R2,IOV_LEN
CALL BPX1RDV, Read into a vector of buffers +

(SOCKDESC, Input: Socket Descriptor +
=A(1), Input: Number of elements in iov +
IOV, Input: Iov containing info +
PRIMARYALET, Input: Alet where iov resides +
PRIMARYALET, Input: Alet of buffers for data +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RDV (readv) Example

1216 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RDX (read extlink) Example
The following code reads the contents of external symbolic link
/personnel/tmpxlink into the buffer provided. This will be the pathname that was
specified when the external symbolic link was defined. For the callable service, see
“read_extlink (BPX1RDX) — Read an External Symbolic Link” on page 578.

MVC BUFFERB(19),=CL19’/personnel/tmpxlink’
MVC BUFLENB,=F’19’
LA R15,BUFFERA
ST R15,BUFA
MVC BUFLENA,=F’1023’
SPACE ,
CALL BPX1RDX, Read value of an external link +

(BUFLENB, Input: Linkname length +
BUFFERB, Input: Link name +
BUFLENA, Input: Buffer size - 1023 +
BUFA, ->Buffer for symbolic link +
RETVAL, Return value: 0, -1 or char count +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RDX (read extlink) Example

Appendix C. Callable services examples 1217

BPX1RD2 (readdir2) Example
The following code reads multiple name entries from the specified directory
(DIRECTDES). FUIOCURSOR, set to zero by the BPXYFUIO macro, indicates that
the system is to begin reading with the first entry in the directory. For the callable
service, see “readdir2 (BPX1RD2) — Read an Entry from a Directory” on page 574.
For the data structure, see “BPXYDIRE — Map Directory Entries for readdir” on
page 961.

MVC DIRECTDES,.. Directory descriptor from opendir
MVC FUIOID,=CL4’FUIO’ Eye Catcher
MVC FUIOLEN,=AL4(FUIO#LENGTH) length
LA R15,BUFFERA Set address of buffer
ST R15,FUIOBUFFERADDR for directory data in FUIO
MVC FUIOIBYTESRW,=F’1023’ Max number of bytes to read
SPACE ,
CALL BPX1RD2, Read directory entries +

(DIRECTDES, Input: Directory file descriptor +
FUIO, Input/output: BPXYFUIO +
RETVAL, Return value: 0, -1 or char count +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RD2 (readdir2) Example

1218 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RED (read) Example
The following code reads 80 bytes from the specified file (FILEDESC) and places
them in the area provided (BUFFERA). For the callable service, see “read
(BPX1RED) — Read from a File or Socket” on page 567.

MVC FILEDESC,.. File descriptor
LA R15,BUFFERA Buffer
ST R15,BUFA Buffer address
MVC BUFLENA,=F’80’ Read buffer length
SPACE ,
CALL BPX1RED, Read from a file +

(FILEDESC, Input: File descriptor +
BUFA, ->Buffer to read into +
PRIMARYALET, Input: Buffer ALET +
BUFLENA, Input: Number of bytes to read +
RETVAL, Return value: 0, -1, or char count+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RED (read) Example

Appendix C. Callable services examples 1219

BPX1REN (rename) Example
The following code changes the directory name of a file from usr/sam to
usr/samantha . For the callable service, see “rename (BPX1REN) — Rename a File
or Directory” on page 602.

MVC BUFFERB(07),=CL07’usr/sam’
MVC BUFLENB,=F’07’
MVC BUFFERA(12),=CL12’usr/samantha’
MVC BUFLENA,=F’12’
SPACE ,
CALL BPX1REN, Rename a file +

(BUFLENB, Input: Old name length +
BUFFERB, Input: Old name +
BUFLENA, Input: New name length +
BUFFERA, Input: New name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1REN (rename) Example

1220 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RFM (recvfrom) Example
The following code issues a recv from a socket. SOCKDESC was returned from a
previous call, either BPX1SOC or BPX1ACP. For the callable service, see “recvfrom
(BPX1RFM) — Receive Data from a Socket and Store It in a Buffer” on page 595.
For the data structures, see “BPXYSOCK — Map SOCKADDR Structure and
Constants” on page 1027 and “BPXYMSGF — Map the Message Flags” on
page 987.

SPACE ,
MVC MSG_FLAGS4,MSG_PEEK
CALL BPX1RFM, Read from a socket +

(SOCKDESC, Input: Socket Descriptor +
=A(L’BUFFERA), Input: Length of the input buffer +
BUFFERA, Input: Address of the input buffer+
PRIMARYALET, Input: Alet of the input buffer +
MSG_FLAGS, Input: Flags +
=A(L’SOCKADDR), Input: Length of the socket addr +
SOCKADDR, Input: The socket address +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RFM (recvfrom) Example

Appendix C. Callable services examples 1221

BPX1RMD (rmdir) Example
The following code removes directory applib/user02 . For the callable service, see
“rmdir (BPX1RMD) — Remove a Directory” on page 610.

MVC BUFFERA(13),=CL13’applib/user02’
MVC BUFLENA,=F’13’
SPACE ,
CALL BPX1RMD, Remove a directory +

(BUFLENA, Input: Directory name length +
BUFFERA, Input: Directory to be removed +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RMD (rmdir) Example

1222 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RMG (resource) Example
The following code retrieves system-wide resource measurement data. For the
callable service, see “resource (BPX1RMG) — Measure Resources” on page 606.
For the data structure, see “BPXYRMON — Map Resource Monitor Data” on
page 1019.

CALL BPX1RMG, Resource measurement gatherer +
(RMONL, Input: Length of BPXYRMON +
RMON, Input: Buffer, BPXYRMON +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RMG (resource) Example

Appendix C. Callable services examples 1223

BPX2RMS (recvmsg) Example
The following code issues a recvmsg for a socket. SOCKDESC was returned from
a previous call to either BPX1SOC or BPX1ACP. For the callable service, see
“recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in
Message Buffers” on page 599. For the data structures, see “BPXYSOCK — Map
SOCKADDR Structure and Constants” on page 1027, “BPXYMSGF — Map the
Message Flags” on page 987, “BPXYMSGH — Map the Message Header” on
page 987, and “BPXYIOV — Map the I/O Vector Structure” on page 978.

SPACE ,
XC MSGH,MSGH Clear msgh
LA R2,SOCKADDR
ST R2,MSGHNAMEPTR Store the address of sockaddr
LA R2,SOCK#LEN+SOCK_SUN#LEN
ST R2,MSGHNAMELEN
LA R2,IOV
ST R2,MSGHIOVPTR
MVI MSGHIOVNUM,1
LA R2,BUFFERA
ST R2,IOV_BASE
LA R2,L’BUFFERA
ST R2,IOV_LEN

*
CALL BPX2RMS, Receive a message from a socket +

(SOCKDESC, Input: Socket Descriptor +
MSGH, Input: Address of BPXYMSGH +
MSG_FLAGS, Input: Flags +
PRIMARYALET, Input: Alet of the iov +
PRIMARYALET, Input: Alet of the buffers in iov +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX2RMS (recvmsg) Example

1224 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RPH (realpath) Example
The following code gets the absolute pathname without dot (.), dot-dot (..), or
symbolic links for the input pathname. For the callable service, see “realpath
(BPX1RPH) — Resolve a Pathname” on page 588.

MVC BUFFERA(8),=CL2’..’
MVC BUFLENA,=F’2’
MVC BUFLENB,=F’1024’ Resolved pathname return area
SPACE ,
CALL BPX1RPH, Resolve pathname +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
BUFLENB, Input: Length resolved name area +
BUFFERB, Output: Resolved name buffer +
RETVAL, Return value: -1 or length +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RPH (realpath) Example

Appendix C. Callable services examples 1225

BPX1RW (Pwrite) Example
The following code writes 80 bytes from the specified buffer to the file specified
(FILEDESC). It will start writing at specified offset, 30 bytes from start of the file. To
positional read from a file, change the FUIORWIND to indicate FUIO#RD. For the
callable service, see “Pread() and Pwrite() (BPX1RW) — Read from or Write to a
File without Changing the File Pointer” on page 482.

MVC FILEDESC, File descriptor from open
XC FUIO,FUIO Zero out Fuio fields
MVC FUIOID,=CL4’FUIO’ Eye Catcher
MVC FUIOLEN,=AL4(FUIO#LENGTH) length
LA R15,BUFFERA Set address of buffer
ST R15,FUIOBUFFERADDR for buffer data in FUIO
MVI FUIORWIND,FUIO#WRT Flag to indicate to PWrite
MVC FUIOIBYTESRW,=F’80’ Number of bytes to Write
MVC FUIOCUR2,=F’30’ Offset to start writing
LA R15,FUIO Set address of Fuio
ST R15,LFUIOPTR For access to Fuio fields
SPACE ,
CALL BPX1RW, PWrite to a file +

(FILEDESC, Input: File descriptor +
LFUIOPTR, Input: Address of FUIO struct +
PRIMARYALET, Input: Fuio ALET +
FUIOLEN, Input: Fuio Length +
RETVAL, Return value: -1 or bytes written +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RW (Pwrite) Example

1226 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1RWD (rewinddir) Example
The following code resets the open directory to the beginning. For the callable
service, see “rewinddir (BPX1RWD) — Reposition a Directory Stream to the
Beginning” on page 608.

MVC DIRECTDES,.. File descriptor from opendir
CALL BPX1RWD, Reposition directory at beginning +

(DIRECTDES, Input: Directory file descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1RWD (rewinddir) Example

Appendix C. Callable services examples 1227

BPX1SA2 (__sigactionset) Example
The following code sets new action for SIGALRM to default processing and returns
the previous action for SIGALARM. For the callable service, see “__sigactionset
(BPX1SA2) — Examine or Change a Set of Signal Actions” on page 752. For the
data structure, see “BPXYSIGH — Signal Constants” on page 1024.

XC R15,R15
ST R15,SSETOPTION_FLAGS
OI SSETOPTION_FLAGS1,SSET_IGINVALID
LA R14,1
ST R11,BUFCNTB
LA R14,BUFFERA
USING SSET,R14
MVC SSETFLAGS,=XL4’00000000’
MVC SSETSAMASK,=XL8’0FFF0F0000000000’
MVC SSETSAHANDLER,EPADDR
MVC SSETUSERDATA,=CL4’DATA’
DROP R14
SPACE ,
CALL BPX1SA2, Examine/change multiple sig acts +

(=A(1), Input: One SSET set +
BUFFERA, Input: Signal set input BPXYSSET +
BUFCNTB, In/Out: Number of array elements +
BUFFERB, Output: Address of output struct +
SSETOPTION_FLAGS, Input: Mapped by BPXYSSET +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SA2 (__sigactionset) Example

1228 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SCT (semctl) Example
The following code retrieves the PID of the last process to update semaphore 4
from the SEM_ID semaphore set. For the callable service, see “semctl (BPX1SCT)
— Perform Semaphore Control Operations” on page 627. For the data structure,
see “BPXYSEM — Map InterProcess Communication Semaphores” on page 1022.

LA R15,BUFFERA
ST R15,BUFA
MVC SEM_NUMBER(4),4 Semaphore number 4 in set
SPACE ,
CALL BPX1SCT, Semaphore control operations +

(SEM_ID, Input: Semaphore set ID +
SEM_NUMBER, Input: Semaphore number (0 based) +
=A(SEM_GETPID), Input: Action to take BPXYSEM +
BUFA, Input: Value | Buffer | Array | 0 +
RETVAL, Return value: 0, -1 or value +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SCT (semctl) Example

Appendix C. Callable services examples 1229

BPX1SDD (setdubdefault) Example
The following code sets the dub default setting for the subtasks of the caller to
process. For the callable service, see “set_dub_default (BPX1SDD) — Set the Dub
Default Service” on page 669.

CALL BPX1SDD, Set effective group ID +
(=A(DUBPROCESS), Input: Set Dub Constant BPXYCONS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SDD (set_dub_default) Example

1230 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SEC Example
The following code will invoke RACF (or other security product) to create a security
environment (ACEE) for the calling process with the identity of JOEUSER. For the
callable service, see “BPX1SEC — Create a New Security Environment for a
Process” on page 613.

MVC USERNLEN,=F’7’
MVC USERNAME(7),=CL7’JOEUSER’
MVC OLDPASSLEN,=F’8’
MVC OLDPASS,=CL8’JOESPASS’
MVC OPTIONS,=F’0’
SPACE ,
CALL BPX1SEC, Create security environment +

(=A(SECURITY_CREATE#), Input: Function_code BPXYCONS +
SECURITY_USERID#, Input: ID-Type BPXYCONS +
USERNLEN, Input: UserID Length +
USERNAME, Input: UserID +
OLDPASSLEN, Input: Password Length +
OLDPASS, Input: Password +
=A(0), Input: Holder +
=A(0), Input: Holder +
OPTIONS, Input: Options +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SEC (__security)

Appendix C. Callable services examples 1231

BPX1SEG (setegid) Example
The following code sets the effective group ID of the invoker to 1. For the callable
service, see “setegid (BPX1SEG) — Set the Effective Group ID” on page 673.

MVC GROUPID,=XL4’00000001’ Value of new effective ID
SPACE ,
CALL BPX1SEG, Set effective group ID +

(GROUPID, Input: Group ID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SEG (setegid) Example

1232 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SEL (select)Example
The following code issues a select for a previously connected socket. SOCKDESC
was returned when the socket was created. In this case, the select is for a single
socket for read, write and exception. Do not request waiting. There are no ECBs.
For the callable service, see “select/selectex (BPX1SEL) — Select on File
Descriptors and Message Queues” on page 619. For the data structures, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 and
“BPXYSEL — Map the select Options” on page 1021.

SPACE ,
*

MVC SELLIST(4),=XL4’81000000’ +
Turn on the bit representing sd 0 +
and sd 7

LA R8,8 One more than largest descriptor
ST R8,SOCKDESC Set number of sockets to check

*
CALL BPX1SEL, Select on a set of sockets +

(SOCKDESC, Input: Number of file descriptors +
=A(4), Input: Length of read list +
SELLIST, Input: Address of read list +
=A(4), Input: Length of write list +
SELLIST, Input: Address of write list +
=A(4), Input: Length of exception list +
SELLIST, Input: Address of exception list +
=A(0), Input: Timeout value +
=A(0), Input: ECB pointer +
=A(SEL#BITSFORWARD), Input: Option - bits forward +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SEL (select) Example

Appendix C. Callable services examples 1233

BPX1SEU (seteuid) Example
The following code sets the effective user ID of the invoker to 1. For the callable
service, see “seteuid (BPX1SEU) — Set the Effective User ID” on page 676.

MVC USERID,=XL4’00000001’ Value of new effective user ID
SPACE ,
CALL BPX1SEU, Set effective user ID +

(USERID, Input: User ID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SEU (seteuid) Example

1234 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SF (send_file) Example
The following code create a parameter list to send the contents of the specified file
to the designated socket. to 1. For the callable service, see “send_file (BPX1SF) —
Send a File on a Socket” on page 645.

LA R5,BUFFERA
ST R5,BUFA
USING SFPL,R5
XC SFPL,SFPL Initialize to nulls (required)

* NULLS= no header, no trailer, start at offset 0
* MVC SFFileDes,... Read from file
* MVC SFSocketDes,... Write to Socket

MVC SFFileBytesH,=XL4’FFFFFFFF’ To file end
MVC SFFileBytesL,=XL4’FFFFFFFF’ To file end
OI SFflagByte4,SF_Close Close socket after write
SPACE ,
CALL BPX1SF, Send_file +

(=A(SFPL#LENGTH), Input: Length of BPXYSFPL +
BUFA, Input: ->SFPL +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SF (send_file) Example

Appendix C. Callable services examples 1235

BPX1SGE (setgrent) Example
The following code resets the group database to the beginning, so that a
subsequent BPX1GGE call will restart the group database search from the first
entry. For the callable service, see “setgrent (BPX1SGE) — Reset the Group
Database” on page 681.

CALL BPX1SGE, Reset the group database +
(RETVAL), Return value: 0 +
VL,MF=(E,PLIST) ----------------------------------

BPX1SGE (setgrent) Example

1236 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SGI (setgid) Example
The following code sets the real, effective, and save group IDs to 1. For the callable
service, see “setgid (BPX1SGI) — Set the Group ID” on page 678.

MVC USERID,=XL4’00000001’ Value of new group user ID
SPACE ,
CALL BPX1SGI, Set group ID +

(GROUPID, Input: Group ID +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SGI (setgid) Example

Appendix C. Callable services examples 1237

BPX1SGQ (sigqueue) Example
The following code queues a signal (SIGUSR1#) to the process specified by
PROCID with a signal value of 0. For the callable service, see “sigqueue
(BPX1SGQ) — Queue a Signal to a Process” on page 762.

SPACE ,
CALL BPX1SGQ, Queue a signal to a process +

(PROCID, Input: Process ID +
=A(SIGUSR1#), Input: Signal BPXYSIGH +
=A(0), Input: Signal value +
=A(0), Input: Signal options +
RETVAL, Return value: -1 or 0 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SGQ (sigqueue) Example

1238 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SGR (setgroups) Example
The following code sets the supplementary group id list to the three gids
(00000001, 000000002, 00000003) in BUFFERA. For the callable service, see
“setgroups (BPX1SGR) — Set the Supplementary Group IDs List” on page 682.

LA R15,BUFFERA
ST R15,BUFA
MVC BUFFERA(12),=XL12’000000010000000200000003’
SPACE ,
CALL BPX1SGR, Set supplementary groups list +

(=A(3), Input: number of sgids in list +
BUFA, Input: address of sgids list +
RETVAL, Return value: -1 or 0 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SGR (setgroups) Example

Appendix C. Callable services examples 1239

BPX1SGT (semget) Example
The following code creates a private set of 10 semaphores. For the callable service,
see “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 633. For
the data structure, see “BPXYSEM — Map InterProcess Communication
Semaphores” on page 1022.

MVC KEY(4),=A(IPC_PRIVATE) Local to this family
MVI S_TYPE,IPC_CREAT+IPC_EXCL Must not already exist
MVI S_MODE1,0 Not used
MVI S_MODE2,S_IRUSR All read and write permissions
MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
MVC NUMB_SEMS(4),=A(10) 10 semaphores this set
SPACE ,
CALL BPX1SGT, Create a set of semaphores +

(KEY, Input: Semaphore key +
NUMB_SEMS, Input: Number semaphores in set +
S_MODE, Input: Flags BPXYMODE / BPXYIPC+
RETVAL, Return value: -1 or Semaphore ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

SPACE ,
ICM R15,B’1111’,RETVAL Test return value
BNP PSEUDO Branch on semget failure
ST R15,SEM_ID Store SEM_ID associated with key

BPX1SGT (semget) Example

1240 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SHT (shutdown) Example
The following code issues a shutdown to stop socket writes to this socket
connection. SOCKDESC was returned from a previous call to BPX1SOC. For the
callable service, see “shutdown (BPX1SHT) — Shut Down All or Part of a Duplex
Socket Connection” on page 743.

SPACE ,
CALL BPX1SHT, Shutdown communication +

(SOCKDESC, Input: Socket Descriptor +
SOCK#SHUTDOWNWRITE, Input: How - shutdown writes +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SHT (shutdown) Example

Appendix C. Callable services examples 1241

BPX1SIA (sigaction) Example
The following code sets new action for SIGALRM to default processing and returns
the previous action for SIGALARM. For the callable service, see “sigaction
(BPX1SIA) — Examine or Change a Signal Action” on page 746. For the data
structure, see “BPXYSIGH — Signal Constants” on page 1024.

XC NEWMASK,NEWMASK Don’t block additional signals
LA R15,NCATCHER New catcher (NCATCHER=0,1 ->)
ST R15,NEWHANDL
LA R15,OCATCHER Old catcher (NCATCHER=0,1 ->)
ST R15,OLDHANDL
SPACE ,
CALL BPX1SIA, Examine or change signal action +

(=A(SIGALRM#), Input: Signal constant BPXYSIGH +
NEWHANDL, Input: 0, ->0, ->1 or ->catcher +
NEWMASK, Input: 64Bit mask of signals +
=A(0), Input: Action, BPXYSIGH +
OLDHANDL, 0, ->XL4 (return 0, 1 ->catcher) +
OLDMASK, 64 bit mask of signals +
OLDFLAGS, Action, BPXYSIGH +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SIA (sigaction) Example

1242 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SIN (server_init) Example
The following code connects a server address space to WLM as a server manager
for the WEB subsystem type, WEB1 subsystem name, and IMWHTTP application
environment. For the callable service, see “server_init (BPX1SIN) — Server
Initialization” on page 658.

MVC SUBSYSTYPE,=CL4’WEB ’ WEB Subsystem Type
MVC SUBSYSNAME,=CL8’WEB1 ’ WEB1 Subsystem Name
MVC APPLENV,=CL8’IMWHTTP ’ IMWHTTP Application Environment
LA R15,=F’7’ R15 = 7
ST R15,PARALLELEU 7 Parallel Execution Units
SPACE ,
CALL BPX1SIN, Server_init +

(=A(SRV_SERVERMGR), Input: Manager Type (Server Mgr) +
SUBSYSTYPE, Input: Subsystem Type +
SUBSYSNAME, Input: Subsystem Type +
APPLENV, Input: Application Environment +
PARALLELEU, Input: Parallel Eu +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1SIN (server_init) Example

Appendix C. Callable services examples 1243

BPX1SIP (sigpending) Example
The following code retrieves the mask used for pending and blocked signals. For
the callable service, see “sigpending (BPX1SIP) — Examine Pending Signals” on
page 757.

CALL BPX1SIP, Determine pending signals +
(SIGRET, Signal mask return area (XL8) +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SIP (sigpending) Example

1244 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SLK (shmem_lock) Example
The following code initializes a shared memory resident lock. For the callable
service, see “shmem_lock (BPX1SLK) — Shared Memory Lock Service” on
page 733.

XR R15,R15 R15 = 0
ST R15,LOCKATTRADDR No lock attribute Data
SPACE ,
CALL BPX1SLK, shmem_lock +

(=A(SLK_INIT), INPUT: Function Code (Init) +
=A(SLK_NORMAL), INPUT: Request Type (Normal) +
=A(SLK_SHARED), INPUT: Lock Type (Shared) +
LOCKADDR, INPUT: ->user lockword (shared mem+
LOCKATTRADDR, INPUT: Address of lock attr area +
LOCKTOKENADDR, INPUT: Address of Lock Token +
RETVAL, Return value: >=0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1SLK (shmem_lock) Example

Appendix C. Callable services examples 1245

BPX1SLP (sleep) Example
The following code suspends running for 8 seconds or until a signal is delivered
(whichever comes first). For the callable service, see “sleep (BPX1SLP) — Suspend
Execution of a Process for an Interval of Time” on page 774.

MVC SECONDS,=F’8’ 8 seconds
SPACE ,
CALL BPX1SLP, Temporarily suspend execution +

(SECONDS, Input: Sleep interval in seconds +
RETVAL), Return value: 0 or sleep time +
VL,MF=(E,PLIST) ----------------------------------

BPX1SLP (sleep) Example

1246 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SMF (smf_record) Example
The following code tests whether SMF recording is active for a specified SMF
record type, and if it is, writes an SMF record. For the callable service, see
“smf_record (BPX1SMF) — Write an SMF Record” on page 777.

MVC SMF_TYPE,=F’108’ Set SMF record type
MVC SMF_SUBTYPE,=F’0’ Set SMF record subtype
MVC BUFLENA,=F’0’ Set SMF record length
MVC BUFA,=F’0’ Zero SMF record address
CALL BPX1SMF, smf_record +

(SMF_TYPE, SMF record type +
SMF_SUBTYPE, SMF record subtype +
BUFLENA, SMF record length +
BUFA, SMF record address set to zero +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ---------------------------------

ICM R15,B’1111’,RETVAL Test return value
BNZ QUIT Not recording or error, quit
SPACE ,
MVI BUFFERA,C’ ’
MVC BUFFERA+1(255),BUFFERA Clear SMF record
MVI BUFFERA+1,100 Set length in SMF header
MVI BUFFERA+5,108 Set SMF type in SMF header
MVC BUFFERA+18(16),=CL16’Here is the data’ Set SMF record
MVC SMF_TYPE,=F’108’ Set SMF record type
MVC SMF_SUBTYPE,=F’0’ Set SMF record subtype
MVC BUFLENA,=F’100’ Set SMF record length
LA R15,BUFFERA
ST R15,BUFA Set SMF record address
CALL BPX1SMF, smf_record +

(SMF_TYPE, SMF record type +
SMF_SUBTYPE, SMF record subtype +
BUFLENA, SMF record length +
BUFA, SMF record address +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) --------------------------------

QUIT EQU *

BPX1SMF (smf_record) Example

Appendix C. Callable services examples 1247

BPX2SMS (sendmsg) Example
The following code sends a message on a socket. SOCKDESC was returned from
a previous call to BPX1SOC. For the callable service, see “sendmsg (BPX2SMS) —
Send Messages on a Socket” on page 650. For the data structures, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027,
“BPXYIOV — Map the I/O Vector Structure” on page 978, and “BPXYMSGF — Map
the Message Flags” on page 987.

XC MSGH,MSGH Clear msgh
LA R2,SOCKADDR
ST R2,MSGHNAMEPTR Store the address of sockaddr
LA R2,SOCK#LEN+SOCK_SUN#LEN
ST R2,MSGHNAMELEN
LA R2,IOV
ST R2,MSGHIOVPTR
MVI MSGHIOVNUM,1

*
LA R2,BUFFERA
ST R2,IOV_BASE
LA R2,16
ST R2,IOV_LEN
MVC BUFFERA(16),=CL16’Here is the data’

*
CALL BPX2SMS, Send a message on a socket +

(SOCKDESC, Input: Socket Descriptor +
MSGH, Input: Address of BPXYMSGH +
MSG_FLAGS, Input: Flags +
PRIMARYALET, Input: Alet of the iov +
PRIMARYALET, Input: Alet of the buffers in iov +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX2SMS (sendmsg) Example

1248 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SND (send) Example
The following code issues a send for a socket. SOCKDESC was returned
previously from a call to BPX1SOC. For the callable service, see “send (BPX1SND)
— Send Data on a Socket” on page 642. For the data structures, see “BPXYSOCK
— Map SOCKADDR Structure and Constants” on page 1027 and “BPXYMSGF —
Map the Message Flags” on page 987.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=CL16’Here is the data’
SPACE ,
CALL BPX1SND, Send data on a socket +

(SOCKDESC, Input: Socket Descriptor +
=A(L’BUFFERA), Input: Length of input buffer +
BUFFERA, Input: Address of input buffer +
PRIMARYALET, Input: Alet of input buffer +
MSG_FLAGS, Input: Flags +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SND (send) Example

Appendix C. Callable services examples 1249

BPX1SOC (socket or socketpair) Example
The following code creates a pair of stream sockets in the AF_UNIX domain. For
the callable service, see “socket or socketpair (BPX1SOC) — Create a Socket or a
Pair of Sockets” on page 780. For the data structure, see “BPXYSOCK — Map
SOCKADDR Structure and Constants” on page 1027.

CALL BPX1SOC, Create a socket pair +
(=A(AF_UNIX), Input: Domain of AF_UNIX +
=A(SOCK#_STREAM), Input: Type of socket stream +
=A(0), Input: Protocol of 0 +
=A(2), Input: Dimension of 2 for pair +
SOCKETS, Input: Socket vector for return +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SOC (socket or socketpair) Example

1250 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SOP (semop) Example
The following code retrieves the PID of the last process to update semaphore 4
from the SEM_ID semaphore set. For the callable service, see “semop (BPX1SOP)
— Perform Semaphore Serialization Operations” on page 638. For the data
structure, see “BPXYSEM — Map InterProcess Communication Semaphores” on
page 1022.

LA R5,BUFFERA ->Utitliy buffer
ST R5,BUFA
USING SEM_BUF_ELE,R5 ->1st SEM_BUF_ELE
MVC SEM_NUM(2),=AL2(0) Semaphore number 0
MVC SEM_OP(2),=AL2(-1) take the resource
MVC SEM_FLG(2),=AL2(SEM_UNDO) flags (undo,wait)
LA R5,SEM#BUFLEN(,R5) ->next SEM_BUF_ELE
MVC SEM_NUM(2),=AL2(2) number 2
MVC SEM_OP(2),=AL2(1) release the resource
MVC SEM_FLG(2),=AL2(IPC_NOWAIT) flags (nowait)
LA R5,SEM#BUFLEN(,R5) ->next SEM_BUF_ELE
MVC SEM_NUM(2),=AL2(8) number 8
MVC SEM_OP(2),=AL2(0) test for no resource
MVC SEM_FLG(2),=AL2(0) flags (wait)
SPACE ,
MVC NUMB_SEM_OPS(4),=AL2(3) number of SEM_BUF_ELE in BUFFERA
SPACE ,
CALL BPX1SOP, Semaphore control operations +

(SEM_ID, Input: Semaphore set ID +
BUFA, Input: ->SEM_BUF_ELE BPXYSEM +
NUMB_SEM_OPS, Input: Action to take +
RETVAL, Return value: 0, -1 or value +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SOP (semop) Example

Appendix C. Callable services examples 1251

BPX1SPB (queue_interrupt) Example
The following code uses the queue_interrupt to return the last signal delivered to
the signal interface routine (SIR). For the callable service, see “queue_interrupt
(BPX1SPB) — Return the Last Interrupt Delivered” on page 561.

CALL BPX1SPB, Queue the signal +
(RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPB (queue_interrupt) Example

1252 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SPE (setpwent) Example
The following code resets the user database to the beginning, so that a subsequent
BPX1GPE call will restart the user database search from the first entry. For the
callable service, see “setpwent (BPX1SPE) — Reset the User Database” on
page 698.

CALL BPX1SPE, Reset the user database +
(RETVAL), Return value: 0 +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPE (setpwent) Example

Appendix C. Callable services examples 1253

BPX1SPG (setpgid) Example
The following code places the invoking process in its own process group (zeros
indicate that the process group ID is to be set to the process ID). For the callable
service, see “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on
page 692.

MVC PROCID,=A(0) Process ID - current to leader
MVC GROUP,=A(0) Group ID - current to leader
SPACE ,
CALL BPX1SPG, Set process group ID for Job Ctl +

(PROCID, Input: Process to be placed in grp+
GROUP, Input: Target group +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPG (setpgid) Example

1254 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SPM (sigprocmask) Example
The following code changes the signal mask to block signals 1 through 16. For the
callable service, see “sigprocmask (BPX1SPM) — Examine or Change a Process’s
Signal Mask” on page 759. For the data structure, see “BPXYSIGH — Signal
Constants” on page 1024.

LA R15,=XL8’FFFF000000000000’ Block signals 1 thru 16
ST R15,NEWMASKA New mask address
LA R15,OLDMASK Old signal mask
ST R15,OLDMASKA Old mask address
SPACE ,
CALL BPX1SPM, Examine or change signal mask +

(=A(SIG_BLOCK#), Input: How parameter BPXYSIGH +
NEWMASKA, Input: 0, ->CL8 +
OLDMASKA, Input: 0 | ->returned mask +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPM (sigprocmask) Example

Appendix C. Callable services examples 1255

BPX1SPN (spawn) Example
The program ictasma located at ict/bin gets control as a child process of the caller,
and is passed arguments WK18, DEPT37A, and RATE(STD,NOEXC,NOSPEC). No
environment arguments are passed. The file descriptor count is set to 0, indicating
that the child shall inherit all of the parent’s file descriptors. The inheritance area
passed is set to all zeroes, indicating that the child shall inherit the parent’s
attributes without change. For the callable service, see “spawn (BPX1SPN) —
Spawn a Process” on page 784.

MVC BUFLENA,=F’16’
MVC BUFFERA(16),=C’/ict/bin/ictasma’
MVC ARGCNT,=F’3’

* First
LA R15,=F’4’ Length
ST R15,ARGLLST+00 Length parm list
LA R15,=CL4’WK18’ Argument
ST R15,ARGSLST+00 Argument address parm list

* Second
LA R15,=F’7’ Length
ST R15,ARGLLST+04 Length parm list
LA R15,=CL7’DEPT37A’ Argument
ST R15,ARGSLST+04 Argument address parm list

* Third
LA R15,=F’22’ Length
ST R15,ARGLLST+08 Length parm list
LA R15,=CL22’RATE(STD,NOEXC,NOSPEC)’ Argument
ST R15,ARGSLST+08 Argument address parm list

*
MVC ENVCNT,=F’0’ Zero environment args passed
MVC ENVLENS,=F’0’ Addr of env. data length list
MVC ENVPARMS,=F’0’ Add of env. data

*
MVC FDCNT,=F’0’ Zero file descriptors passed
MVC FDLST,=F’0’ File Descriptor list

*
XC INHE(INHE#LENGTH),INHE Clear Inheritance structure
SPACE ,
CALL BPX1SPN, +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
ARGCNT, Input: Argument count +
ARGLLST, Input: Argument length list +
ARGSLST, Input: Argument address list +
ENVCNT, Input: Environment count +
ENVLENS, Input: Environment length list +
ENVPARMS, Input: Environment address list +
FDCNT, Input: File desriptor count +
FDLST, Input: File descriptor list +
=A(INHE#LENGTH), Input: Length of Inheritance area +
INHE, Input: Inheritance area +
RETVAL, Return value: Child PID or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPN (spawn) Example

1256 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SPR (setpeer) Example
The following code issues a setpeer to set up the host address. For the callable
service, see “setpeer (BPX1SPR) — Preset the Peer Address Associated with a
Socket” on page 689. For the data structure, see “BPXYSOCK — Map SOCKADDR
Structure and Constants” on page 1027.

CALL BPX1SPR, Select on a set of sockets +
(SOCKDESC, Input: Socket Descriptor +
SOCK#LEN+SOCK_SUN#LEN, Input: Length of socket address +
SOCKADDR, Input: Socket address +
SOCK#SO_SET, Input: Option - set the address +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SPR (setpeer) Example

Appendix C. Callable services examples 1257

BPX1SPW (server_pwu) Example
The following code puts work to the WLM work queue for the IMWHTTP application
environment for transaction class A. For the callable service, see “server_pwu
(BPX1SPW) — Server Process Work Unit” on page 662.

MVC APPLENV,=CL8’IMWHTTP ’ IMWHTTP Application Environment
MVC TRXCLASS,=CL8’A ’ Transaction Class A
XR R15,R15 R15 = 0
ST R15,CLASSIFYLEN No Classification Data
ST R15,APPLDATALEN No Application Data
ST R15,FDLISTPTR No File Descriptor List
SPACE ,
CALL BPX1SPW, Server_pwu +

(=A(SRV_PUT_NEWWRK), Input: Function Code (Putwork) +
TRXCLASS, Input: Transaction Class +
APPLENV, Input: Application Environment +
CLASSIFYLEN, Input: Classification Area Length +
CLASSIFYAREAPTR, Input: Classification Area Address+
APPLDATALEN, Input: Application Data Length +
APPLDATAPTR, Input: Application Data Address +
FDLISTPTR, Input: Mapped by BPXYSFDL +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1SPW (server_pwu) Example

1258 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SPY (setpriority) Example
The following code sets the CPU priority based on the input which and who values.
The which value used is PRIO_PROCESS, which indicates that the priority is to be
set by process ID. The who value used is 7, to set the priority for process ID 7. For
the callable service, see “setpriority (BPX1SPY) — Set the Scheduling Priority of a
Process” on page 695.

MVC PROCID,=XL4’00000007’ Process ID to set priority for
MVC PRIORITY,=XL4’00000001’ Priority value of 1
SPACE ,
CALL BPX1SPY, Set priority value +

(=A(PRIO_PROCESS), Input: Set by Process ID +
PROCID, Input: PID to set priority for +
PRIORITY, Input: Priority value to set to +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1SPY (setpriority) Example

Appendix C. Callable services examples 1259

BPX1SRG (setregid) Example
The following code sets the real and/or effective group IDs to 1. For the callable
service, see “setregid (BPX1SRG) — Set the Real and/or Effective GIDs” on
page 699.

MVC RGID,=XL4’00000001’ Value of new real group ID
MVC RGID,.. Group ID to be set from a getgid
MVC EGID,=XL4’00000001’ Value of new effective group ID

MVC EGID,.. Group ID to be set from a getegid
SPACE ,
CALL BPX1SRG, Set Group IDs +

(RGID, Input: Real Group ID to be set +
EGID, Input: Eff. Group ID to be set +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SRG (setregid) Example

1260 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SRL (setrlimit) Example
The following code sets the resource limits for the calling process based on the
input resource value and the resource limits set in the input rlimit structure. The
resource value is set to RLIMIT_CPU. The resource limits are set to
RLIM_INFINITY. For the callable service, see “setrlimit (BPX1SRL) — Set Resource
Limits” on page 705. For the data structure, see “BPXYRLIM — Map the Rlimit,
Rusage, and Timeval Structures” on page 1019.

MVC RESOURCE,=A(RLIMIT_CPU) Value of resource
XC RLIM_CUR_HW,RLIM_CUR_HW Current limit highword (Zero)
XC RLIM_MAX_HW,RLIM_MAX_HW Maximum limit highword (Zero)
MVC RLIM_CUR,=A(RLIM_INFINITY) Current limit
MVC RLIM_MAX,=A(RLIM_INFINITY) Maximum limit
SPACE ,
CALL BPX1SRL, Set resource limits +

(RESOURCE, Input: resource +
RLIMIT, Structure, mapped by BPXYRLIM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R15,RETVAL Load return value
C R15,=F’-1’ Test for -1 return
BE PSEUDO Branch on error

BPX1SRL (setrlimit) Example

Appendix C. Callable services examples 1261

BPX1SRU (setreuid) Example
The following code sets the real and/or effective user IDs to 1. For the callable
service, see “setreuid (BPX1SRU) —Set the Real and/or Effective UIDs” on
page 702.

MVC RUID,=XL4’00000001’ Value of new real user ID
MVC RUID,.. User ID to be set from a getuid
MVC EUID,=XL4’00000001’ Value of new effective user ID

MVC EUID,.. User ID to be set from a geteuid
SPACE ,
CALL BPX1SRU, Set user IDs +

(RUID, Input: Real User ID to be set +
EUID, Input: Eff. User ID to be set +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SRU (setreuid) Example

1262 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SRX (srx_np) Example
srx_np callable service sends or receives data on a socket using CSM buffers. The
following example receives data into CSM buffers. The MSGXNAMEPTR is set up
to point to a buffer to receive the source address of the data. The MSGXIOVX is an
IVTBUFL structure, which describes an IOVX array in a CSM buffer. The IOVX
array contains IVTBUFL structures, each of which describes a CSM buffer with data
that was received. SOCKDESC is a socket descriptor that was returned from a
previous call to either BPX1SOC or BPX1ACP. For the data structures, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027, and
“BPXYMSGX — Map the Message Header” on page 988. For the callable service,
see “srx_np (BPX1SRX) — Send or Receive CSM Buffers on a Socket” on
page 801.

XC MSGX,MSGX Clear msgx storage
LA R2,SOCKADDR
ST R2,MSGXNAMEPTR Store the address of sockaddr
LA R2,SOCK#LEN+SOCK_SIN#LEN
ST R2,MSGXNAMELEN Length of sockaddr buffer
SPACE ,
CALL BPX1SRX, Receive data in CSM buffers +

(SOCKDESC, Input: Socket Descriptor +
MSGX_RECV, Input: Direction +
L’MSGX, Input: Msghdrx length +
MSGX, Input: Msghdrx +
RETVAL, Return value: -1 or bytes read +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SRX (srx_np) Example

Appendix C. Callable services examples 1263

BPX1SSI (setsid) Example
The following code creates a session and a process group (and is the leader of
both). For the callable service, see “setsid (BPX1SSI) — Create a Session and Set
the Process Group ID” on page 709.

CALL BPX1SSI, Create session, set process grp ID+
(RETVAL, Return value: -1 or new session ID+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SSI (setsid) Example

1264 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SSU (sigsuspend) Example
The following code replaces the invoker’s current mask to block signals 1 through
16 and suspend until a signal is delivered. For the callable service, see “sigsuspend
(BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is
Delivered” on page 766.

MVC WAITMASK(8),=XL8’FFFF000000000000’ Blocks 1 thru 16
SPACE ,
CALL BPX1SSU, Wait for a signal +

(WAITMASK, Input: Wait mask, XL8 +
RETVAL, Return value: -1 or not returned +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SSU (sigsuspend) Example

Appendix C. Callable services examples 1265

BPX1STA (stat) Example
The following code obtains status about file labrec/qual/current . For the callable
service, see “stat (BPX1STA) — Get Status Information about a File by Pathname”
on page 808. For the data structure, see “BPXYSTAT — Map the Response
Structure for stat” on page 1034.

MVC BUFFERA(19),=CL19’labrec/qual/current’
MVC BUFLENA,=F’19’
SPACE ,
CALL BPX1STA, Get file status +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
STATL, Input: Length of buffer needed +
STAT, Buffer, BPXYSTAT +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STA (stat) Example

1266 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1STE (set_timer_event) Example
The following code sets a timer event, which when it expires will post the ECB
represnted by THLITIMERECB. For the callable service, see :hdref refid=STE..

CALL BPX1STE, Set timer event +
(=A(2), Input: Number of seconds +
=A(500000000), Input: Number of nanoseconds +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STE (set_timer_event) Example

Appendix C. Callable services examples 1267

BPX1STF (w_statvfs) Example
The following code obtains information about file system TESTLIB.FILESYS1. For
the callable service, see “w_statvfs (BPX1STF) — Get the File System Status” on
page 932. For the data structure, see “BPXYSSTF — Map Response Structure for
File System Status” on page 1033.

MVC FSNAME(44),=CL44’TESTLIB.FILESYS1’
SPACE ,
CALL BPX1STF, Get file system status +

(FSNAME, Input: File system name (44 char) +
SSTFL, Input: Length of BPXYSSTF +
SSTF, Buffer, BPXYSSTF +
RETVAL, Return value: -1 or length status +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STF (w_statvfs) Example

1268 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1STL (set_thread_limits) Example
The following code sets the MAX_THREAD and MAX_THREAD_TASKS limits for
pthread_created threads in the invoker’s process. For the callable service, see
“set_thread_limits (BPX1STL) — Change a Process’s Task or Thread Limits for
pthread_created Threads” on page 712.

CALL BPX1STL, Set_thread_limits +
(=A(STL_SET_BOTH), Input: action BPXYCONS +
=A(50), Input: new task limit +
=A(100), Input: new thread limit +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STL (set_thread_limits) Example

Appendix C. Callable services examples 1269

BPX1STO (sendto) Example
The following code issues a sendto for a socket. SOCKDESC was returned from a
previous call to either BPX1SOC or BPX1ACP. For the callable service, see “sendto
(BPX1STO) — Send Data on a Socket” on page 654. For the data structures, see
“BPXYSOCK — Map SOCKADDR Structure and Constants” on page 1027 and
“BPXYMSGF — Map the Message Flags” on page 987.

MVC BUFFERA(16),=CL16’Here is the data’
LA R2,BUFFERA
ST R2,IOV_BASE
MVI IOV_LEN,16
SPACE ,
CALL BPX1STO, Send data to a socket +

(SOCKDESC, Input: Socket Descriptor +
=A(L’BUFFERA), Input: Length of the input buffer +
BUFFERA, Input: Address of the input buffer+
PRIMARYALET, Input: Alet of the input buffer +
MSG_FLAGS, Input: Flags +
=A(L’SOCKADDR), Input: Length of the socket addr +
SOCKADDR, Input: The socket address +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STO (sendto) Example

1270 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1STR (setitimer) Example
The following code returns the time remaining an alarm, or ITIMER_REAL as set by
setitimer. For the callable service, see “setitimer (BPX1STR) — Set the Value of the
Interval Timer” on page 685. For the data structure, see “BPXYITIM — Map
getitimer, setitimer Structure” on page 980.

LA R15,2 Initial value 2.5 seconds
ST R15,ITIMISECONDS
L R15,=A(500000)
ST R15,ITIMIMICROSEC
L R15,0 No reload value
ST R15,ITIMRSECONDS
ST R15,ITIMRMICROSEC
LA R15,ITIM Output mapping structure
ST R15,ITIMA ->structure
CALL BPX1STR, Get process data +

(=A(ITIMER_REAL), Input: Relative process token +
ITIMA, In : ->Buffer, mapped by BPXYITIM +
ITIMA, Out: ->Buffer, mapped by BPXYITIM +
RETVAL, Return value: -1, 0 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STR (setitimer) Example

Appendix C. Callable services examples 1271

BPX1STV (statvfs) Example
The following code obtains information about the file system containing the file
identified by pathname. For the callable service, see “statvfs (BPX1STV) — Get the
File System Status” on page 812. For the data structure, see “BPXYSSTF — Map
Response Structure for File System Status” on page 1033.

MVC BUFFERA(8),=CL8’/usr/inv’
MVC BUFLENA,=F’8’
SPACE ,
CALL BPX1STV, Get file system status +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
SSTFL, Input: Length of BPXYSSTF +
SSTF, Buffer, BPXYSSTF +
RETVAL, Return value: -1 or length status +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STV (statvfs) Example

1272 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1STW (sigtimedwait) Example
The following code will wait for signals 1-4 to arrive or 3 seconds, whichever occurs
first. For the callable service, see “sigtimedwait (BPX1STW) — Wait for a Signal
With a Specified Timeout” on page 769.

MVC WAITMASK(8),=XL8’F000000000000000’ Signals 1-4
LA R15,SIGINFO_T
ST R15,SINFA
MVC SECONDS,=F’3’ Wait three seconds
XC NANOSECONDS,NANOSECONDS Zero nanoseconds
SPACE ,
CALL BPX1STW, Signal timed wait +

(WAITMASK, Input: mask of signal to wait for +
SINFA, Input: address of siginfo_t area +
SIGINFO#LENGTH, Input: length of siginfo_t area +
SECONDS, Input: seconds to wait for sig +
NANOSECONDS, Input: nanoseconds to wait for sig+
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1STW (sigtimedwait) Example

Appendix C. Callable services examples 1273

BPX1SUI (setuid) Example
The following code sets the real, effective, and saved user IDs to 1. For the callable
service, see “setuid (BPX1SUI) — Set User IDs” on page 719.

MVC USERID,=XL4’00000001’ Value of new user ID
MVC USERID,.. User ID to be set from a getuid
SPACE ,
CALL BPX1SUI, Set user ID +

(USERID, Input: User ID to be set +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SUI (setuid) Example

1274 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SWT (sigwait) Example
The following code waits for an asynchronous signal, SIGALRM bit 14 in the mask.
For the callable service, see “sigwait (BPX1SWT) — Wait for a Signal” on page 772.
For the data structure, see “BPXYSIGH — Signal Constants” on page 1024.

MVC WAITMASK(8),=XL8’000400000000000000’
SPACE ,
CALL BPX1SWT, Wait for asynchronous signal +

(WAITMASK, Input: Signal mask SIGALRM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SWT (sigwait) Example

Appendix C. Callable services examples 1275

BPX1SYC (sysconf) Example
The following code gets the maximum number of children allowed by the
configuration variable. For the callable service, see “sysconf (BPX1SYC) —
Determine System Configuration Options” on page 824. For the data structure, see
“BPXYCONS — Constants Used by Services” on page 956.

CALL BPX1SYC, Get configuration variable +
(=A(SC_CHILD_MAX), Input: Config variable BPXYCONS +
RETVAL, Return value: -1 or variable +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SYC (sysconf) Example

1276 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SYM (symlink) Example
The following code creates a symbolic link /sysaccts for pathname /sys12/acctn .
For the callable service, see “symlink (BPX1SYM) — Create a Symbolic Link to a
Pathname” on page 817.

MVC BUFFERA(12),=CL12’/sys12/acctn’
MVC BUFLENA,=F’12’
MVC BUFFERB(09),=CL09’/sysaccts’
MVC BUFLENB,=F’09’
SPACE ,
CALL BPX1SYM, Create symbolic link to pathname +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
BUFLENB, Input: Link name length +
BUFFERB, Input: Link name +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SYM (symlink) Example

Appendix C. Callable services examples 1277

BPX1SYN (sync) Example
The following code causes all information in memory that updates file systems to be
scheduled for writing out to disk. For the callable service, see “sync (BPX1SYN) —
Schedule File System Updates” on page 822.

CALL BPX1SYN, Sync +
(RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1SYN (sync) Example

1278 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TAF (MVSThreadAffinity) Example
The following code executes the assembler routine EXITRTN on another thread,
identified by thread ID THID, and passes EXITPARM as input in R1. The requesting
thread is blocked until EXITRTN runs. For the callable service, see
“MVSThreadAffinity (BPX1TAF) — MVS Thread Affinity Service” on page 416.

MVC EXITRTNA,=V(EXITRTN) ->Routine address
* MVC EXITPLA,=A(EXITPARM) ->Input parameter list

SPACE ,
CALL BPX1TAF, +

(EXITRTNA, Input: Routine address +
EXITPLA, Input: Parm list address or 0 +
THID, Input: Target pthread to run exit +
RETVAL, Return value: -1 or not return +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TAF (MVSThreadAffinity) Example

Appendix C. Callable services examples 1279

BPX1TAK (takesocket) Example
The following code takes a socket that was given by the program identified by CID
(clientid). SOCKDESC and CID information are passed by the program that did the
givesocket (BPX1GIV). SOCKDESC is the giver’s descriptor. When takesocket
completes successfully, RETVAL will contain the taker’s new socket descriptor. For
the callable service, see “takesocket (BPX1TAK) — Acquire a Socket from Another
Program” on page 826. For the data structure, see “BPXYCID — Map the Returning
Structure for getclientid()” on page 956.

CALL BPX1TAK, take a socket from another program+
(CID, Input: Clientid of giver +
SOCKDESC, Input: Giver’s socket descriptor +
RETVAL, Return value: -1 or new descriptor+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

L R2,RETVAL
ST R2,SOCKDES2 Store the new socket descriptor

BPX1TAK (takesocket) Example

1280 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TDR (tcdrain) Example
The following code waits until all output sent to the standard output file has been
transmitted. For the callable service, see “tcdrain (BPX1TDR) — Wait Until Output
Has Been Transmitted” on page 829.

CALL BPX1TDR, Wait for output transmittal +
(=A(STDOUT_FILENO), Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TDR (tcdrain) Example

Appendix C. Callable services examples 1281

BPX1TFH (tcflush) Example
The following code flushes all the data in the standard input file. the callable
service, see “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on
page 834. For the data structure, see “BPXYTIOS — Map the termios Structure” on
page 1049.

CALL BPX1TFH, Line control flush +
(=A(STDIN_FILENO), Input: File descriptor +
=A(TCIFLUSH), Input: Queue selector BPXYTIOS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TFH (tcflush) Example

1282 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TFW (tcflow) Example
The following code resumes data flow (TCION transmits a START character) on the
standard input file. For the callable service, see “tcflow (BPX1TFW) — Suspend or
Resume Data Flow on a Terminal” on page 831. For the data structure, see
“BPXYTIOS — Map the termios Structure” on page 1049.

CALL BPX1TFW, Suspend or resume data flow +
(=A(STDIN_FILENO), Input: File descriptor +
=A(TCION), Input: Action BPXYTIOS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TFW (tcflow) Example

Appendix C. Callable services examples 1283

BPX1TGA (tcgetattr) Example
The following code retrieves control information about the standard input file. For
the callable service, see “tcgetattr (BPX1TGA) — Get the Attributes for a Terminal”
on page 837. For the data structure, see “BPXYTIOS — Map the termios Structure”
on page 1049.

CALL BPX1TGA, Get a terminal control structure +
(=A(STDIN_FILENO), Input: File descriptor +
TIOS, Termio structure, BPXYTIOS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TGA (tcgetattr) Example

1284 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TGC (tcgetcp) Example
The following code retrieves information about Code Page Change Notification
(CPCN) capability and the BPXYTCCP structure. For the callable service, see
“tcgetcp (BPX1TGC) — Get Terminal Code Page Names” on page 840. For the
data structure, see “BPXYTCCP — Map the Terminal Control Code Page Structure”
on page 1035.

CALL BPX1TGC, Get code page names +
(=A(STDIN_FILENO), Input: File descriptor +
=A(TCCP#LENGTH), Input: Length of BPXYTCCP +
TCCP, Output: Termcp structure BPXYTCCP +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TGC (tcgetcp) Example

Appendix C. Callable services examples 1285

BPX1TGP (tcgetpgrp) Example
The following code gets the foreground process group ID associated with the
controlling terminal. For this example to work, STDIN must be associated with the
controlling terminal. For the callable service, see “tcgetpgrp (BPX1TGP) — Get the
Foreground Process Group ID” on page 843.

CALL BPX1TGP, Get the foreground process grp ID +
(=A(STDIN_FILENO), Input: File descriptor +
RETVAL, Return value -1, fgrd proc grp ID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TGP (tcgetpgrp) Example

1286 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TGS (tcgetsid) Example
The following code retrieves the process group ID of the session for which the
terminal specified by file descriptor is the controlling terminal. For the callable
service, see “tcgetsid (BPX1TGS) — Get a Process Group ID for the Session
Leader for the Controlling Terminal” on page 845.

CALL BPX1TGS, Get session process group ID +
(=A(STDIN_FILENO), Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TGS (tcgetsid) Example

Appendix C. Callable services examples 1287

BPX1TIM (times) Example
The following code gathers selected times about the invoker’s CPU utilization. For
the callable service, see “times (BPX1TIM) — Get Process and Child Process
Times” on page 864. For the data structure, see “BPXYTIMS — Map the Response
Structure for times” on page 1049.

CALL BPX1TIM, Process CPU times +
(TIMS, Input: Buffer BPXYTIMS +
RETVAL, Return value: -1 or clock_t +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TIM (times) Example

1288 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TLS (pthread_security_np) Example
The following code creates a thread-level security environment for the calling thread
using the identity specified by the caller. For the callable service, see
“pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security
Environment for Caller’s Thread” on page 512. For the data structure, see
“BPXYCONS — Constants Used by Services” on page 956.

MVC IDENT,=CL8’USERID05’
MVC PASSWORD,=CL7’MYPSWRD’
SPACE ,
CALL BPX1TLS, pthread_security_np +

(=A(TLS_CREATE_THREAD_SEC#), Input: Func_code BPXYCONS +
TLS_IDENTITY_USERID#, Input: Identity_type BPXYCONS +
=A(8), Input: Identity length +
IDENT, Input: Identity +
=A(7), Input: Password length +
PASSWORD, Input: Password +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TLS (pthread_security_np) Example

Appendix C. Callable services examples 1289

BPX1TRU (truncate) Example
The following code truncates the file described by /somedir/somefile.c to a length
of 512 bytes. For the callable service, see “truncate (BPX1TRU) — Change the
Size of a File” on page 867.

MVC BUFFERA(20),=CL20’/somedir/somefile.c’
MVC BUFLENA,=F’20’
MVC NEWLEN(8),=FL8’512’
SPACE ,
CALL BPX1TRU, Truncate a file +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
NEWLEN, Input: Length to keep +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TRU (truncate) Example

1290 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TSA (tcsetattr) Example
The following code turns off the HUPCL (hang up on last close) bit for the standard
input file. For the callable service, see “tcsetattr (BPX1TSA) — Set the Attributes for
a Terminal” on page 850. For the data structure, see “BPXYTIOS — Map the
termios Structure” on page 1049.

NI C_CFLAG+HUPCL_O,X’FF’-HUPCL Turn off HUPCL
* termios was retrived by a prior tcgetattr

CALL BPX1TSA, Set terminal attributes +
(=A(STDIN_FILENO), Input: File descriptor +
=A(TCSADRAIN), Input: Action BPXYTIOS +
TIOS, Input: Terminos struct BPXYTIOS +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TSA (tcsetattr) Example

Appendix C. Callable services examples 1291

BPX1TSB (tcsendbreak) Example
The following code requests that a break be sent to the standard input file. For the
callable service, see “tcsendbreak (BPX1TSB) — Send a Break Condition to a
Terminal” on page 847.

CALL BPX1TSB, Send break condition to terminal +
(=A(STDIN_FILENO), Input: File descriptor +
=A(0), Duration, not used in OS/390 UNIX +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TSB (tcsendbreak) Example

1292 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TSC (tcsetcp) Example
The following code sets code page names and Code Page Change Notification
(CPCN) capability. For the callable service, see “tcsetcp (BPX1TSC) — Set
Terminal Code Page Names” on page 853. For the data structure, see “BPXYTCCP
— Map the Terminal Control Code Page Structure” on page 1035.

XC TCCP,TCCP Clear area
OI TCCPFLAGB4,TCCPFASTP Set local translation
MVC TCCPSRCNAME(8),=CL8’IBM-1047’ Set source code page name
MVC TCCPTRGNAME(9),=CL9’ISO8859-1’ Set target code page name
SPACE ,
CALL BPX1TSC, Set code page names +

(=A(STDIN_FILENO), Input: File descriptor +
=A(TCCP#LENGTH), Input: Length of BPXYTCCP +
TCCP, Termcp structure, BPXYTCCP +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TSC (tcsetcp) Example

Appendix C. Callable services examples 1293

BPX1TSP (tcsetpgrp) Example
The following code sets the controlling terminal’s foreground process group to a
new value. For this example to work, STDIN must be associated with the controlling
terminal. For the callable service, see “tcsetpgrp (BPX1TSP) — Set the Foreground
Process Group ID” on page 857.

MVC PROCID,.. Process group ID set by setpgrp
SPACE ,
CALL BPX1TSP, Set foreground process group ID +

(=A(STDIN_FILENO), Input: File descriptor +
PROCID, Input: Foreground process group ID+
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TSP (tcsetpgrp) Example

1294 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1TST (tcsettables) Example
The following code sets code page names, conversion tables and Code Page
Change Notification (CPCN) capability. For the callable service, see “tcsettables
(BPX1TST) — Set Terminal Code Page Names and Conversion Tables” on
page 860. For the data structure, see “BPXYTCCP — Map the Terminal Control
Code Page Structure” on page 1035.

XC TCCP,TCCP Clear area
OI TCCPFLAGB4,TCCPFASTP Set local translation
MVC TCCPSRCNAME(8),=CL8’IBM-1047’ Set source code page name
MVC TCCPTRGNAME(9),=CL9’ISO8859-1’ Set target code page name

MVC TBLSOURCE,.. Initialize source conversion table
MVC TBLTARGET,.. Initialize target conversion table
SPACE ,
CALL BPX1TST, Set code page names and tables +

(=A(STDIN_FILENO), Input: File descriptor +
=A(TCCP#LENGTH), Input: Length of BPXYTCCP +
TCCP, Termcp structure, BPXYTCCP +
TBLSOURCE, Source conversion table +
TBLTARGET, Target conversion table +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1TST (tcsettables) Example

Appendix C. Callable services examples 1295

BPX1TYN (ttyname) Example
The following code retrieves the pathname for the standard error output file. For the
callable service, see “ttyname (BPX1TYN) (POSIX Version) — Get the Name of a
Terminal” on page 870.

MVC BUFLENA,=A(1023) Maximum pathname
CALL BPX1TYN, Determine terminal name +

(=A(STDERR_FILENO), Input: File descriptor +
BUFLENA, Length of buffer for pathname +
BUFFERA), Buffer for pathname of terminal +
VL,MF=(E,PLIST) ----------------------------------

BPX1TYN (ttyname) Example

1296 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX2TYN (ttyname) Example
The following code retrieves the pathname for the standard error output file. For the
callable service, see “ttyname (BPX1TYN) (POSIX Version) — Get the Name of a
Terminal” on page 870.

MVC BUFLENA,=A(1023) Maximum pathname
CALL BPX2TYN, Determine terminal name +

(=A(STDERR_FILENO), Input: File descriptor +
BUFLENA, Length of buffer for pathname +
BUFFERA, Buffer for pathname of terminal +
RETVAL, Return value: 0, -1 +
RETCODE, Return code: describes why VAL=-1 +
RSNCODE), Reason code: qualifier on RETCODE +
VL,MF=(E,PLIST) ----------------------------------

BPX2TYN (ttyname) Example

Appendix C. Callable services examples 1297

BPX1UMK (umask) Example
The following code changes the process’s file mode creation mask (to user read,
group execute, other execute). For the callable service, see “umask (BPX1UMK) —
Set the File Mode Creation Mask” on page 875. For the data structure, see
“BPXYMODE — Map the Mode Constants of the File Services” on page 986.

XC S_MODE,S_MODE
MVI S_MODE3,S_IXUSR+S_IXGRP+S_IXOTH Search permission
SPACE
CALL BPX1UMK, Set file creation mask +

(S_MODE, Input: Mode BPXYMODE +
RETVAL), Return value: previous mode mask +
VL,MF=(E,PLIST) ----------------------------------

BPX1UMK (umask) Example

1298 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1UMT (umount) Example
The following code removes virtual file system TESTLIB.FILESYS1 from the file
tree. For the callable service, see “umount (BPX1UMT) — Remove a Virtual File
System” on page 877. For the data structure, see “BPXYMTM — Map the Modes
for mount and unmount” on page 989.

MVC FSNAME(44),=CL44’TESTLIB.FILESYS1’
XC MTM(MTM#LENGTH),MTM
MVI MTM1,MTMUMOUNT Unmount request
SPACE ,
CALL BPX1UMT, Remove a virtual file system +

(FSNAME, Input: File system name (44 char) +
MTM, Input: Flags, BPXYMTM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UMT (umount) Example

Appendix C. Callable services examples 1299

BPX1UNA (uname) Example
The following code obtains information about the system on which the invoker is
running. For the callable service, see “uname (BPX1UNA) — Obtain the Name of
the Current Operating System” on page 880. For the data structure, see
“BPXYUTSN — Map the Response Structure for uname” on page 1053.

LA R15,UTSN
ST R15,UTSNA
SPACE ,
CALL BPX1UNA, Identify system +

(UTSNL, Input: Length of required buffer +
UTSNA, Output: ->UTSN BPXYUTSN +
RETVAL, Return value: -1 or >-1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UNA (uname) Example

1300 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1UNL (unlink) Example
The following code removes pathname usr/dataproc/next.t from the system. For
the callable service, see “unlink (BPX1UNL) — Remove a Directory Entry” on
page 882.

MVC BUFFERA(19),=CL19’usr/dataproc/next.t’
MVC BUFLENA,=F’19’
SPACE ,
CALL BPX1UNL, Remove a directory entry +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UNL (unlink) Example

Appendix C. Callable services examples 1301

BPX1UPT (unlockpt) Example
The following code unlocks the slave pseudoterminal device associated with the
master to which the file descriptor refers. For the callable service, see “unlockpt
(BPX1UPT) — Unlock a Pseudoterminal Master/Slave Pair” on page 885.

CALL BPX1UPT, Unlocks slave pty from master +
(MASTER_FD, Input: File descriptor +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UPT (unlockpt) Example

1302 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1UQS (unquiesce) Example
The following code unquiesces TESTLIB.FILESYS1, making its files available for
use again. For the callable service, see “unquiesce (BPX1UQS) — Unquiesce a
File System” on page 887. For the data structure, see “BPXYMTM — Map the
Modes for mount and unmount” on page 989.

MVC FSNAME(44),=CL44’TESTLIB.FILESYS1’
XC MTM(MTM#LENGTH),MTM Zero MTM = don’t force unquiesce
SPACE ,
CALL BPX1UQS, Unquiesce a file system +

(FSNAME, Input: File system name (44 char) +
MTM, Input: Flags, BPXYMTM +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UQS (unquiesce) Example

Appendix C. Callable services examples 1303

BPX1UTI (utime) Example
The following code changes the access and modification times of
/usr/private/workfile.t to the current time. For the callable service, see “utime
(BPX1UTI) — Set File Access and Modification Times” on page 890.

MVC BUFFERA(23),=CL23’/usr/private/workfile.t’
MVC BUFLENA,=F’23’
MVC NEWTIMES,=FL8’-1’ Current time
SPACE ,
CALL BPX1UTI, Set file access and modify times +

(BUFLENA, Input: Pathname length +
BUFFERA, Input: Pathname +
NEWTIMES, Input: Access/Modification time +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1UTI (utime) Example

1304 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1WAT (wait) Example
The following code waits for any of its children to end or stop. For the callable
service, see “wait (BPX1WAT) — Wait for a Child Process to End” on page 893. For
the data structure, see “BPXYWAST — Map the Wait Status Word” on page 1053
and “BPXYCONS — Constants Used by Services” on page 956.

LA R15,WAST Resolve address of STATUS
ST R15,WASTA Save address of STATUS
MVC PROCID,=F’-1’ Wait for any child
SPACE ,
CALL BPX1WAT, Wait for a child process to end +

(PROCID, Input: PID being waited on +
=A(WNOHANG), Input: options BPXYCONS +
WASTA, ->Exit status field, BPXTWAST +
RETVAL, Return value: -1, 0, child PID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1WAT (wait) Example

Appendix C. Callable services examples 1305

BPX1WLM (__WLM) Example
The following code connects to WLM as a work manager for the WEB subsystem
type and WEB1 subsystem name. For the callable service, see “__wlm (BPX1WLM)
— WLM Interface Service” on page 924.

LA R8,BUFFERA Storage for _WWC
USING _WWC,R8 WLM_CONNECT_WORKMGR DSECT
ST R8,INARGLISTPTR ->_WWC list of parameters
MVC SUBSYSTYPE,=CL4’WEB ’ WEB Subsystem Type
MVC SUBSYSNAME,=CL8’WEB1 ’ WEB1 Subsystem Name
LA R15,SUBSYSTYPE
ST R15,_WWC_SUB_SYS Pointer to Subsystem Type
LA R15,SUBSYSNAME
ST R15,_WWC_SUB_SYS_NM Pointer to Subsystem Name
SPACE ,
CALL BPX1WLM, work_load_manager system call +

(=A(WLM_CONNECT_WORKMGR), Input: Fcn Codes in BPXYWLM +
INARGLISTPTR, Input: ->list of parameters +
RETVAL, Return value: Varies with fcn code+
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

DROP R8

BPX1WLM (__WLM) Example

1306 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1WRT (write) Example
The following code writes 80 bytes from the specified buffer to the file specified
(FILEDESC). For the callable service, see “write (BPX1WRT) — Write to a File or a
Socket” on page 935.
* MVC FILEDESC, File descriptor from open

MVC BUFLENA,=F’80’
LA R15,BUFFERA
ST R15,BUFA
SPACE ,
CALL BPX1WRT, Write to a file +

(FILEDESC, Input: File descriptor +
BUFA, Input: ->Buffer +
PRIMARYALET, Input: Buffer ALET +
BUFLENA, Input: Number of bytes to write +
RETVAL, Return value: -1 or bytes written +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1WRT (write) Example

Appendix C. Callable services examples 1307

BPX1WRV (writev) Example
The following code issues a writev for a socket. SOCKDESC was returned from a
previous call to either BPX1SOC or BPX1ACP. For the callable service, see “writev
(BPX1WRV) — Write Data from a Set of Buffers” on page 939. For the data
structures, see “BPXYSOCK — Map SOCKADDR Structure and Constants” on
page 1027 and “BPXYIOV — Map the I/O Vector Structure” on page 978.

MVC BUFFERA(16),=CL16’Here is the data’
LA R2,BUFFERA
ST R2,IOV_BASE
MVI IOV_LEN,16

*
CALL BPX1WRV, Write from a vector of buffers +

(SOCKDESC, Input: Socket Descriptor +
=A(1), Input: Single element in iov +
IOV, Input: Iov containing info +
PRIMARYALET, Input: Alet where iov resides +
PRIMARYALET, Input: Alet of buffers for data +
RETVAL, Return value: 0 or -1 +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1WRV (writev) Example

1308 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1WTE (wait extension) Example
The following code uses the #WAIT3 function to wait for any of its children to end or
stop. For the callable service, see “wait-extension (BPX1WTE) — Obtain Status
Information for Children” on page 897. For the data structures, see “BPXYWAST —
Map the Wait Status Word” on page 1053 and “BPXYRLIM — Map the Rlimit,
Rusage, and Timeval Structures” on page 1019. and “BPXYCONS — Constants
Used by Services” on page 956.

LA R15,WAST Resolve address of WAST
ST R15,WASTA Save address of WAST
LA R15,RUSAGE Resolve address of RUSAGE
ST R15,RUSAGEA Save address of RUSAGE
SPACE ,
CALL BPX1WTE, Wait for a child process to end +

(=A(#WAIT3), Input: function BPXYCONS +
0, Input: id type +
0, Input: id +
WASTA, ->Exit status field, BPXTWAST +
=A(WNOHANG), Input: options BPXYCONS +
RUSAGEA, ->Rusage structure, BPXYRLIM +
RETVAL, Return value: -1, 0, child PID +
RETCODE, Return code +
RSNCODE), Reason code +
VL,MF=(E,PLIST) ----------------------------------

BPX1WTE (wait extension) Example

Appendix C. Callable services examples 1309

Reentrant Return Linkage
XR R15,R15 Zero return code
L R0,@SIZEDAT Size this program’s getmain area
LR R1,R13 R1 -> this program’s getmain area
L R13,@BACK R2 -> caller’s save area
DROP R13
FREEMAIN RU,LV=(0),A=(1)
L R14,12(,R13) Restore caller’s R14
LM R0,R12,20(R13) Restore caller’s R0-R12
BSM 0,R14 Branch back to caller

SPACE , * * * * * * * * * *.* Program constants * * * * * * *
@SIZEDAT DC A(@ENDSTOR-@STORE) Size of this getmain storage
MNTEL DC A(MNTE#LENGTH+MNTEH#LENGTH)
* Length of MNTEH and 1 MNTE area
PGPSL DC A(PGPS#LENGTH) Length of PGPS structure
RMONL DC A(RMON#LENGTH) Length of RMON structure
SSTFL DC A(SSTF#LENGTH) Length of SSTF structure
STATL DC A(STAT#LENGTH) Length of STAT structure
UTSNL DC A(UTSN#LENGTH) Length of UTSN structure

SPACE ,
PRIMARYALET DC A(0) Primary ALET

* * * * * * * * * * * * * * * * * * *.* Structures requiring a USING *
BPXYDIRE DSECT=YES Dictionary for readdir
BPXYGIDN DSECT=YES Group names
BPXYGIDS DSECT=YES Group IDs and member names
BPXYOSMF DSECT=YES Job step accounting for BPXESMF
BPXYPOLL DSECT=YES Poll syscall parameters (I/O)
BPXYPGTH DSECT=YES Mapping for __getthent data
BPXYPPSD DSECT=YES Signal data area (R1 in SIR)
BPXYSEL DSECT=YES Select options
BPXYSFPL DSECT=YES Send_file parameter list
BPXYTHDQ DSECT=YES Data structure for BPX1PQG
BPXYWLM , Work load manager

* * * * * * * * * * * * * * * * * * *.* EQUates * * * * * * * *
* With EQUate only macros, DSECT= is allowed but is ignored

BPXYCONS , OS/390 UNIX constants
BPXYCW , Serialization constants
BPXYERNO LIST=NO Errno, Errnojr constants
BPXYFTYP , File type constants
BPXYPCF , Command, pathconf constants
BPXYSEEK , lseek constants
BPXYSIGH , Signal constants

* * * * * * * * * * * * * * * * * * *.* Standard linkage save area * *
@STORE DSECT ,
@SAVE00 DS 0D Standard 72-byte save area

DS A
@BACK DS A Back to caller’s save area
@FORWARD DS A Forwards to callee’s save area

DS 15A Regs 14,15,0-12

SPACE 2 * * * * * * * * * *.* Getmain for mappings * * * * *
BPXYACC DSECT=NO Access intent flags
BPXYAIO DSECT=NO Asynchronous I/O for Sockets

@STORE DSECT ,
BPXYATT DSECT=NO Attributes for chattr/fchattr
BPXYAUDT DSECT=NO Audit flag values for chaudit

BRLKA DS A ->BPXYBRLK
BPXYBRLK DSECT=NO Byte range locking for fcntl
BPXYCID DSECT=NO Client ID
BPXYCCA DSECT=NO Console msg attributes
BPXYFCTL DSECT=NO Flags and commands for fcntl
BPXYFUIO DSECT=NO File system user I/O block
BPXYINHE DSECT=NO Inheritance structure
BPXYIOV DSECT=NO Iov structure for sockets i/o
BPXYIPCP DSECT=NO Inter process communications

Reentrant Return Linkage

1310 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPXYIPCQ DSECT=NO w_getipc structure
BPXYITIM DSECT=NO get/getitimer structure
BPXYMODE DSECT=NO Mode constants
BPXYMMG , Parms for _map_init & _map_service

@STORE DSECT ,
BPXYMNTE DSECT=NO,MNTE2=YES Get mount entries for w_getmntent

@STORE DSECT ,
BPXYMSG DSECT=NO msgctl, msgget, msgrcg, msgsnd

@STORE DSECT ,
BPXYMSGF DSECT=NO Message flags for sockets i/o
BPXYMSGH DSECT=NO Message header for send/recv msg

@STORE DSECT ,
BPXYMSGX DSECT=NO Message header for srx_np

@STORE DSECT ,
BPXYMTM DSECT=NO Mount/unmount modes
BPXYOPNF DSECT=NO File open constants

PGPSA DS A ->BPXYPGPS
BPXYPGPS DSECT=NO, Process slot data, w_getpsent +

VARLEN=(,0,0) Contty=Default, Path=0, Cmd=0
PTATA DS A ->BPXYPTAT

BPXYPTAT DSECT=NO,VARLEN=512 Pthreat attributes
SINFA DS A ->BPXYSINF

BPXYSINF DSECT=NO Sig_info structure
BPXYPTRC DSECT=NO,VARLEN=500 PTrace parameters

PTXLA DS A ->BPXYPTXL
BPXYPTXL DSECT=NO Pthread attribute area
BPXYRLIM DSECT=NO Resource limits
BPXYRMON DSECT=NO Resource monitor
BPXYSEM DSECT=NO semctl, semget, semop

@STORE DSECT ,
BPXYSOCK DSECT=NO Sockaddr structure for sockets

@STORE DSECT ,
BPXYSSET , Signal set action (has DSECT)

@STORE DSECT ,
BPXYSSTF DSECT=NO File system status response data
BPXYSTAT DSECT=NO Get file the status for stat
BPXYTCCP DSECT=NO terminal control code page
BPXYTIMS DSECT=NO times callable service structure

TIOS BPXYTIOS DSECT=NO Termios structure
UTSNA DS A ->BPXYUTSN

BPXYUTSN DSECT=NO uname structure
WASTA DS A ->BPXYWAST

BPXYWAST DSECT=NO Status word for wait

* * * * * * * * * * * * * * * * * * *.* Program getmain variables * * *
DS 0D

ACPSOCK DS F Accepted socket descriptor
ADDR_INFO_PTR DS F ->Addr_Info Structure
APPLENV DS CL8 Application Environment
APPLDATALEN DS F Application Data Length
APPLDATAPTR DS A -> Application Data
ARGCNT DS F Argument count
ARGLLST DS 3A Argument lengths list
ARGSLST DS 3A Arguments list
ATTRIBUTES DS F Attributes
BUFA DS F ->buffer
BUFB DS F ->buffer
BUFCNTB DS F Count associated with BUFFERB
BUFFERA DS CL1024 Utility buffer A, length 1024
BUFFERB DS CL1024 Utility buffer B, length 1024
BUFLENA DS F Number of bytes used in buffer A
BUFLENB DS F Number of bytes used in buffer B
BUFW DS F Number of words used in BUF
BYTERECD DS F Bytes Received
CANONICAL_LENGTH DS F Canonical name length
CELLUUID DS CL36 Cell UUID (string form)
CLASSIFYLEN DS F Classify Area Length
CLASSIFYAREAPTR DS A -> Classify Area

Reentrant Return Linkage

Appendix C. Callable services examples 1311

CLSLEN DS F Class name length
CLS DS CL8 Class name
COMMAND DS F User defined command
CONMSGTYPE DS F Console msg type (modify or stop)
DIRECTDES DS F Directory descriptor
ECB01 DS F Event Control Block # 1
ECB02 DS F Event Control Block # 2
EGID DS F User ID
ENT DS CL40 Entity name
ENTLEN DS F Entity name length
ENVCNT DS F Number of environment variables
ENVLENS DS F Length of environment variables
ENVPARMS DS F Environment variables
EPADDR DS A Entry point address
EUID DS F User ID
EVENTLIST DS A Event list for thread posting
EXITRTNA DS A Exit routine address
EXITPLA DS A Exit Parm list address
FDCNT DS F File descriptor count
FDLST DS F File descriptor list
FDLISTPTR DS A -> File Descriptor List
FILEDESC DS F File descriptor
FILEDES2 DS F File descriptor
FLAGS DS F Utility Flags word
FSNAME DS CL44 File system name
FSTYPE DS CL8 File system type
GRNAMELN DS F Group name length
GROUP DS F Group
GROUPCNT DS F Group count
GROUPID DS F Group ID (PID of group leader)
GRPGMNAME DS CL8 Group program name
HINTS_PTR DS F ->Addr_Info Structure
HOST_BUFFER DS CL255 Host buffer (up to 255 Characters)
HOST_BUFFER_LENGTH DS F Host buffer length
IDENT DS CL8 Identity of new thread security
INARG DS F Input argument
INARGLIST DS A Input arglist
INARGLISTPTR DS A Input arglist ptr
INCR DS F Increment value for nice
INTMASK DS XL8 Signal mask
INITADDR DS F Address __map_init parm list
INITPARM DS 0C __map_init parm list

ORG *+_MMG_INIT_PARM_LEN
INITRTNA DS A ->Initialization routine
INTRSTATE DS A Interrupt state
INTRTYPE DS A Interrupt type
ITIMA DS A ->BPXYITIM structure
KEY DS F Interprocess Communication KEY
LIBPTHLN DS F Library Path Length (BPX1LOD)
LIBPATH DS CL100 Library Path (BPX1LOD)
LOCKADDR DS A ->Lockword
LOCKTOKENADDR DS A ->LockToken
LOCKATTRADDR DS A ->LockAttr
LOCKWORD DS F Lockword (BPX1SLK)
LSOCKADR DS F Local socket structure
LTOKEN DS CL8 Local token
MAP_ADDRESS DS A ->mapped area
MAP_LENGTH DS F length of mapped area
MASTER_FD DS F Master file descriptor
MSG_ID DS F IPC Message Queue ID
MSGATTRLEN DS F Length of BPX1CCA
MSGATTR DS CL100 Storage for BPX1CCA
MODSTRINGPTR DS F Address of user msg buffer
MODIFYSTGLEN DS F Length of user msg buffer
NANOSECONDS DS F Count of nanoseconds
NCATCHER DS A New catcher
NEWFLAGS DS F New flags

Reentrant Return Linkage

1312 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

NEWHANDL DS F New Handler
NEWLEN DS XL8 Length file
NEWMASK DS XL8 New mask for signals
NEWMASKA DS A ->New mask
NEWPASS DS CL8 Password
NEWPASSLEN DS F Password length
NEWTIMES DS D New access/modification time
NODE_NAME DS CL255 Node Name (up to 255 Characters)
NODE_NAME_LENGTH DS F Node Name Length
NUMB_SEMS DS F IPC Number of semaphores in set
NUMB_SEM_OPS DS F IPC Number of semaphore ops
OCATCHER DS A Old catcher
OFFSET DS CL8 File offset
OLDHANDL DS F Old handler
OLDFLAGS DS F Old flags
OLDMASK DS CL8 Old signal mask
OLDMASKA DS A ->Old mask
OLDPASS DS CL8 Password
OLDPASSLEN DS F Password length
OPTIONS DS F Options
PARALLELEU DS F Parallel Eu
PASSWORD DS CL8 Password
PGMNAME DS CL8 Program name
PGMNAMEL DS F Length PGMNAME
PLIST DS 13A Max number of parms
PRINUUID DS CL36 Principal UUID (string form)
PRIORITY DS F Priority value
PROCID DS F Process ID
PROCTOK DS F Relative process number
PT_NEWA DS A Address of PT_NEW
PT_OLD DS CL66 Pthread tag - old
PT_OLDA DS A Address of PT_OLD
PT_OLDL DS F Length of tag in PT_NEW
READFD DS F File descriptor - input file
REFPT DS F File reference point
RESOURCE DS F Resource
RESULTS_PTR DS F ->Addr_Info Structure
RETCODE DS F Return code (ERRNO)
RETVAL DS F Return value (0, -1 or other)
RGID DS F User ID
RSOCKADR DS F Remote socket structure
RUID DS F User ID
RUSAGEA DS A ->Rusage
RSNCODE DS F Reason code (ERRNOJR)
SECONDS DS F Time in seconds
SEGADDR DS A IPC Shared Memory segment Addr
SELLIST DS F List to use for select calls
SEM_ID DS F IPC Semaphore set ID
SEM_NUMBER DS F IPC Semaphore number
SERVICE_BUFFER DS CL32 Service Buffer (to 32 Characters)
SERVICE_BUFFER_LENGTH DS F Service buffer length
SERVICE_NAME DS CL32 Service Name (up to 32 Characters)
SERVICE_NAME_LENGTH DS F Service Name Length
SHM_ID DS F IPC Shared Memory segment ID
SIGNAL DS A Signal
SIGNALREG DS A Signal registration, user data
SIGNALOPTIONS DS A Signal options
SIGPID DS F Signal processs id for BPX1PAF
SIGRET DS CL8 Signal return mask
SIRTNA DS A Signal interrupt routine
SMF_TYPE DS F SMF record type
SMF_SUBTYPE DS F SMF record subtype
SOCKADDR_LENGTH DS F Lenght of SockAddr
SOCKETS DS 0XL8 Socket vector for socket call
SOCKDESC DS F Socket descriptor
SOCKDES2 DS F Second Socket descriptor
SRVCADDR DS F Address __map_service parm list

Reentrant Return Linkage

Appendix C. Callable services examples 1313

SRVCPARM DS 0C __map_service parm list
ORG *+3*_MMG_SERVICE_PARM_LEN Room for three entries

STATFLD DS A Status field
STATUS DS F Status
STATUSA DS A ->STATUS
SUBSYSTYPE DS CL4 Subsystem Type
SUBSYSNAME DS CL8 Subsystem Name
TARPID DS F Target processs id for BPX1PAF

ORG BUFFERB remap utility buffer B
TBLSOURCE DS XL256 Source conversion table
TBLTARGET DS XL256 Target conversion table

ORG
TERMMASK DS XL8 Signal termination mask
THID DS XL8 Thread ID
TOKEN DS F Relative IPC member or Misc Token
TRXCLASS DS CL8 Transaction Class
USERID DS F User ID
USERDATA DS F User Data
USERNAME DS CL8 User name
USERNLEN DS F Length USERNAME
HOST_NAME DS CL8 HOST name
HOST_NAMELEN DS F Length HOST_NAME
HOST_ADDR DS CL8 HOST IP address
HOST_ADDRLEN DS F Length HOST_ADDR
HOSTENT_PTR DS F Length HOST_ADDR
USERWORD DS F User data
WAITMASK DS F Mast for signal waits
WHO DS F Who for rusage
WRITEFD DS F File descriptor - output file
LFUIOPTR DS F Pointer to FUIO structure

SPACE ,
@ENDSTOR EQU * End of getmain storage

IVTBUFL
SPACE 3 * * * * * * * * * *.* Register equates * * * * * * *

SPACE ,
R0 EQU 0
R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10 Second getmain storage register
R11 EQU 11 Second program base register
R12 EQU 12 Program base register
R13 EQU 13 Savearea and getmain storage base
R14 EQU 14 Return address
R15 EQU 15 Branch location

END

Reentrant Return Linkage

1314 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix D. Example with nonreentrant entry linkage

This example shows the function for the w_getpsent service in a nonreentrant
program. For reentrant examples of w_getpsent, see “BPX1GPS (w_getpsent)
Example” on page 1138 and also “w_getpsent (BPX1GPS) — Get Process Data” on
page 908. For an example of reentrant entry and return linkage, see Appendix C
and “Reentrant Return Linkage” on page 1310.
BOOKSAM3 CSECT , Nonreentrant linkage
BOOKSAM3 AMODE 31
BOOKSAM3 RMODE ANY

USING *,R15 Program addressability
@BEGIN0 B @BEGIN1 Branch around program header

DC C’BOOKSAM3 - nonreentrant w-getpsent invoker’
DS 0H

@BEGIN1 STM R14,12,12(R13) Save caller’s registers
ST R13,@BACK Save ->Caller’s save area
LA R13,@SAVE00 R13 program and save area base
DROP R15
USING @SAVE00,R13 Program addressability
B @BEGIN2

@SAVE00 DS 0D Standard save area - 72 Bytes
DS A

@BACK DS A Backwards save area pointer
@FORWARD DS A Forwards save area pointer

DS 15A Regs 14,15,0-12
RETURN XR R15,R15 Zero return code
RETURNRC L R13,@BACK Restore caller’s R13

L R14,12(,R13) Restore caller’s R14
LM R0,R12,20(R13) Restore caller’s R0-R12
BSM 0,R14 Branch back to caller

R0 EQU 0
R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13 Program and save area base
R14 EQU 14 Return address
R15 EQU 15 Branch location
@BEGIN2 EQU * * * * * * * End of the entry linkage code

Fields PGPSCONTTYBLEN, PGPSCONTTYPTR, PGPSPATHBLEN,
PGPSPATHPTR, PGPSCMDBLEN and PGPSCMDPTR are initialized by the
expansion of the BPXYPGPS macro when expanded in a CSECT. Likewise fields
PGPSA and PGPSA can also be initialized before the program runs. Contrast this
with the reentrant example where these fields must be set by the program while it
runs. These fields could also be initialized during execution in this, the nonreentrant
example.

EJECT ,
LA R0,=CL8’BPX1GPS ’ LOAD -> entry point name
XR R1,R1 No JOBLIB or LINKLIB DCB
SVC 8 Issue LOAD SVC
ST R0,GPSENTRY Store BPX1GPS entry point

GETPS L R15,GPSENTRY Address of BPX1GPS load module

© Copyright IBM Corp. 1996, 2002 1315

CALL (15), Get process data +
(PROCTOKEN, Relative process token +
PGPSL, Length of buffer +
PGPSA, Buffer, mapped by BPXYPGPS +
RETVAL, Return value (next, eof or error) +
RETCODE, Return code +
RSNCODE), Reason code +
VL ----------------------------------

SPACE , * * * * * * Test for end of file
ICM R15,B’1111’,RETVAL Load return value, set CCode
BZ RETURN 0 is end of file
BL RETURNRC -1 is error
ST R15,PROCTOKEN Store the next process token
SPACE , * * * * * * Initialize WTO area & message
MVI XPID,C’ ’ Blank out variable portion message
MVC XPID+1(WTO#BLANK-1),XPID
SPACE , * * * * * * Process ID to printable hex
L R8,PGPSPID R8 = process ID
LA R9,XPID To be placed at message start
LA R15,8 8 nibbles to convert (4 bytes)
LA R10,9 For 0-9 / A-F compare

NIBBLE LR R11,R8 Target bits in 0-3 XYYYYYYZ
SRL R11,28 Bits 0-3 to 28-31 0000000X
SLL R8,4 Drop bits 0-3 off end YYYYYYZ0
CLR R11,R10 Are 4 bits 0-9 or A-F
BC B’0010’,AF Branch if A-F
LA R11,57(,R11) Add for 0-9 (57+183=240 or F0)

AF LA R11,183(,R11) Add for 0-F (183+10=193 or C1)
STC R11,0(,R9) Store to results location
LA R9,1(,R9) Increment R9 to next location
BCT R15,NIBBLE Decrement half byte counter, loop
SPACE , * * * * * * Test status bits

* Go after the state of the process
MVI THREAD,C’1’ Assume single task thread
TM PGPSSTATUS1,PGPSMULTHREAD if multithread process
BZ NOTMULT
MVI THREAD,C’M’

NOTMULT TM PGPSSTATUS1,PGPSPTHREAD if pthread_create tasks
BZ NOTIPT
MVI THREAD,C’H’

NOTIPT MVC STATE,PGPSSTATUS3 Z, W, X, S, C, F, K, R
TM PGPSSTATUS0,PGPSSWAP if swapped out
BZ NOTSWAP
MVC SWAPA,=CL4’SWAP’

NOTSWAP TM PGPSSTATUS1,PGPSSTOPPED if stopped
BZ NOTSTOP
MVC STOPA,=CL4’STOP’

NOTSTOP TM PGPSSTATUS1,PGPSTRACE if ptrace
BZ NOTTRAC
MVC TRACA,=CL4’TRAC’

NOTTRAC EQU *
SPACE , * * * * * * Display message to operator
LA R2,WTOAREA R2->WTO message area
WTO TEXT=(R2) Write to Operator
SPACE , * * * * * * Loop back
B GETPS for the next Process data
SPACE ,

WTOAREA DS 0F WTO message
DC AL2(WTO#LENGTH) Length of area
DC CL4’PID=’ Process ID =

XPID DS CL8 Hex of process ID
DS CL1

THREAD DS CL1 1, M or H
DS CL1

STATE DS CL1 Z, W, X, S, C, F, K, R
DS CL1

SWAPA DS CL4 SWAP or blank

Example with nonreentrant entry linkage

1316 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

DS CL1
STOPA DS CL4 STOP or blank

DS CL1
TRACA DS CL4 TRAC or blank
WTO#BLANK EQU *-XPID Length to blank

DC C’.’
WTO#LENGTH EQU *-WTOAREA Length of WTO area

SPACE ,
GPSENTRY DS A Address of BPX1GPS
PROCTOKEN DC A(0) Relative process token init to 0
RETVAL DS F Return value - next PROCTOKEN
RETCODE DS F Return code
RSNCODE DS F Reason code

SPACE ,
PGPSL DC A(PGPS#LENGTH) Length of PGPS buffer
PGPSA DC A(PGPS) ->Process data buffer

BPXYPGPS DSECT=NO, Place in current CSECT / DSECT +
VARLEN=(0,0,0) ConTty, Path, Cmd not needed

END

Example with nonreentrant entry linkage

Appendix D. Example with nonreentrant entry linkage 1317

1318 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix E. The relationship of z/OS UNIX signals to callable
services

The signal information in this appendix is needed by compiler writers who are
implementing POSIX in a high-level language.

Signals support the following callable services:
v “alarm (BPX1ALR) — Set an Alarm” on page 25
v “kill (BPX1KIL) — Send a Signal to a Process” on page 311
v “mvsunsigsetup (BPX1MSD) — Detach the Signal Setup” on page 419
v “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411
v “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 463
v “ptrace (BPX1PTR) — Control Another Process for Debugging” on page 530
v “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746
v “sigpending (BPX1SIP) — Examine Pending Signals” on page 757
v “sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time” on

page 774
v “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 561
v “sigprocmask (BPX1SPM) — Examine or Change a Process’s Signal Mask” on

page 759
v “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread

Until a Signal Is Delivered” on page 766

High-level-language signal interfaces
In addition to the signal interface callable services that are defined by POSIX, z/OS
UNIX provides the following signal interface services:

mvssigsetup service Sets up and defines the signal interface routine
(SIR). The SIR is a routine that is provided by the
high-level language. For information on how to write
the SIR and the interface to it, see “mvssigsetup
(BPX1MSS) — Set Up MVS Signals” on page 411.

mvsunsigsetup service Detaches the interface to the SIR and returns the
parameters set up in mvssigsetup. See page 419.

ptrace service Controls the running of another process for
debugging programs. See page 530.

queue_interrupt service Returns the last signal delivered. See page 561.

These interfaces allow a runtime library (RTL) for a high-level language to control
the flow of signals. Each high-level language defines its own linkage interface
between callable procedures; for example, the C language has a linkage stack and
register interface between function procedures, which are unique to C.

Delivery of signals involves:
v Interrupting a currently running procedure
v Saving the status of the code that was interrupted
v Invoking a callable procedure known as the signal catcher, or signal handler.

How high-level languages use signals
Invoking a callable service involves setting up registers that are unique to the
high-level language.

© Copyright IBM Corp. 1996, 2002 1319

1. The RTL, using these callable services, sets up a SIR to receive control when a
signal occurs.

2. The SIR procedure performs the necessary language linkages and POSIX
functions to call the signal catcher procedure.

3. The signal catcher may return to the SIR.

4. The SIR performs the necessary language and POSIX functions to return to the
interrupted procedure after the signal catcher returns.

5. The CSRL16J system service loads all registers and the PSW condition code
and jumps to the instruction that was interrupted by the signal.

Signal setup when linking to callable services
When a task invokes the first z/OS UNIX call, the address space (if needed) and
task are set up for z/OS UNIX callable services. Setting up for z/OS UNIX callable
services is known as dubbing the address space and dubbing the task. When an
address space is dubbed, a new process is created and assigned a unique process
ID.

A dubbed task is a thread that is assigned an 8-character thread ID. This thread ID
is unique within the process. Threads in different processes could have the same
thread ID. When the first z/OS UNIX call is made and the task is dubbed, the
current program request block (PRB) that dubbed the task is also recorded. This
not only dubs the task, but also sets it up for signals.

Figure 2 shows the flows for the various signal functions when a synchronous signal
SIGPIPE is generated with the kill service.

z/OS UNIX signals

1320 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

For more information on the setup and use of SIRs, see “mvssigsetup (BPX1MSS)
— Set Up MVS Signals” on page 411. For more information on signal catchers, see
“sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 746.

ESPIE or ESTAE and the SIGILL, SIGFPE, and SIGSEGV signals
High-level languages generate the SIGILL , SIGFPE, and SIGSEGV signals. In z/OS
UNIX, the kill service is invoked to generate these signals. The ESPIE or ESTAE
must also use the kill service to generate SIGILL , SIGFPE, and SIGSEGV.
High-level languages can define an ESPIE or ESTAE routine to receive control after
an incorrect hardware instruction, arithmetic operation, or memory reference.

Since z/OS UNIX does not generate or process the signals SIGILL , SIGFPE, and
SIGSEGV, it is the responsibility of the high-level language’s RTL to define what
happens when a signal catcher is defined for these signals and the signal catcher
returns to the failing instruction. For information on how the compiler defines what
happens in this case, see z/OS C/C++ Programming Guide.

ESPIE or ESTAE routines in high-level languages must also invoke the ptrace
service. For more information on the ptrace service see “ptrace (BPX1PTR) —
Control Another Process for Debugging” on page 530.

When signals are and are not supported
All signal functions are supported when the task is set up for signals, when it is
running with the signal delivery key, and when its current program request block
(PRB) is the same PRB as when the task was set up for signals. When this is not

Figure 2. Program flow of mvssigsetup and sigaction with Signal Interface Routine (SIR)

z/OS UNIX signals

Appendix E. The relationship of z/OS UNIX signals to callable services 1321

the case, some signal functions are not supported, or they function differently.
Table 16 defines these signal functions.

The mvssigsetup columns in Table 16 describe a task that is set up with the
mvssigsetup service. When a task invokes the mvssigsetup service, the current
PRB is recorded for future signal delivery. When a task is set up for signals by
mvssigsetup, signals are only delivered when the task’s current PRB is the same
PRB that called mvssigsetup.

Table 16. Support of signal calls

Service

Task mvssigsetup

Not signal
delivery key

Task not mvssigsetup

Current PRB
called

mvssigsetup

Current PRB did
not call

mvssigsetup
Current PRB

dubbed the task
Current PRB did
not dub the task

BPX1ALR RV=Seconds Abend RV=Seconds RV=Seconds Abend

BPX1KIL RV=0 RV=0 RV=0 RV=0 RV=0

BPX1MSD RV=0 RV=0 RV=0 RV=−1 RV=−1

BPX1MSS RV=−1 RV=−1 RV=−1 RV=0 RV=0

BPX1PAS RV=0 RV=−1 RV=−1 RV=0 RV=0

BPX1SEL RV=0 RV=−1 RV=−1 RV=0 RV=0

BPX1SIA RV=0 RV=−1 RV=0 RV=−1 RV=−1

BPX1SIP RV=0 RV=−1 RV=0 RV=0 RV=0

BPX1SLP RV=Seconds RV=Abend RV=Abend RV=Seconds RV=Seconds

BPX1SPB RV=0 N/A N/A N/A N/A

BPX1SPM RV=0 RV=−1 RV=0 RV=0 RV=0

BPX1SSU RV=0 RV=−1 RV=−1 RV=0 RV=0

Notes:

PRB Program request blocks are created by MVS system services such as LINK. PRBs are also created for
ESTAE routines.

RV Return value returned in the service.

N/A Not applicable

Signal delivery keys
Signal delivery also depends on the signal delivery key. Each process has one
signal delivery key. The signal delivery key is set to the PSW key of the caller of the
first z/OS UNIX call that created the process. A process created by the fork or exec
service has key 8. The attach_exec service works differently from the exec and fork
service; it creates a process with a signal delivery key equal to the PSW key of the
Attach_exec caller. Key zero is not a valid signal delivery key. Therefore, if the
caller’s PSW key is zero when mvssigsetup created the process, the mvssigsetup
call fails and signal catchers cannot be invoked in this process.

z/OS UNIX signals

1322 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Delayed signal delivery
Asynchronous signals are generated from a process or task different from the task
the signal is being delivered to. Delivery of asynchronous signals is not always
possible and can have a delay. Signals that must be delayed are delivered later,
when signals are permitted and the next z/OS UNIX service is invoked. The
following describes some additional cases when signal delivery must be delayed:

v During STORAGE obtains or releases that use a hardware linkage stack.

v During execution of system services that are entered with PC or that use the
hardware linkage stack (such as a BAKR instruction).

v When applications use a BAKR instruction on entry to save registers in a
hardware linkage stack and use a PR instruction to restore registers on exit.
Therefore, asynchronous signals cannot be delivered after the BAKR instruction
and before the PR instruction.

v When a task that is set up for signals by a mvssigsetup service is followed by a
system service call (for example, LINK) that creates another program request
block (PRB).

z/OS UNIX System Services provides a signal deferral capability that allows an
application to defer the receipt of signals until it is ready to accept them. You could
use it, for instance, to shield an application from signal interruption during a time of
critical processing. Once the section of critical code had finished, the application
could receive any signals that had been deferred.

To use the signal deferral capability, the application sets the ThliDeferSignals bit on
in the THLI data structure. When it is interested in receiving signals again, it sets
this bit off. To see if any signals are pending, the application can check the
OtcbSigPending or the ThliSigPending bit. If OtcbSigPending or ThliSigPending is
set on, it can set ThliDeferSignals = OFF, and call BPX1GPI to drive signal delivery.

To access the THLI bit, traverse the data structures TCB, STCB, OTCB, and THLI.
If the STCBOTCB (the field in the STCB that points to the OTCB) is 0, the process
is not dubbed and the THLI has not been created. (However, since a process that
has not been dubbed cannot receive signals, it is not necessary to set the THLI bit
to defer their handling.) If there is an OTCB, the OTCBTHLI points to the THLI. Set
the ThliDeferSignals bit accordingly.

For example:
If (stcbotcb ^= 0) then /* Make sure the process is dubbed, the otcb pointer */

/* will not be zero. */

otcbthli->thlidefersignals = ON; /* The otcbthli field points to the thli; set the thli*/
/* to defer signals. */

...start of important stuff
/* Remember not to issue any syscalls during this */
/* segment of code. A syscall will force a delivery */
/* of any pending signal. */

...end of important stuff

otcbthli->thlidefersignals = off; /* Reset the bit. */

If otcbthli-thlisigpending = on /* Check to see if any signals were made pending */
/* during the critical code interval.

then call bpx1gpi(...) /* Make any syscall. It will have all pending signals */
/* delivered. */

z/OS UNIX signals

Appendix E. The relationship of z/OS UNIX signals to callable services 1323

This mechanism is not intended to be used by an application that is requesting
z/OS UNIX system services. If a syscall is requested, any pending signals are
delivered. The THLI bit is intended to shield the application from unwanted
interruptions only when no syscalls are being performed.

When signals cannot be delivered
Compilers and applications that enter states when signals cannot be delivered
should invoke z/OS UNIX callable services after returning to a state where signal
delivery is possible. This action ensures prompt delivery of signals. For example, a
program may invoke a STORAGE obtain and getpid service. After returning from
the getpid service, z/OS UNIX delivers any asynchronous signals that were
generated during the STORAGE obtain.

When the SIR is unable to deliver a signal to a signal catcher routine for
environmental reasons, the queue_interrupt service is invoked from a signal
interface routine (SIR). The queue_interrupt service also delays signal delivery until
the next z/OS UNIX callable service. z/OS UNIX callable services should be
performed shortly after a queue_interrupt call to ensure prompt signal delivery.

Signals and multiple tasks created by ATTACH
This section describes processes that have multiple dubbed tasks created by using
the ATTACH system service. It describes how the first dubbed task in a process can
be created and how to create additional dubbed tasks using ATTACH. It also
describes how signals work in a process with multiple dubbed tasks created by
ATTACH.

The first dubbed thread in a process can be created with the fork callable service or
the exec or execmvs callable service, or by the first call to az/OS UNIX callable
service from any task in the address space. Subsequent tasks can be created in
the process with the ATTACH system service. Once a program running on behalf of
the task calls a z/OS UNIX callable service, the task becomes dubbed. Every
dubbed task is assigned an 8-character thread ID.

The mvssigsetup and sigaction services allow only one thread in a process to set
up a signal interface routine (SIR) and signal catchers. When a process contains
two tasks with signals unblocked, the signal is delivered to the task that called
mvssigsetup.

If signal action on delivery of a signal specifies termination, stop, or continue, the
entire process is terminated, stopped, or continued. Delivery of a signal for default
signal action occurs for any of the following conditions:

1. None of the threads is set up for signals by mvssigsetup and one or more
threads do not have the signal blocked.

2. One of the threads is set up for signals by mvssigsetup and the signal is not
blocked by the thread that called mvssigsetup.

Signals and multiple tasks created by pthread_create
The pthread_create service creates dubbed tasks within the process. This section
describes how signals work in processes that have multiple dubbed tasks created
by the pthread_create service and ATTACH system service.

z/OS UNIX signals

1324 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

A thread created by pthread_create also inherits any signal setup information
created by a prior mvssigsetup call. If the caller of pthread_create had previously
called mvssigsetup successfully, the thread created is also set up for signals. The
mvssigsetup and pthread_create services can be used to create multiple threads in
a process that is set up for signals.

When a signal is generated by a kill service request to a process that has multiple
threads set up for signals and threads that are not set up for signals, z/OS UNIX
signal processing must determine which thread has the most interest in the signal.
The signal is delivered to the thread with the most interest when a signal catcher is
defined by a sigaction call.

The following is a list of signal interest rules for a signal generated by a kill call from
most to least interested:

1. When threads are found in a sigwait for this signal, the signal is delivered to the
first thread found in a sigwait.

2. When all threads are blocking this signal, the signal is left pending at the
process level. The sigpending service moves blocked pending signals at the
process level to the thread level.

3. When the default terminating signal action (not ignore and not catch) is to take
place, that action is performed for all threads in the process.

4. When all of the following are true:
v One or more threads are set up for signals.
v All threads set up for signals have the signal blocked.
v A thread not set up for signals has not blocked the signal.

The signal is left pending on the first thread set up for signals. This signal
remains pending on that thread until the thread unblocks the signal.

5. When one or more threads are set up for signals and at least one of the threads
set up for signals has the signal unblocked, the signal is delivered to the first
thread that is set up for signals that also has the signal unblocked.

Signal defaults
This section contains information on the signals that are supported by z/OS UNIX.
These signals are mapped by the BPXYSIGH mapping macro; see “BPXYSIGH —
Signal Constants” on page 1024. The following table lists the signals and their
default actions:

Constant Value Default
Action

Description

SIGABND# 18 1 Abend
SIGABRT# 3 1 Abnormal termination
SIGALRM# 14 1 Timeout
SIGBUS# 10 1 Bus error
SIGCHLD# 20 2 Child process terminated or stopped
SIGCONT# 19 4 Continue if stopped
SIGDANGER 33 1 Termination
SIGDCE# 38 2 Exclusive use by DCE
SIGDUMP# 39 2 The system takes a SYSMDUMP and writes it to

an MVS data set. The _BPXK_MDUMP
environment variable must be set to an MVS data
set name. This signal cannot be caught.

SIGFPE# 8 1 Erroneous arithmetic operation, such as division
by zero or an operation resulting in overflow

z/OS UNIX signals

Appendix E. The relationship of z/OS UNIX signals to callable services 1325

||||

Constant Value Default
Action

Description

SIGHUP# 1 1 Hangup detected on controlling terminal
SIGILL# 4 1 Detection of an incorrect hardware instruction
SIGINT# 2 1 Interactive attention
SIGIO# 23 2 Completion of input or output
SIGIOER# 27 2 I/O error
SIGKILL# 9 1 Termination (cannot be caught or ignored). Can

result if abend not caught or handled and
terminating status not set; CPU time exceeded
and SIGXCPU# caught or ignored; or sigkill shell
command sent.

SIGNULL# 0 2 Null; no signal sent (cannot be caught or ignored)
SIGPIPE# 13 1 Write on a pipe with no readers
SIGPOLL# 5 1 Pollable event
SIGPROF# 32 1 Profiling timer expired
SIGQUIT# 24 1 Interactive termination
SIGSEGV# 11 1 Detection of an incorrect memory reference
SIGSTOP# 7 3 Stop (cannot be caught or ignored)
SIGSYS# 12 1 Bad system call
SIGTERM# 15 1 Termination
SIGTHCONT# 35 1 Thread continue (cannot be caught or blocked or

ignored)
SIGTHSTOP# 34 1 Thread stop (cannot be caught or blocked or

ignored)
SIGTSTP# 25 3 Interactive stop
SIGTTIN# 21 3 Read from a control terminal attempted by a

member of a background
SIGTTOU# 22 3 Write from a control terminal attempted by a

member of a background process group
SIGTRAP# 26 1 Trap used by the ptrace call
SIGURG# 6 2 High bandwidth data is available at a socket
SIGUSR1# 16 1 Reserved as application-defined signal 1
SIGUSR2# 17 1 Reserved as application-defined signal 2 process

group
SIGVTALRM# 31 1 Virtual timer expired
SIGXCPU# 29 1 CPU time limit exceeded
SIGXFSZ# 30 1 File size limit exceeded
SIGWINCH# 28 2 Change size of window

The default actions are:
1. Abnormal termination.
2. Ignore the signal.
3. Stop the process.
4. Continue if it is currently stopped; otherwise, ignore the signal.

z/OS UNIX signals

1326 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

||||
|
||||
|

Appendix F. Using threads with callable services

z/OS UNIX threads are tasks that are using z/OS UNIX services. Pthreads are z/OS
UNIX threads that are created with pthread_create; this also includes the initial
pthread-creating task (IPT). The first thread in a process to invoke the
pthread_create service becomes the IPT. This appendix contains information about
creating pthreads, the IPT, terminating pthreads, and multiple pthreads. It also
shows scenarios for different termination situations.

Creating threads
Threads are created as follows.

The successful completion of:

v The pthread_create service

v The fork or exec service

v Most z/OS UNIX service requests from an undubbed MVS task

A single-threaded process is created with fork, with exec, or by the invocation of a
kernel service from within an MVS address space.

Multiple-threaded processes can be created with pthread_create.

The IPT and all pthread_created threads are referred to as pthreads. All future
pthread_create requests attach subtasks to the IPT, even though they are not
issued by the IPT. This is important in thread termination. For a complete
description of the process of creating threads, see “pthread_create (BPX1PTC) —
Create a Thread” on page 486.

The pthread_create task initialization routine
The first routine that is given control in the new task when a thread is created with
the pthread_create service is the pthread_create pthread-creating task initialization
routine. (The pthread-creating task initialization routine is not the same as the initial
pthread-creating task (IPT). The pthread-creating task initialization routine is the
routine that is given control when a pthread_create is done, whereas the IPT refers
to the task that the first task runs on.) The pthread_create pthread-creating task
initialization routine does the following:

1. Acquires task-related resources required by the user application.

2. Calls pthread_exit_and_get service to exit the old thread and get the new thread
information. The exit of the old thread is ignored if this is the first call to
pthread_exit_and_get.

3. Checks for failures. If a failure is found, it skips to step 8.

4. Gets pthread-related resources for the newly created thread.

5. Calls the user-specified Start_routine.

6. Releases resources for the newly created thread.

7. Repeats step 2.

8. Releases task-related resources.

9. Returns to the caller (ends the task).

© Copyright IBM Corp. 1996, 2002 1327

Note: When control is returned after a successful pthread_exit_and_get call, the
thread can be interrupted by any signals that are not blocked. The signal
blocking mask of the created thread is inherited from the thread that invoked
the created thread.

Terminating pthreads

Note: If multiple threads are created with a combination of pthread_create and
dubbed MVS tasks, the following termination methods do not apply. The
exception to this, of course, is that the IPT is a dubbed task. If the IPT has
any subtasks that are non-pthread threads, the following termination
scenarios also do not apply.

There are no prescribed methods for terminating threads that are mixed with
other dubbed tasks in a single process.

There are three ways to terminate a thread without exiting the process:

v The pthread_exit_and_get (BPX1PTX) service terminates the thread that invoked
it. If it is successful, control is returned to the invoking task.

v The pthread_cancel (BPX1PTB) service generates a cancel request to the target
thread. After the cancel request is delivered, the thread and its associated task
are terminated by the kernel. This behavior can be circumvented if the thread
intercepts the cancellation request (see “mvssigsetup (BPX1MSS) — Set Up
MVS Signals” on page 411).

v The pthread_quiesce (BPX1PTQ) service sends a quiesce event to all other
pthreads in the process. If the other pthreads do not intercept the quiesce event
(see “mvssigsetup (BPX1MSS) — Set Up MVS Signals” on page 411), delivery of
the event terminates the thread and the task, if the target is not the IPT.

The two types of threads that are created with pthread_create require different
actions for terminating.

Heavyweight thread (HWT)
Terminating an HWT requires that the task also terminate. That is, after a
pthread_exit_and_get service is issued to exit an HWT, z/OS UNIX services, with
the exception of mvsprocclp, can no longer by issued from this task.

Mediumweight thread (MWT)
Terminating an MWT does not require that the task terminate. You can terminate it
by using the PTGETNEWTHREAD option on the pthread_exit_and_get service. The
pthread-creating task initialization routine that is specified on the pthread_create
service can repeatedly call the pthread_exit_and_get service, getting new thread
requests as they are created. This avoids the overhead of task creation and
termination for each thread.

For information on HWTs and MWTs, see “pthread_create (BPX1PTC) — Create a
Thread” on page 486.

Terminating multiple pthreads and tasks
Terminating a pthread is different from terminating the task that the pthread runs on.
The IPT should be the last task to terminate; that is, the IPT should wait for all
pthreads and supporting tasks to terminate before it terminates. If the IPT and its
associated task should terminate before all its subtasks terminate, those subtasks

z/OS UNIX threads

1328 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

abend asynchronously with a 33E abend. This type of termination does not allow an
orderly cleanup of pthread and task-related resources.

When a process contains multiple pthreads, and one of the executing pthreads
starts process termination, the following steps should be taken:

1. The terminating pthread uses the pthread_quiesce (BPX1PTQ) service to inform
all other pthreads that are running in the process of its process termination.

2. The pthread_quiesce service places the issuing pthread in a wait state until all
other pthreads are notified and have terminated.

3. As each pthread’s signal interface routine receives the quiesce notification, it
uses the pthread_exit_and_get service to terminate the pthread. The signal
interface routine should not pass control to the user program, because it might
continue processing. The task that invoked pthread_quiesce is waiting for all the
pthreads in the process to terminate.

4. The pthread that is issuing the pthread_quiesce service gains control after all
pthreads have terminated. The terminating pthread can then invoke any exit and
cleanup functions that are necessary for an orderly termination of the process.

Note: The tasks that supported quiesced pthreads can still be running after
control is returned to the task that issued pthread_quiesce. Only the
pthreads have terminated, not the tasks. Terminating the task is a
separate and asynchronous part of terminating the process.

5. The terminating pthread can then issue a terminating service request such as
exit, _exit, or exec. If the terminating pthread is the IPT, the mvsprocclp
(BPX1MPC) service can be issued instead of the _exit (BPX1EXI) service. This
avoids the automatic termination of the task.

6. The IPT gains control only when all the pthreads that were created with
pthreads_create have terminated. The IPT can then call mvsprocclp
(BPX1MPC) to clean up the remaining z/OS UNIX environment. Control cannot
return to the IPT until all the other tasks that supported the pthreads have
exited. If any of the pthread subtasks fail to terminate, mvsprocclp sets a failing
return code.

7. Now that all the tasks have terminated (except for the IPT), control is returned
to the caller of the application (if one exists) or back to the system (which
terminates the IPT).

Pthread termination scenarios
The following scenarios describe the steps needed to terminate multithread
processing for situations application programmers might encounter.

Using exit or _exit when the thread is not the IPT
Table 17 describes the actions that are taken for exit or _exit issued from a thread
created with pthread_create.

Table 17. Using exit or _exit when the thread is not the IPT

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 A request to exit the process was issued.

2 A pthread_quiesce is issued. Control is not
returned until all other pthreads in this process
end with pthread_exit_and_get.

3 An asynchronous quiesce event is delivered to this
thread.

z/OS UNIX threads

Appendix F. Using threads with callable services 1329

Table 17. Using exit or _exit when the thread is not the IPT (continued)

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

4 Either the thread is terminated by the kernel, or
the signal interface routine intercepts the quiesce
termination event to do necessary thread cleanup
and issue another pthread_exit_and_get.
Interception of quiesce events must be specified
by the mvssigsetup service.

5 The IPT thread is terminated, and the IPT is
placed in a wait state in the kernel.

6 Control is returned from pthread_quiesce when all
other pthreads terminate.

8 An _exit service request is issued to terminate the
process and pass the process status. This pthread
and task are both terminated, and control is not
returned to the _exit service caller.

9 The kernel posts the IPT when the last pthread
terminates.

10 The mvsprocclp service is issued to clean up any
remaining portions of the process. Control returns
from this service after all subtasks created with
pthread_create terminate, or when a reasonable
amount of time to do this has elapsed.

11 The IPT gains control after the mvsprocclp service
completes. All pthreads for this process and all
subtasks of the IPT have terminated.

12 The IPT is no longer associated with the kernel
and can now return to its caller or to the system.

Using exit or _exit when the thread is the IPT
Table 18 describes the actions that are taken for exit or _exit issued from the IPT
thread.

Table 18. Using exit or _exit when the thread is the IPT

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 A request to exit the process is issued from the
IPT.

2 A pthread_quiesce is issued. Control is not
returned until all other pthreads in this process
end with pthread_exit_and_get.

3 An asynchronous quiesce event is delivered to this
thread.

4 Either the thread and its associated task are
terminated by the kernel, or the signal interface
routine intercepts the quiesce termination event to
do necessary thread cleanup and to issue another
pthread_exit_and_get. Interception of quiesce
events is specified by the mvssigsetup service.

5 Control is returned to the pthread-creating task
initialization routine (QUIESCE_TERM only), the
remaining parts of the environment are cleaned
up, and control is returned to the caller,
terminating the task.

z/OS UNIX threads

1330 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 18. Using exit or _exit when the thread is the IPT (continued)

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

6 Control is returned after the pthread_quiesce call
when all other pthreads terminate (perhaps not all
tasks have terminated yet).

7 Process the remaining thread and clean up (such
as running exits).

8 Terminate the process and pass the process
status with mvsprocclp status.

9 When control is returned from mvsprocclp, all
pthreads for this process and all subtasks of the
IPT have terminated.

10 The IPT task is no longer associated with the
kernel and can now return to its caller or to the
system.

Using pthread_exit_and_get when the thread is not the IPT and
not the last thread
Table 19 describes the actions that are taken when pthread_exit_and_get is issued
on a thread that is not the IPT and is not the last thread.

Table 19. Using pthread_exit_and_get when the thread is not the IPT and not the last thread

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 A request to exit the pthread is issued.

2 Run thread cleanup routines before terminating
this thread.

3 Return to the pthread-creating task initialization
routine that issued pthread_exit_and_get to
terminate the thread, using the PTEXITTHREAD
and PTGETNEWTHREAD option for MWTs or the
PTEXITTHREAD option for HWTs. If you want to
know when the last thread is terminating so that
process termination cleanup can be done first,
specify PTFAILIFLASTTHREAD. You must then
call pthread_exit_and_get again, but this time
without the PTFAILIFLASTTHREAD option.

4 For MWTs, this task waits in the kernel until the
next new pthread_create request. When
pthread_exit_and_get returns a −1 return value, a
new thread was not created. You must exit the
pthread-creating task initialization routine,
terminating the task. (You must always do this for
HWTs.)

5 A successful return from pthread_exit_and_get
indicates that this was not the last thread that
terminated. If the PTEXITTHREAD and
PTGETNEWTHREAD option was used, a new
thread was returned.

Using pthread_cancel when the thread is not the last thread and
is canceled
Table 20 defines the actions that are taken when the pthread_cancel request is
handled by the signal interface routine, and the cancel causes the thread to

z/OS UNIX threads

Appendix F. Using threads with callable services 1331

terminate. This is the same as when the target thread issues pthread_exit_and_get.
The status of the thread is −1, and is available for joining threads.

Table 20. Using pthread_cancel when the thread is not the last thread and is canceled

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 The pthread_cancel request was received and
delivered to the signal interface routine.
Interception of cancellations must be specified by
the mvssigsetup service.

2 Set Status_field in the pthread_exit_and_get
service to −1. See “pthread_exit_and_get
(BPX1PTX) — Exit and Get a New Thread” on
page 494.

3 Now follow the steps in Table 19 on page 1331.

Using pthread_exit_and_get when the thread is the IPT and not
the last thread
Table 21 describes the actions that are taken when pthread_exit_and_get is issued
on a thread that is the IPT and is not the last thread. The IPT is placed in wait state
until all other pthreads in this process terminate.

Table 21. Using pthread_exit_and_get when the thread is the IPT and not the last thread

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 A request to exit the pthread was issued.

2 Run thread cleanup routines before terminating
this thread.

3 To terminate the thread, issue the
pthread_exit_and_get service with the
PTEXITTHREAD option. To determine when the
last thread has terminated so that process
termination cleanup can be done first, use the
pthread_exit_and_get service with the
PTFAILIFLASTTHREAD option. Then repeat the
pthread_exit_and_get service, but without the
PTFAILIFLASTTHREAD option.

4 The IPT is now in a wait state until the process
terminates.

5 A return from pthread_exit_and_get indicates that
all other pthreads for the process have terminated.

6 The mvsprocclp service is issued to clean up any
remaining portions of the process. Control returns
from this call after all subtasks that were created
with pthread_create terminate, or until time to do
so has elapsed.

7 The IPT task gains control after the mvsprocclp
call. All pthreads for this process and all subtasks
of the IPT have terminated.

8 The IPT task is no longer associated to the kernel,
and can now return to the caller or to the system.

z/OS UNIX threads

1332 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Using pthread_exit_and_get when the thread is not the IPT and
is the last thread
Table 22 describes the actions that are taken when pthread_exit_and_get is issued
on a thread that is not the IPT and is the last thread.

Table 22. Using pthread_exit_and_get when the thread is not the IPT and is the last thread

Step Thread 1 (Initial Pthread-Creating Task, or IPT) Thread 2 (Pthread-Created Thread)

1 The IPT is in a wait state because of a previous
pthread_exit_and_get.

pthread_exit_and_get is issued from this thread.

2 Run thread cleanup routines before this thread
terminates.

3 Return to pthread-creating task initialization routine
that issues pthread_exit_and_get to exit the
thread, using the PTEXITTHREAD and
PTGETNEWTHREAD option for MWTs or the
PTEXITTHREAD option for HWTs. If you want to
know when the last thread is terminating so that
process termination cleanup can be done first,
specify the PTFAILIFLASTTHREAD option. You
must then call pthread_exit_and_get again, but
this time without the PTFAILIFLASTTHREAD
option.

4 A failing return value and reason code from
pthread_exit_and_get indicates that this is the last
thread.

5 Process the remaining thread and clean up (such
as running exits).

6 Call pthread_exit_and_get without the
PTFAILIFLASTTHREAD option to terminate the
last thread and the process.

7 Clean up any MVS resources that may have been
obtained STAE/SPIE/storage, after control is
returned from pthread_exit_and_get to the
pthread-creating task initialization routine.

8 The pthread-creating task initialization routine
returns to its caller, terminating the task. The IPT
is posted when this task terminates.

9 The IPT gains control after its
pthread_exit_and_get and all threads have
terminated.

10 Issue the BPX1MPC service to clean up any
remaining portions of the process. Control returns
from this call after all subtasks created with
pthread_create terminate, or until the time to do so
has elapsed.

11 The IPT task gains control when control is
returned from mvsprocclp and all pthreads for this
process and all subtasks of the IPT have
terminated.

12 The IPT task is no longer associated with the
kernel, and can now return to its caller or to the
system.

z/OS UNIX threads

Appendix F. Using threads with callable services 1333

Using pthread_exit_and_get when the IPT is the last thread
Table 23 describes the actions that are taken when pthread_exit_and_get is issued
for a thread that is the IPT and is the last thread.

Table 23. Using pthread_exit_and_get when the IPT is the last thread

Step IPT Task Is The Only Task Thread 2 Doesn’t Exist

1 A request to exit the pthread was issued.

2 Run thread cleanup routines before this thread
terminates.

3 Call pthread_exit_and_get with the
PTEXITTHREAD and PTFAILIFLASTTHREAD
options to terminate the thread on the IPT.

4 A return value and reason code reporting a failure
from pthread_exit_and_get indicates that this is
the last thread.

5 Process the remaining thread and cleanup (such
as running exits).

6 Call pthread_exit_and_get without the
PTFAILIFLASTTHREAD option to terminate the
last thread and the process.

7 Control is returned to the IPT from
pthread_exit_and_get, and all threads terminate.

8 The mvsprocclp service is issued to clean up any
remaining portions of the process. Control returns
from this service after all subtasks created with
pthread_create terminate, or until the time to do so
has elapsed.

9 The IPT task gains control when the mvsprocclp
service completes. All pthreads for this process
and all subtasks of the IPT have terminated.

10 The IPT task is no longer associated with the
kernel, and can now return to its caller or to the
system.

z/OS UNIX threads

1334 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix G. Optimizing performance using process- and
thread-level information

The process-level information area (PRLI) and the thread-level information area
(THLI) contain information that can be used to optimize the performance of certain
callable services. This appendix describes how to access the information in these
areas and how the information can be used.

A thread-level information area (THLI) is created for each task in the system. The
THLI is pointed to by the OTCB field OTCBTHLI. The OTCB is pointed to by a
secondary task control block field, STCBOTCB.

A process-level information area (PRLI) is created for each process in the system.
The PRLI is pointed to by the THLI field THLIPRLI for each task in the process.

The system maintains information in the PRLI and THLI that can be used to reduce
the system overhead that is associated with certain callable services and improve
their performance. The callable services that can use the information in these
control blocks include:
v BPX1PSI (pthread_setintr)
v BPX1PST (pthread_setintrtype)
v BPX1SPM (sigprocmask)
v BPX1GPI (getpid)

Optimization processing for BPX1PSI (pthread_setintr)
Information in the THLI area can be used to optimize BPX1PSI (pthread_setintr)
callable service invocations. BPX1PSI must not be optimized if a signal is pending
for the thread. A signal pending condition is indicated by the ThliSigPending flag.
When this flag is on, indicating that a signal is pending, BPX1PSI must be called to
process the request and process signal delivery.

The following table maps the actions that can be taken for BPX1PSI when there is
no signal pending. The result column shows the action that the optimizing program
can take. The cancel pending column reflects the setting of ThliCancelPending, and
the current state column that of ThliCancelDisabled. The new state is provided by
the caller of BPX1PSI. The interruptablity type, which is set by BPX1PST, is not
applicable to BPX1PSI processing.

Table 24. Optimization processing for BPX1PSI (pthread_setintr)

Current State New State Int. Type Cancel Pending Result

Disabled Disabled N/A N/A Return
″disabled″

Enabled Disabled N/A N/A Issue BPX1PSI

Enabled Enabled N/A Yes Issue BPX1PSI

Enabled Enabled N/A No Return ″enabled″

Disabled Enabled N/A N/A Issue BPX1PSI

N/A Invalid N/A N/A Issue BPX1PSI

© Copyright IBM Corp. 1996, 2002 1335

In other words, the optimizing program should issue the BPX1PSI if there is a
request to change the interruptability state, or if the state is enabled and there is a
cancel pending, as indicated by the ThliCancelPending bit.

Optimization processing for BPX1PST (pthread_setintrtype)
Information in the THLI area can be used to optimize BPX1PST
(pthread_setintrtype) callable service invocations.

The following table maps the actions that can be taken for BPX1PST when there is
no signal pending. The result column shows the action that the optimizing program
can take. The cancel pending column reflects the setting of ThliCancelPending, the
cancel disabled column the setting of ThliCancelPending, and the current
interruptability type column the setting of ThliCancelAsync. The new interruptability
type is provided by the caller of BPX1PST.

Table 25. Optimization processing for BPX1PST (pthread_setintrtype)

Current Int.
Type

New Int. Type Cancel
Disabled

Cancel Pending Result

Controlled Controlled N/A N/A Return
″controlled″

Asynch Controlled N/A N/A Issue BPX1PST

Controlled Asynch N/A N/A Issue BPX1PST

Asynch Asynch Yes N/A Return ″asynch″

Asynch Asynch No No Return ″asynch″

Asynch Asynch No Yes Issue BPX1PST

N/A Invalid N/A N/A Issue BPX1PST

In other words, the optimizing program should issue the BPX1PST if there is a
request to change the interruptability type; or if the type is asynchronous and cancel
is not disabled (ThliCancelDisabled off) and there is a cancel pending
(ThliCancelPending on).

Optimization processing for BPX1SPM (sigprocmask)
Information in the THLI data area can be used to optimize BPX1SPM (sigprocmask)
invocations.

The optimizing program should first process the new mask that is provided by the
caller of BPX1SPM, to determine if optimization is possible. If no new mask is
provided, no change is being made to the signal mask, and this call can be
optimized.

To process the new mask, the optimizing program should first generate the effective
new mask using the new mask provided by the caller, clearing bits from this new
mask for any signals that cannot be caught (ANDing the provided mask with
PrliCatcherMask), and then applying the How requested by the caller as follows:

Table 26. Optimization processing for BPX1SPM (sigprocmask)

How Effective Mask

SIG_SETMASK New mask ANDed with PrliCatcherMask

SIG_BLOCK New mask ORed with ThliSigMask

Optimizing performance using process- and thread-level information

1336 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Table 26. Optimization processing for BPX1SPM (sigprocmask) (continued)

How Effective Mask

SIG_UNBLOCK Complement new mask ANDed with ThliSigMask

Other An incorrect How was specified; issue BPX1SPM or fail the
request with an appropriate error code.

If the effective mask does not equal the current mask in ThliSigMask, a change in
value of the current signal mask must be made, and BPX1SPM should be issued. If
the effective mask is the same as the current signal mask, the request is a NOOP
and may be optimized.

If the request is being optimized and the caller requested that the previous value of
the signal mask be returned, the optimizing program should return ThliSigMask to
the caller.

Optimization processing for BPX1GPI (getpid)
Information in the PRLI data area can be used to optimize BPX1GPI (getpid)
callable service invocations.

The optimizing program should return PrliProcessID if there is no signal pending;
otherwise, BPX1GPI should be issued.

Optimizing performance using process- and thread-level information

Appendix G. Optimizing performance using process- and thread-level information 1337

1338 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix H. Callable services available to SRB mode routines

Overview
A subset of the callable services are now available to SRB mode routines.
Supported callable services can be called from SRBs using the same conventions
that are used when calling them from task mode routines. However, unlike task
mode routines, SRBs do not cause process dubbing on the first issue of a callable
service. In order to issue callable services, they must be associated with a dubbed
process; that is, the SRB must be running in a dubbed address space. Upon
issuing the callable service, it must place into register 2 the address of the OAPB
control block that represents the associated process. When the OAPB address in
register 2 is zero, the SRB is associated with the initial process in the address
space.

Most applications consist of a single process per address space. These applications
should default to the initial or only process in the address space, and set register 2
to zero when invoking a callable service. Applications creating multiple processes
per address space most likely need to explicitly provide the address of the OAPB of
the process to which the SRB is to be associated. In this case, the SRB typically
receives the OAPB address from the routine scheduling the SRB. The OAPB
address is obtained from the PRLI control block, which contains process-related
control information intended for external use. The PRLI is addressed as follows:
TcbStcb -> StcbOtcb -> OtcbThli -> ThliPrli -> PrliOapb

The TCB referenced must represent a thread of the process to which the SRB is to
be associated, and the PrliOapb field contains the address that must be passed by
the SRB in register 2 when issuing a callable service. Note that the StcbOtcb field
is zero until the task has been dubbed. The Otcb, Thli, and Prli are mapped by
BPXZOTCB, BPXYTHLI, and BPXYPRLI, respectively.

A restriction on the use of callable services by an SRB is that the SRB must be
running in non-cross memory mode (primary=secondary=home).

Recovery
The use of callable services from SRB routines requires that the SRB and
associated task mode routines must assume responsibility for certain recovery
actions. Failure to provide for this can result in unwanted and unpredictable system
problems; the system will take a dump. This responsibility revolves around the
creation and termination of the process with which the SRB is associated. The
process should be created (dubbed) prior to the scheduling of any SRBs that may
be associated with it for the purpose of issuing calls. In addition, the SRBs must not
be allowed to issue calls after the process has terminated, and the owner of the
function taking advantage of SRB mode calls is responsible for guaranteeing that
this does not happen. The function must also ensure that it cannot terminate until
all of the application-created SRBs have completed processing.

Task and address space-level resource managers can be used to help meet this
responsibility. You can use the MVS RESMGR service to set up task and address
space resource managers. The following example shows the proper order of
processing for the task mode routine, and for the task and address space dynamic
resource manager.

© Copyright IBM Corp. 1996, 2002 1339

Task mode routine responsibilities
v Get the task dubbed by issuing a callable service. The task may already have

been dubbed by having been pthread-created.

v Establish a task and an address space dynamic resource manager using the
MVS RESMGR service. There are several RESMGR options you can choose
when creating a resource manager. It is recommended that you choose to
monitor only the address space containing the process, in order to limit system
overhead during termination of other address spaces; and that you monitor the
top task of the process. Note that the resource manager must be established via
the RESMGR service; and that this must be done after the task has been
dubbed, or your resource manager will be called after the systems resource
manager responsible for process-level termination.

v Schedule one or more SRBs, passing the OAPB address obtained from the
PRLI.

v Ensure that all SRBs have completed, and that they will not issue any more
callable services.

v Undub or terminate the task.

Task and address space dynamic resource manager
v Terminate any SRBs that have not yet been dispatched via the MVS PURGEDQ

service. You can provide filters to this service to purge SRBs selectively; for
example, a multiprocess application could use the RMTR address filter to purge
only SRBs for the terminating process.

v Wait for already-dispatched SRBs to complete.

For information about scheduling an SRB and SRB processing, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Callable services supported in SRB mode
The following callable services support SRB mode callers. The support of SRB
mode callers was intended for the use of sockets from within SRB routines. Some
of the following calls support files as well as sockets. These services will only
support sockets from an SRB and not file operations. The callable services that are
limited are so marked. The results of calling an unsupported callable service are
unpredictable.
v accept (BPX1ACP)
v asyncio (BPX1AIO)
v bind (BPX1BND)
v close (BPX1CLO) - socket support only
v connect (BPX1CON)
v gethostid & gethostname (BPX1HST)
v getpeername & getsockname (BPX1GNM)
v getsockopt & setsockopt (BPX1OPT)
v listen (BPX1LSN)
v pfsctl (BPX1PCT)
v read (BPX1RED) - socket support only
v readv (BPX1RDV) - socket support only
v recv (BPX1RCV)
v recvfrom (BPX1RFM)
v recvmsg (BPX1RMS)
v send (BPX1SND)
v sendmsg (BPX1SMS)

Callable services available to SRB mode routines

1340 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

v sendto (BPX1STO)
v setpeer (BPX1SPR)
v shutdown (BPX1SHT)
v socket & socket_pair (BPX1SOC)
v w_ioctl (BPX1IOC) - socket support only
v write (BPX1WRT) - socket support only
v writev (BPX1WRV) - socket support only

Callable services available to SRB mode routines

Appendix H. Callable services available to SRB mode routines 1341

1342 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix I. z/OS UNIX process start/end exits

Four installation exits are defined to enable applications to monitor z/OS UNIX
process activity. Exit routines can be added to each exit point. z/OS UNIX passes
control to the exit routine when an exit point is reached, and information about the
current process and its creator is then passed to the exit routine. These are the
installation exits:

Pre-process initiation exit (BPX_PREPROC_INIT)
Pre-process initiation exit routines receive control immediately before the
creation of any new z/OS UNIX process. When a pre-process initiation exit
routine receives control, the Process Exit Data Block (PEDB) contains the
data about the initiating job.

Upon return from the exit, if the exit’s return code is greater than 4, the
process initiation request will be rejected. The z/OS UNIX callable service
that drove this process initiation request will fail with a return value of −1, a
return code of EAGAIN, and a reason code of JrPreProcInitExitReject.

The pre-process initiation exit should have a recovery routine to clean up
any resources that it obtained. If the exit does not have a recovery routine,
first-failure capture is not possible, and resources that were obtained will
not be released. Should an exit abend, the z/OS UNIX callable service that
drove this process initiation request will fail with a return value of −1, a
return code of EAGAIN, and a reason code of JrPreProcInitExitAbend.

The sole purpose of the pre-process initiation exit point is to provide an
application with the ability to fail an attempt to initialize a process. If this is
not the intent of your exit routine, you should not use this exit point. Do not
use this exit point if, for example, your primary purpose is to monitor the
initialization and termination of processes in the system, because it does
not receive enough information to identify the process that is to be
initialized. When it receives control, the only information the exit has
available (from the PEDB) is the unique ID and information about the
initiator of the process.

Recommendation: Resources should not be obtained at this exit point,
because it is possible that another exit routine could subsequently fail the
process initialization attempt, and no further exit points would be driven for
this process, including the process termination exit. Resources that relate to
the process should be obtained in the post-process initialization exit, where
the process is fully initialized, and the termination exit will eventually run
upon termination of the process.

Rule: This exit should not use any z/OS UNIX callable service. To do so
could cause unexpected results, such as ABEND 138–ENQ
deadlock.

Post-process initiation exit (BPX_POSPROC_INIT)
Post-process initiation exit routines receive control immediately after the
creation of any new z/OS UNIX process. When a post-process initiation exit
routine receives control, the Process Exit Data Block (PEDB) contains the
creator and the new process data.

The post-process initiation exit should have a recovery routine to clean up
any resources that it obtained. If the exit does not have a recovery routine,
first-failure capture is not possible, and resources that were obtained will
not be released. Should an exit abend, the z/OS UNIX callable service that

© Copyright IBM Corp. 1996, 2002 1343

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

drove this process initiation request will fail with a return value of −1, a
return code of EAGAIN, and a reason code of JrPosProcInitExitAbend.

Rule: This exit should not use any z/OS UNIX callable service. To do so
could cause unexpected results, such as ABEND 138–ENQ
deadlock.

Process image initiation exit (BPX_IMAGE_INIT)
Process image initiation exit routines receive control immediately before the
initiation of a new z/OS UNIX process image. This occurs when a
successful spawn, attach_exec, attach_execmvs, exec or execmvs callable
service is done. The process image initiation exit receives control before the
new process image file is run. When a process image initiation exit routine
receives control, the Process Exit Data Block (PEDB) contains the data of
the creator and the new image.

The process image initiation exit should have a recovery routine to clean up
any resources it obtained. If the exit does not have a recovery routine,
first-failure capture is not possible, and resources that were obtained will
not be released. Should an exit abend, the z/OS UNIX callable service that
drove this process receives a successful return code, but the image is not
created, and an EC6 ABEND with a ImageInitExitABEND reason code is
issued.

Rule: This exit should not use any z/OS UNIX callable service. To do so
could cause unexpected results, such as ABEND 138–ENQ
deadlock.

Pre-process termination exit (BPX_PREPROC_TERM)
Pre-process termination exit routines receive control immediately before the
termination of a z/OS UNIX process. These exits may receive control in the
address space of the process or in the master address space, if the
address space of the process was terminated. In the latter case (ASID=1),
z/OS UNIX callable services cannot be used by the exit. When a
pre-process termination exit receives control, the Process Exit Data Block
(PEDB) contains data about the terminating process.

Exit environment
The user exit receives control in the following environment:

v Supervisor state, key zero

v Running in the ASID of the process, except for the pre-process termination exit,
which runs in the master address space if the address space of the process was
terminated.

Register usage:

v On entry to the user exit, register 1 points to the pointer to the Process Exit Data
Block (PEDB).

v For the pre-process initiation exit, if the value returned in register 15 is > 4, the
process initiation request is rejected. For all other exit points, the return code in
register 15 is ignored.

z/OS UNIX process start/end exits

1344 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|

|

|
|

|
|
|

Errno/errnoJrs
Any callable service that causes a process to be dubbed can receive the following
errno/errnojr combinations:

Error Description

Return code EAGAIN, reason code
JrPreProcInitExitReject.

The pre-process initiation exit failed the
process initiation request.

Return value −1, return code EAGAIN, reason
code JrPreProcInitExitAbend

The pre-process initiation exit ended
abnormally.

Return value −1, return code EAGAIN, reason
code JrPosProcInitExitAbend

The post-process initiation exit ended
abnormally.

EC6 ABEND, reason code
ImageInitExitABEND

The process image initiation exit ended
abnormally.

Restrictions
1. Process start/end exits cannot use any z/OS UNIX callable services.

2. Exit routines are responsible for cleaning up any resources they obtain (such as
storage or locks).

3. Exit routines should have recovery routines to ensure first-failure data capture.

Usage notes
The same exit point can be used for all four exits. The value in the PEDB field
PEDBEXITPOINTID identifies the exit point that is hit. For example, If
PEDBEXITPOINTID is PEDB_BPX_PREPROC_INIT, the pre-process initiation exit
point is hit. The constants that identify each exit point are defined at the bottom of
the PEDB (see “BPXYPEDB — Mapping of Process Exit Data Block f” on
page 994).

See z/OS UNIX System Services Planning for more information about the process
start/end installation exits.

z/OS UNIX process start/end exits

Appendix I. z/OS UNIX process start/end exits 1345

|
|

|
|

|||

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|
|

|
|

1346 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Appendix J. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1996, 2002 1347

1348 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2002 1349

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs that use z/OS UNIX System Services (z/OS UNIX).

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
CICS
DFS
IBM
IBMLink
IMS
Language Environment
Library Reader
MVS
OS/390
RACF
Resource Link
z/OS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others:

Java Sun Microsystems, Inc.

Notices

1350 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Index

Special characters
__console() (BPX1CCS) service 120

example 1078
__cpl (BPX1CPL) service 128
__getthent (BPX1GTH) service 285

example 1144
__map_init (BPX1MMI) service 339

example 1167
__map_service (BPX1MMS) service 344

example 1169
__mount (BPX2MNT) service 369

example 1171
__osenv_get/set/unset/persist/unpersist (BPX1OSE)

service
example 1185

__passwd (BPX1PWD) service 455
example 1206

__pid_affinity (BPX1PAF) service 471
example 1186

__security (BPX1SEC) service
example 1231

__sigactionset (BPX1SA2) service 752
example 1228

__wlm (BPX1WLM) service 924
__WLM (BPX1WLM) service

example 1306
_exit (BPX1EXI) service 150

example 1097

A
accept (BPX1ACP) service 10
Accept (BPX1ACP) service

example 1069
accept_and_recv (BPX1ANR) service 13
accept_and_recv(BPX1ANR) service

example 1072
access

check file availability 18
file and create descriptor 434
group database

by group ID 224
by group name 227
sequentially 221, 681

to callable services 1
user database

sequentially 263, 698
user ID 269
user name 266, 455

access (BPX1ACC) service 18
example 1067

accessibility 1347
ACEE 517
Addr_Info structures

free 193
aio_suspend (BPX1ASP) service 21

example 1073

alarm (BPX1ALR) service 25
example 1071

alarm, set 25
alias

get
of a host name 239
of an IP address 236

appropriate privileges 8
assembler programming language

call syntax 2
asynchronous I/O request

wait for 21
asynchronous read

file 27
asynchronous serial data

break transmission 847
asynchronous write

file 27
asyncio (BPX1AIO) service 27

example 1070
attach

to callable services 1
ATTACH macro

multiple task created for signals 1324
attach_exec (BPX1ATX) service 45

example 1075
attach_execmvs (BPX1ATM) service 54

example 1074
attribute

obtain terminal 837
set terminal 850

audit flags
change file 75
change file by descriptor 163

auth_check
resource

access 60
auth_check_resource_np (BPX1ACK) service 60

example 1068
automatic conversion

control 174
availability

file system 365, 369, 887

B
bind (BPX1BND) service 65

example 1076
BPX1ACC (access) service 18

example 1067
BPX1ACK (auth_check_resource_np) service 60

example 1068
BPX1ACP (accept) service 10

example 1069
BPX1AIO (asyncio) service 27

example 1070
BPX1ALR (alarm) service 25

example 1071

© Copyright IBM Corp. 1996, 2002 1351

BPX1ANR (accept_and_recv) service 13
example 1072

BPX1ASP (aio_suspend) service 21
example 1073

BPX1ATM (attach_execmvs) service 54
example 1074

BPX1ATX (attach_exec) service 45
example 1075

BPX1BND (bind) service 65
example 1076

BPX1CCA (cond_cancel) service 102
example 1077

BPX1CCS (__console()) service 120
example 1078

BPX1CHA (chaudit) service 75
example 1079

BPX1CHD (chdir) service 79
example 1080

BPX1CHM (chmod) service 82
example 1081

BPX1CHO (chown) service 86
example 1082

BPX1CHP (chpriority) service 90
example 1083

BPX1CHR (chattr) service 68
example 1084

BPX1CID (convert_id_np) service 124
example 1085

BPX1CLD (closedir) service 100
example 1086

BPX1CLO (close) service 97
example 1087

BPX1CON (connect) service 117
example 1088

BPX1CPL (__cpl) service 128
BPX1CPO (cond_post) service 104
BPX1CPO(cond_post) service

example 1089
BPX1CRT (chroot) service 94

example 1090
BPX1CSE (cond_setup) service 107

example 1091
BPX1CTW (cond_timed_wait) service 110
BPX1CTW (cond_timed_wait)service

example 1092
BPX1CWA (cond_wait) service 114

example 1093
BPX1DEL (deletehfs) service 131
BPX1DEL (deleteHFS) service

example 1094
BPX1DSD (sw_sigdlv) service 815
BPX1ENV (oe_env_np) service 425

example 1095
BPX1EXC (exec) service 133

example 1096
BPX1EXI (_exit) service 150

example 1097
BPX1EXM (execmvs) service 144

example 1098
BPX1EXT (extlink_np) service 153

example 1099

BPX1FAI (freeaddrinfo) service 193
example 1100

BPX1FCA (fchaudit) service 163
example 1101

BPX1FCD (fchdir) service 166
example 1102

BPX1FCM (fchmod) service 168
example 1103

BPX1FCO (fchown) service 171
example 1104

BPX1FCR (fchattr) service 156
example 1105

BPX1FCT (fcntl) service 174
example 1106

BPX1FPC (fpathconf) service 189
example 1107

BPX1FRK (fork) service 184
example 1108

BPX1FST (fstat) service 195
example 1109

BPX1FSY (fsync) service 201
example 1110

BPX1FTR (ftruncate) service 203
example 1111

BPX1FTV (fstatvfs) service 198
example 1112

BPX1GAI (getaddrinfo) service 206
example 1113

BPX1GCL (getclientid) service 213
example 1114

BPX1GCW (getcwd) service 216
example 1115

BPX1GEG (getegid) service 218
example 1116

BPX1GEP (getpgid) service 255
example 1117

BPX1GES (getsid) service 276
example 1118

BPX1GET (w_getipc) service 901
example 1119

BPX1GEU (geteuid) service 219
example 1120

BPX1GGE (getgrent) service 221
example 1121

BPX1GGI (getgrgid) service 224
example 1122

BPX1GGN (getgrnam) service 227
example 1123

BPX1GGR (getgroups) service 230
example 1124

BPX1GHA (gethostbyaddr) service 236
example 1125

BPX1GHN (gethostbyname) service 239
example 1126

BPX1GID (getgid) service 220
example 1127

BPX1GIV (givesocket) service 292
example 1128

BPX1GLG (getlogin) service 248
example 1129

BPX1GMN (w_getmntent) service 905

1352 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1GMN (w_getmntent) service (continued)
example 1130

BPX1GNI (getnameinfo) service 251
example 1131

BPX1GNM (getpeername or getsockname) service
example 1133

BPX1GNM (getsockname or getpeername)
service 278

BPX1GPE (getpwent) service 263
example 1134

BPX1GPG (getpgrp) service 257
example 1132

BPX1GPI (getpid) service 258
example 1135

BPX1GPN (getpwnam) service 266
example 1136

BPX1GPP (getppid) service 259
example 1137

BPX1GPS (w_getpsent) service 908
example 1138

BPX1GPT (grantpt) service 295
example 1139

BPX1GPU (getpwuid) service 269
example 1140

BPX1GPY (getpriority) service 260
example 1141

BPX1GRL (getrlimit) service 272
example 1142

BPX1GRU (getrusage) service 274
example 1143

BPX1GTH (__getthent) service 285
example 1144

BPX1GTR (getitimer) service 245
example 1145

BPX1GUG (getgroupsbyname) service 233
example 1146

BPX1GUI (getuid) service 288
example 1147

BPX1GWD (getwd) service 289
example 1148

BPX1HST (gethostid or gethostname) service 242
example 1149

BPX1IOC (w_ioctl) service 914
example 1150

BPX1IPT (mvsiptaffinity) service 399
example 1151

BPX1ITY (isatty) service 307
example 1152

BPX1KIL (kill) service 311
example 1154

BPX1LCO (lchown) service 315
example 1155

BPX1LNK (link) service 319
example 1156

BPX1LOD (loadhfs) service 326
BPX1LOD (loadHFS) service

example 1157
BPX1LSK (lseek) service 332

example 1158
BPX1LSN (listen) service 323

example 1159

BPX1LST (lstat) service 335
example 1160

BPX1MAT (shmat) service 723
example 1161

BPX1MCT (shmctl) service 727
example 1162

BPX1MDT (shmdt) service 731
example 1163

BPX1MGT (shmget) service 738
example 1164

BPX1MKD (mkdir) service 349
example 1165

BPX1MKN (mknod) service 353
example 1166

BPX1MMI (__map_init) service 339
example 1167

BPX1MMP (mmap) service 357
example 1168

BPX1MMS (__map_service) service 344
example 1169

BPX1MNT (mount) service 365
example 1170

BPX1MP (mvspause) service 402
example 1172

BPX1MPC (mvsprocclp) service 408
example 1173

BPX1MPI (mvspauseinit) service 405
example 1174

BPX1MPR (mprotect) service 373
example 1175

BPX1MSD (mvsunsigsetup) service 419
example 1176

BPX1MSS (mvssigsetup) service 411
example 1177

BPX1MSY (msync) service 392
example 1178

BPX1MUN (munmap) service 396
example 1179

BPX1NIC (nice) service 422
example 1180

BPX1OPD (opendir) service 439
example 1181

BPX1OPN (open) service 434
example 1182

BPX1OPT (getsockopt or setsockopt) service 281
example 1184

BPX1OSE (__osenv_get/set/unset/persist/unpersist))
service

example 1185
BPX1OSE (osenv) service 447
BPX1PAF (__pid_affinity) service 471

example 1186
BPX1PAS (pause) service 463

example 1187
BPX1PCF (pathconf) service 459

example 1188
BPX1PCT (pfsctl) service 465

example 1189
BPX1PIO (w_pioctl) service 929
BPX1PIP (pipe) service 475

example 1190

Index 1353

BPX1POL (poll) service 477
example 1191

BPX1PQG (pthread_quiesce_and_get_np) service 508
BPX1PQG (Pthread_quiesce_and_get_np) service

example 1192
BPX1PSI (pthread_setintr) service 519

example 1193
BPX1PST (pthread_setintrtype) service 522

example 1194
BPX1PTB (pthread_cancel) service 484

example 1195
BPX1PTC (pthread_create) service 486

example 1196
BPX1PTD (pthread_detach) service 492

example 1197
BPX1PTI (pthread_testintr) service 528

example 1198
BPX1PTJ (pthread_join) service 498

example 1199
BPX1PTK (pthread_kill) service 501

example 1200
BPX1PTQ (pthread_quiesce) service 504

example 1201
BPX1PTR (ptrace) service 530

example 1202
BPX1PTS (pthread_self) service 518

example 1203
BPX1PTT (pthread_tag_np) service 525

example 1204
BPX1PTX (pthread_exit_and_get) service 494

example 1205
BPX1PWD (__passwd) service 455

example 1206
BPX1QCT (msgctl) service 376

example 1207
BPX1QDB (querydub) service 559

example 1208
BPX1QGT (msgget) service 380

example 1209
BPX1QRC (msgrcv) service 384

example 1210
BPX1QSE (quiesce) service 564

example 1211
BPX1QSN (msgsnd) service 388

example 1212
BPX1RCV (recv) service 592

example 1213
BPX1RD2 (readdir2) service 574

example 1218
BPX1RDD (readdir) service 571

example 1214
BPX1RDL (readlink) service 581

example 1215
BPX1RDV (readv) service 584

example 1216
BPX1RDX (read extlink) service

example 1217
BPX1RDX (read_extlink) service 578
BPX1RED (read) service 567

example 1219
BPX1REN (rename) service 602

BPX1REN (rename) service (continued)
example 1220

BPX1RFM (recvfrom) service 595
example 1221

BPX1RMD (rmdir) service 610
example 1222

BPX1RMG (resource) service 606
example 1223

BPX1RPH (realpath) service 588
example 1225

BPX1RW (Pread() and Pwrite()) service 482
BPX1RW (Pwrite) service

example 1226
BPX1RWD (rewinddir) service 608

example 1227
BPX1SA2 (__sigactionset) service 752

example 1228
BPX1SCT (semctl) service 627

example 1229
BPX1SDD (set_dub_default) service 669
BPX1SDD (setdubdefault) service

example 1230
BPX1SEC (__security) service

example 1231
BPX1SEC service 613
BPX1SEG (setegid) service 673

example 1232
BPX1SEL (select) service 619

example 1233
BPX1SEU (seteuid) service 676

example 1234
BPX1SF (send_file) service 645

example 1235
BPX1SGE (setgrent) service 681

example 1236
BPX1SGI (setgid) service 678

example 1237
BPX1SGQ (sigqueue) service 762

example 1238
BPX1SGR (setgroups) service 682

example 1239
BPX1SGT (semget) service 633

example 1240
BPX1SHT (shutdown) service 743

example 1241
BPX1SIA (sigaction) service 746

example 1242
BPX1SIN (server_init) service 658

example 1243
BPX1SIP (sigpending) service 757

example 1244
BPX1SLK (shmem_lock) service 733

example 1245
BPX1SLP (sleep) service 774

example 1246
BPX1SMF (smf_record) service 777

example 1247
BPX1SND (send) service 642

example 1249
BPX1SOC (socket or socketpair) service 780

example 1250

1354 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

BPX1SOP (semop) service 638
example 1251

BPX1SPB (queue_interrupt) service 561
example 1252

BPX1SPE (setpwent) service 698
example 1253

BPX1SPG (setpgid) service 692
example 1254

BPX1SPM (sigprocmask) service 759
example 1255

BPX1SPN (spawn) service 784
example 1256

BPX1SPR (setpeer) service 689
example 1257

BPX1SPW (server_pwu) service 662
example 1258

BPX1SPY (setpriority) service 695
example 1259

BPX1SRG (setregid) service 699
example 1260

BPX1SRL (setrlimit) service 705
example 1261

BPX1SRU (setreuid) service 702
example 1262

BPX1SRX (srx_np) service 801
example 1263

BPX1SSI (setsid) service 709
example 1264

BPX1SSU (sigsuspend) service 766
example 1265

BPX1STA (stat) service 808
example 1266

BPX1STE (set_timer_event) service 716
example 1267

BPX1STF (w_statvfs) service 932
example 1268

BPX1STL (set_thread_limits) service 712
example 1269

BPX1STO (sendto) service 654
example 1270

BPX1STR (setitimer) service 685
example 1271

BPX1STV (statvfs) service 812
example 1272

BPX1STW (sigtimedwait) service 769
example 1273

BPX1SUI (setuid) service 719
example 1274

BPX1SWT (sigwait) service 772
example 1275

BPX1SYC (sysconf) service 824
example 1276

BPX1SYM (symlink) service 817
example 1277

BPX1SYN (sync) service 822
example 1278

BPX1TAF (MVSThreadAffinity) service 416
example 1279

BPX1TAK (takesocket) service 826
example 1280

BPX1TDR (tcdrain) service 829

BPX1TDR (tcdrain) service (continued)
example 1281

BPX1TFH (tcflush) service 834
example 1282

BPX1TFW (tcflow) service 831
example 1283

BPX1TGA (tcgetattr) service 837
example 1284

BPX1TGC (tcgetcp) service 840
example 1285

BPX1TGP (tcgetpgrp) service 843
example 1286

BPX1TGS (tcgetsid) service 845
example 1287

BPX1TIM (times) service 864
example 1288

BPX1TLS (pthread_security_np) service 512
example 1289

BPX1TRU (truncate) service 867
example 1290

BPX1TSA (tcsetattr) service 850
example 1291

BPX1TSB (tcsendbreak) service 847
example 1292

BPX1TSC (tcsetcp) service 853
example 1293

BPX1TSP (tcsetpgrp) service 857
example 1294

BPX1TST (tcsettables) service 860
example 1295

BPX1TYN (ttyname) service 870
example 1296

BPX1UMK (umask) service 875
example 1298

BPX1UMT (umount) service 877
example 1299

BPX1UNA (uname) service 880
example 1300

BPX1UNL (unlink) service 882
example 1301

BPX1UPT (unlockpt) service 885
example 1302

BPX1UQS (unquiesce) service 887
example 1303

BPX1UTI (utime) service 890
example 1304

BPX1WAT (wait) service 893
example 1305

BPX1WLM (__wlm) service 924
BPX1WLM (__WLM) service

example 1306
BPX1WRT (write) service 935

example 1307
BPX1WRV (writev) service 939

example 1308
BPX1WTE (wait extension) service

example 1309
BPX1WTE (wait-extension) service 897
BPX1xxx module 2
BPX2ITY (isatty) service 309

example 1153

Index 1355

BPX2MNT (__mount) service 369
example 1171

BPX2OPN (openstat) service 442
BPX2OPT (open) service

example 1183
BPX2RMS (recvmsg) service 599

example 1224
BPX2SMS (sendmsg) service 650

example 1248
BPX2TYN (ttyname) service 872

example 1297
BPXGMCDE (IPCSDumpOpenClose) service 297
BPXGMPTR (IPCSDumpAccess) service 302
BPXYACC mapping macro 951
BPXYAIO mapping macro 952
BPXYATT mapping macro 953
BPXYAUDT mapping macro 954
BPXYBRLK mapping macro 955
BPXYCCA mapping macro 955
BPXYCID mapping macro 956
BPXYCONS mapping macro 956
BPXYCW mapping macro 961
BPXYDCOR mapping macro 962
BPXYDIRE mapping macro 961
BPXYENFO mapping macro 968
BPXYERNO mapping macro 968
BPXYFCTL mapping macro 968
BPXYFDUM mapping macro 969
BPXYFTYP mapping macro 969
BPXYFUIO mapping macro 970
BPXYGIDN mapping macro 971
BPXYGIDS mapping macro 972
BPXYINHE mapping macro 972
BPXYIOCC mapping macro 973
BPXYIOV mapping macro 978
BPXYIPCP mapping macro 978
BPXYIPCQ mapping macro 978
BPXYITIM mapping macro 980
BPXYMMG mapping macro 981
BPXYMNTE mapping macro 983
BPXYMODE mapping macro 986
BPXYMSG mapping macro 986
BPXYMSGF mapping macro 987
BPXYMSGH mapping macro 987
BPXYMSGX mapping macro 988
BPXYMTM mapping macro 989
BPXYOCRT mapping macro 990
BPXYOEXT mapping macro 991
BPXYOPNF mapping macro 993
BPXYPCF mapping macro 993
BPXYPEDB mapping macro 994
BPXYPGPS mapping macro 996
BPXYPGTH mapping macro 997
BPXYPOLL mapping macro 1000
BPXYPPSD mapping macro 1001
BPXYPRLI mapping macro 1003
BPXYPTAT mapping macro 1003
BPXYPTRC mapping macro 1004
BPXYPTXL mapping macro 1018
BPXYRFIS mapping macro 1018
BPXYRLIM mapping macro 1019

BPXYRMON mapping macro 1019
BPXYSECI mapping macro 1020
BPXYSEEK mapping macro 1021
BPXYSEL mapping macro 1021
BPXYSELT mapping macro 1022
BPXYSEM mapping macro 1022
BPXYSFDL mapping macro 1022
BPXYSFPL mapping macro 1023
BPXYSHM mapping macro 1024
BPXYSIGH mapping macro 1024
BPXYSINF mapping macro 1026
BPXYSOCK mapping macro 1027
BPXYSSET mapping macro 1032
BPXYSSTF mapping macro 1033
BPXYSTAT mapping macro 1034
BPXYTCCP mapping macro 1035
BPXYTCPP mapping macro 1036
BPXYTCPX mapping macro 1044
BPXYTHDQ mapping macro 1044
BPXYTHLI mapping macro 1047
BPXYTIMS mapping macro 1049
BPXYTIOS mapping macro 1049
BPXYUTSN mapping macro 1053
BPXYWAST mapping macro 1053
BPXYWLM mapping macro 1054
BPXYWNSZ mapping macro 1057
BPXZOAPB mapping macro 1057
BPXZOTCB mapping macro 1057
buffer

flush I/O 834
flush terminal 834
write to a file 935

C
CALL macro 1
callable service

__console() (BPX1CCS) 120
__cpl (BPX1CPL) 128
__getthent (BPX1GTH) 285
__map_init (BPX1MMI) 339
__map_service (BPX1MMS) 344
__mount (BPX2MNT) 369
__passwd (BPX1PWD) 455
__pid_affinity (BPX1PAF) 471
__sigactionset (BPX1SA2) 752
__wlm (BPX1WLM) 924
_exit (BPX1EXI) 150
accept (BPX1ACP) 10
accept_and_recv (BPX1ANR) 13
access (BPX1ACC) 18
accessing a 1
aio_suspend (BPX1ASP) 21
alarm (BPX1ALR) 25
asyncio (BPX1AIO) 27
attach_exec (BPX1ATX) 45
attach_execmvs (BPX1ATM) 54
auth_check_resource_np (BPX1ACK) 60
bind (BPX1BND) 65
BPX1ACC (access) 18
BPX1ACK (auth_check_resource_np) 60

1356 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

callable service (continued)
BPX1ACP (accept) 10
BPX1AIO (asyncio) 27
BPX1ALR (alarm) 25
BPX1ANR (accept_and_recv) 13
BPX1ASP (aio_suspend) 21
BPX1ATM (attach_execmvs) 54
BPX1ATX (attach_exec) 45
BPX1BND (bind) 65
BPX1CCA (cond_cancel) 102
BPX1CCS (__console()) 120
BPX1CHA (chaudit) 75
BPX1CHD (chdir) 79
BPX1CHM (chmod) 82
BPX1CHO (chown) 86
BPX1CHP (chpriority) 90
BPX1CHR (chattr) 68
BPX1CID (convert_id_np) 124
BPX1CLD (closedir) 100
BPX1CLO (close) 97
BPX1CON (connect) 117
BPX1CPL (__cpl) 128
BPX1CPO (cond_post) 104
BPX1CRT (chroot) 94
BPX1CSE (cond_setup) 107
BPX1CTW (cond_timed_wait) 110
BPX1CWA (cond_wait) 114
BPX1DEL (deletehfs) 131
BPX1DSD (sw_sigdlv) 815
BPX1ENV (oe_env_np) 425
BPX1EXC (exec) 133
BPX1EXI (_exit) 150
BPX1EXM (execmvs) 144
BPX1EXT (extlink_np) 153
BPX1FAI (freeaddrinfo) 193
BPX1FCA (fchaudit) 163
BPX1FCD (fchdir) 166
BPX1FCM (fchmod) 168
BPX1FCO (fchown) 171
BPX1FCR (fchattr) 156
BPX1FCT (fcntl) 174
BPX1FPC (fpathconf) 189
BPX1FRK (fork) 184
BPX1FST (fstat) 195
BPX1FSY (fsync) 201
BPX1FTR (ftruncate) 203
BPX1FTV (fstatvfs) 198
BPX1GAI (getaddrinfo) 206
BPX1GCL (getclientid) 213
BPX1GCW (getcwd) 216
BPX1GEG (getegid) 218
BPX1GEP (getpgid) 255
BPX1GES (getsid) 276
BPX1GET (w_getipc) 901
BPX1GEU (geteuid) 219
BPX1GGE (getgrent) 221
BPX1GGI (getgrgid) 224
BPX1GGN (getgrnam) 227
BPX1GGR (getgroups) 230
BPX1GHA (gethostbyaddr) 236
BPX1GHN (gethostbyname) 239

callable service (continued)
BPX1GID (getgid) 220
BPX1GIV (givesocket) 292
BPX1GLG (getlogin) 248
BPX1GMN (w_getmntent) 905
BPX1GNI (getnameinfo) 251
BPX1GNM (getsockname or getpeername) 278
BPX1GPE (getpwent) 263
BPX1GPG (getpgrp) 257
BPX1GPI (getpid) 258
BPX1GPN (getpwnam) 266
BPX1GPP (getppid) 259
BPX1GPS (w_getpsent) 908
BPX1GPT (grantpt) 295
BPX1GPU (getpwuid) 269
BPX1GPY (getpriority) 260
BPX1GRL (getrlimit) 272
BPX1GRU (getrusage) 274
BPX1GTH (__getthent) 285
BPX1GTR (getitimer) 245
BPX1GUG (getgroupsbyname) 233
BPX1GUI (getuid) 288
BPX1GWD (getwd) 289
BPX1HST (gethostid or gethostname) 242
BPX1IOC (w_ioctl) 914
BPX1IPT (mvsiptaffinity) 399
BPX1ITY (isatty) 307
BPX1KIL (kill) 311
BPX1LCO (lchown) 315
BPX1LNK (link) 319
BPX1LOD (loadhfs) 326
BPX1LSK (lseek) 332
BPX1LSN (listen) 323
BPX1LST (lstat) 335
BPX1MAT (shmat) 723
BPX1MCT (shmctl) 727
BPX1MDT (shmdt) 731
BPX1MGT (shmget) 738
BPX1MKD (mkdir) 349
BPX1MKN (mknod) 353
BPX1MMI (__map_init) 339
BPX1MMP (mmap) 357
BPX1MMS (__map_service) 344
BPX1MNT (mount) 365
BPX1MP (mvspause) 402
BPX1MPC (mvsprocclp) 408
BPX1MPI (mvspauseinit) 405
BPX1MPR (mprotect) 373
BPX1MSD (mvsunsigsetup) 419
BPX1MSS (mvssigsetup) 411
BPX1MSY (msync) 392
BPX1MUN (munmap) 396
BPX1NIC (nice) 422
BPX1OPD (opendir) 439
BPX1OPN (open) 434
BPX1OPT (getsockopt or setsockopt) 281
BPX1OSE (osenv) 447
BPX1PAF (__pid_affinity) 471
BPX1PAS (pause) 463
BPX1PCF (pathconf) 459
BPX1PCT (pfsctl) 465

Index 1357

callable service (continued)
BPX1PIO (w_pioctl) 929
BPX1PIP (pipe) 475
BPX1POL (poll) 477
BPX1PQG (pthread_quiesce_and_get_np) 508
BPX1PSI (pthread_setintr) 519
BPX1PST (pthread_setintrtype) 522
BPX1PTB (pthread_cancel) 484
BPX1PTC (pthread_create) 486
BPX1PTD (pthread_detach) 492
BPX1PTI (pthread_testintr) 528
BPX1PTJ (pthread_join) 498
BPX1PTK (pthread_kill) 501
BPX1PTQ (pthread_quiesce) 504
BPX1PTR (ptrace) 530
BPX1PTS (pthread_self) 518
BPX1PTT (pthread_tag_np) 525
BPX1PTX (pthread_exit_and_get) 494
BPX1PWD (__passwd) 455
BPX1QCT (msgctl) 376
BPX1QDB (querydub) 559
BPX1QGT (msgget) 380
BPX1QRC (msgrcv) 384
BPX1QSE (quiesce) 564
BPX1QSN (msgsnd) 388
BPX1RCV (recv) 592
BPX1RD2 (readdir2) 574
BPX1RDD (readdir) 571
BPX1RDL (readlink) 581
BPX1RDV (readv) 584
BPX1RDX (read_extlink) 578
BPX1RED (read) 567
BPX1REN (rename) 602
BPX1RFM (recvfrom) 595
BPX1RMD (rmdir) 610
BPX1RMG (resource) 606
BPX1RPH (realpath) 588
BPX1RW (Pread() and Pwrite()) 482
BPX1RWD (rewinddir) 608
BPX1SA2 (__sigactionset) 752
BPX1SCT (semctl) 627
BPX1SDD (set_dub_default) 669
BPX1SEC 613
BPX1SEG (setegid) 673
BPX1SEL (select) 619
BPX1SEU (seteuid) 676
BPX1SF (send_file) 645
BPX1SGE (setgrent) 681
BPX1SGI (setgid) 678
BPX1SGQ (sigqueue) 762
BPX1SGR (setgroups) 682
BPX1SGT (semget) 633
BPX1SHT (shutdown) 743
BPX1SIA (sigaction) 746
BPX1SIN (server_init) 658
BPX1SIP (sigpending) 757
BPX1SLK (shmem_lock) 733
BPX1SLP (sleep) 774
BPX1SMF (smf_record) 777
BPX1SND (send) 642
BPX1SOC (socket or socketpair) 780

callable service (continued)
BPX1SOP (semop) 638
BPX1SPB (queue_interrupt) 561
BPX1SPE (setpwent) 698
BPX1SPG (setpgid) 692
BPX1SPM (sigprocmask) 759
BPX1SPN (spawn) 784
BPX1SPR (setpeer) 689
BPX1SPW (server_pwu) 662
BPX1SPY (setpriority) 695
BPX1SRG (setregid) 699
BPX1SRL (setrlimit) 705
BPX1SRU (setreuid) 702
BPX1SRX (srx_np) 801
BPX1SSI (setsid) 709
BPX1SSU (sigsuspend) 766
BPX1STA (stat) 808
BPX1STE (set_timer_event) 716
BPX1STF (w_statvfs) 932
BPX1STL (set_thread_limits) 712
BPX1STO (sendto) 654
BPX1STR (setitimer) 685
BPX1STV (statvfs) 812
BPX1STW (sigtimedwait) 769
BPX1SUI (setuid) 719
BPX1SWT (sigwait) 772
BPX1SYC (sysconf) 824
BPX1SYM (symlink) 817
BPX1SYN (sync) 822
BPX1TAF (MVSThreadAffinity) 416
BPX1TAK (takesocket) 826
BPX1TDR (tcdrain) 829
BPX1TFH (tcflush) 834
BPX1TFW (tcflow) 831
BPX1TGA (tcgetattr) 837
BPX1TGC (tcgetcp) 840
BPX1TGP (tcgetpgrp) 843
BPX1TGS (tcgetsid) 845
BPX1TIM (times) 864
BPX1TLS (pthread_security_np) 512
BPX1TRU (truncate) 867
BPX1TSA (tcsetattr) 850
BPX1TSB (tcsendbreak) 847
BPX1TSP (tcsetpgrp) 857
BPX1TST (tcsettables) 860
BPX1TYN (ttyname) 870
BPX1UMK (umask) 875
BPX1UMT (umount) 877
BPX1UNA (uname) 880
BPX1UNL (unlink) 882
BPX1UPT (unlockpt) 885
BPX1UQS (unquiesce) 887
BPX1UTI (utime) 890
BPX1WAT (wait) 893
BPX1WLM (__wlm) 924
BPX1WRT (write) 935
BPX1WRV (writev) 939
BPX1WTE (wait-extension) 897
BPX2ITY (isatty) 309
BPX2MNT (__mount) 369
BPX2OPN (openstat) 442

1358 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

callable service (continued)
BPX2RMS (recvmsg) 599
BPX2SMS (sendmsg) 650
BPX2TYN (ttyname) 872
BPXGMPTR (IPCSDumpAccess) 302
chattr (BPX1CHR) 68
chaudit (BPX1CHA) 75
chdir (BPX1CHD) 79
chmod (BPX1CHM) 82
chown (BPX1CHO) 86
chpriority (BPX1CHP) 90
chroot (BPX1CRT) 94
close (BPX1CLO) 97
closedir (BPX1CLD) 100
cond_cancel (BPX1CCA) 102
cond_post (BPX1CPO) 104
cond_setup (BPX1CSE) 107
cond_timed_wait (BPX1CTW) 110
cond_wait (BPX1CWA) 114
connect (BPX1CON) 117
convert_id_np (BPX1CID) 124
deletehfs (BPX1DEL) 131
exec (BPX1EXC) 133
execmvs (BPX1EXM) 144
exit 150
extlink_np (BPX1EXT) 153
fchattr (BPX1FCR) 156
fchaudit (BPX1FCA) 163
fchdir (BPX1FCD) 166
fchmod (BPX1FCM) 168
fchown (BPX1FCO) 171
fcntl (BPX1FCT) 174
fork (BPX1FRK) 184
fpathconf (BPX1FPC) 189
freeaddrinfo (BPX1FAI) 193
fstat (BPX1FST) 195
fstatvfs (BPX1FTV) 198
fsync (BPX1FSY) 201
ftruncate (BPX1FTR) 203
getaddrinfo (BPX1GAI) 206
getclientid (BPX1GCL) 213
getcwd (BPX1GCW) 216
getegid (BPX1GEG) 218
geteuid (BPX1GEU) 219
getgid (BPX1GID) 220
getgrent (BPX1GGE) 221
getgrgid (BPX1GGI) 224
getgrnam (BPX1GGN) 227
getgroups (BPX1GGR) 230
getgroupsbyname (BPX1GUG) 233
gethostbyaddr (BPX1GHA) 236
gethostbyname (BPX1GHN) 239
gethostid or gethostname (BPX1HST) 242
getitimer (BPX1GTR) 245
getlogin (BPX1GLG) 248
getnameinfo (BPX1GNI) 251
getpgid (BPX1GEP) 255
getpgrp (BPX1GPG) 257
getpid (BPX1GPI) 258
getppid (BPX1GPP) 259
getpriority (BPX1GPY) 260

callable service (continued)
getpwent (BPX1GPE) 263
getpwnam (BPX1GPN) 266
getpwuid (BPX1GPU) 269
getrlimit (BPX1GRL) 272
getrusage (BPX1GRU) 274
getsid (BPX1GES) 276
getsockname or getpeername (BPX1GNM) 278
getsockopt or setsockopt (BPX1OPT) 281
getuid (BPX1GUI) 288
getwd (BPX1GWD) 289
givesocket (BPX1GIV) 292
grantpt (BPX1GPT) 295
IPCSDumpAccess (BPXGMPTR) 302
isatty (BPX1ITY) 307
isatty (BPX2ITY) 309
kill (BPX1KIL) 311
lchown (BPX1LCO) 315
link (BPX1LNK) 319
listen (BPX1LSN) 323
loadhfs (BPX1LOD) 326
lseek (BPX1LSK) 332
lstat (BPX1LST) 335
mkdir (BPX1MKD) 349
mknod (BPX1MKN) 353
mmap (BPX1MMP) 357
mount (BPX1MNT) 365
mprotect (BPX1MPR) 373
msgctl (BPX1QCT) 376
msgget (BPX1QGT) 380
msgrcv (BPX1QRC) 384
msgsnd (BPX1QSN) 388
msync (BPX1MSY) 392
munmap (BPX1MUN) 396
mvsiptaffinity (BPX1IPT) 399
mvspause (BPX1MP) 402
mvspauseinit (BPX1MPI) 405
mvsprocclp (BPX1MPC) 408
mvssigsetup (BPX1MSS) 411
MVSThreadAffinity (BPX1TAF) 416
mvsunsigsetup (BPX1MSD) 419
nice (BPX1NIC) 422
oe_env_np (BPX1ENV) 425
open (BPX1OPN) 434
opendir (BPX1OPD) 439
openstat (BPX2OPN) 442
osenv (BPX1OSE) 447
pathconf (BPX1PCF) 459
pause (BPX1PAS) 463
pfsctl (BPX1PCT) 465
pipe (BPX1PIP) 475
poll (BPX1POL) 477
Pread() and Pwrite() (BPX1RW) 482
pthread_cancel (BPX1PTB) 484
pthread_create (BPX1PTC) 486
pthread_detach (BPX1PTD) 492
pthread_exit_and_get (BPX1PTX) 494
pthread_join (BPX1PTJ) 498
pthread_kill (BPX1PTK) 501
pthread_quiesce (BPX1PTQ) 504
pthread_quiesce_and_get_np (BPX1PQG) 508

Index 1359

callable service (continued)
pthread_security_np (BPX1TLS) 512
pthread_self (BPX1PTS) 518
pthread_setintr (BPX1PSI) 519
pthread_setintrtype (BPX1PST) 522
pthread_tag_np (BPX1PTT) 525
pthread_testintr (BPX1PTI) 528
ptrace (BPX1PTR) 530
querydub (BPX1QDB) 559
queue_interrupt (BPX1SPB) 561
quiesce (BPX1QSE) 564
read (BPX1RED) 567
read_extlink (BPX1RDX) 578
readdir (BPX1RDD) 571
readdir2 (BPX1RD2) 574
readlink (BPX1RDL) 581
readv (BPX1RDV) 584
realpath (BPX1RPH) 588
recv (BPX1RCV) 592
recvfrom (BPX1RFM) 595
recvmsg (BPX2RMS) 599
rename (BPX1REN) 602
resource (BPX1RMG) 606
rewinddir (BPX1RWD) 608
rmdir (BPX1RMD) 610
select (BPX1SEL) 619
semctl (BPX1SCT) 627
semget (BPX1SGT) 633
semop (BPX1SOP) 638
send (BPX1SND) 642
send_file (BPX1SF) 645
sendmsg (BPX2SMS) 650
sendto (BPX1STO) 654
server_init (BPX1SIN) 658
server_pwu (BPX1SPW) 662
set_dub_default (BPX1SDD) 669
set_thread_limits (BPX1STL) 712
set_timer_event (BPX1STE) 716
setegid (BPX1SEG) 673
seteuid (BPX1SEU) 676
setgid (BPX1SGI) 678
setgrent (BPX1SGE) 681
setgroups (BPX1SGR) 682
setitimer (BPX1STR) 685
setpeer (BPX1SPR) 689
setpgid (BPX1SPG) 692
setpriority (BPX1SPY) 695
setpwent (BPX1SPE) 698
setregid (BPX1SRG) 699
setreuid (BPX1SRU) 702
setrlimit (BPX1SRL) 705
setsid (BPX1SSI) 709
setuid (BPX1SUI) 719
shmat (BPX1MAT) 723
shmctl (BPX1MCT) 727
shmdt (BPX1MDT) 731
shmem_lock (BPX1SLK) 733
shmget (BPX1MGT) 738
shutdown (BPX1SHT) 743
sigaction (BPX1SIA) 746
sigpending (BPX1SIP) 757

callable service (continued)
sigprocmask (BPX1SPM) 759
sigqueue (BPX1SGQ) 762
sigsuspend (BPX1SSU) 766
sigtimedwait (BPX1STW) 769
sigwait (BPX1SWT) 772
sleep (BPX1SLP) 774
smf_record (BPX1SMF) 777
socket or socketpair (BPX1SOC) 780
spawn (BPX1SPN) 784
srx_np (BPX1SRX) 801
stat (BPX1STA) 808
statvfs (BPX1STV) 812
sw_sigdlv(BPX1DSD) 815
symlink (BPX1SYM) 817
sync (BPX1SYN) 822
syntax 1
sysconf (BPX1SYC) 824
takesocket (BPX1TAK) 826
tcdrain (BPX1TDR) 829
tcflow (BPX1TFW) 831
tcflush (BPX1TFH) 834
tcgetattr (BPX1TGA) 837
tcgetcp (BPX1TGC) 840
tcgetpgrp (BPX1TGP) 843
tcgetsid (BPX1TGS) 845
tcsendbreak (BPX1TSB) 847
tcsetattr (BPX1TSA) 850
tcsetpgrp (BPX1TSP) 857
tcsettables (BPX1TST) 860
times (BPX1TIM) 864
truncate (BPX1TRU) 867
ttyname (BPX1TYN) 870
ttyname (BPX2TYN) 872
umask (BPX1UMK) 875
umount (BPX1UMT) 877
uname (BPX1UNA) 880
unlink (BPX1UNL) 882
unlockpt (BPX1UPT) 885
unquiesce (BPX1UQS) 887
utime (BPX1UTI) 890
w_getipc (BPX1GET) 901
w_getmntent (BPX1GMN) 905
w_getpsent (BPX1GPS) 908
w_ioctl (BPX1IOC) 914
w_pioctl (BPX1PIO) 929
w_statvfs (BPX1STF) 932
wait (BPX1WAT) 893
wait-extension (BPX1WTE) 897
write (BPX1WRT) 935
writev (BPX1WRV) 939

callable service examples
nonreentrant 1315

calling process
cancel a thread 484
create a thread 486
obtain effective group ID of 218
obtain effective user ID of 219
server initialization 658
server process work unit 662
WLM Interface Service 924

1360 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

cancel
interest in events 102
thread 484

certificate
register or deregister 613

change
audit flags for a file 75

by descriptor 163
directory

by descriptor 168
directory mode 82
file mode 82

by descriptor 168
file offset 332
file tag 68

by descriptor 156
group of a directory 86, 315

by descriptor 171
group of a file 86, 315

by descriptor 171
interrupt state 519
interrupt type 522
owner of a directory 86, 315

by descriptor 171
owner of a file 86, 315

by descriptor 171
process’s signal mask 759
root directory 94
signal action 746
signal actions 752
signal mask 766
working directory 79, 166

chattr (BPX1CHR) service 68
example 1084

chaudit (BPX1CHA) service 75
example 1079

chdir (BPX1CHD) service 79
example 1080

check
file availability 18

child process
create 184
obtain process time 864
status of stopped 893

chmod (BPX1CHM) service 82
example 1081

chown (BPX1CHO) service 86
example 1082

chpriority (BPX1CHP) service 90
example 1083

chroot (BPX1CRT) service 94
example 1090

clean up
flush I/O buffer 834
kernel resources 408

clear
terminal buffer 834

close
directory 100
dump 297
file 97

close (BPX1CLO) service 97
example 1087

closedir (BPX1CLD) service 100
example 1086

code page
get terminal 840
set terminal 853

code page names and conversion tables
set terminal 860

cond_cancel (BPX1CCA) service 102
example 1077

cond_post (BPX1CPO) service 104
example 1089

cond_setup (BPX1CSE) service 107
example 1091

cond_timed_wait (BPX1CTW) service 110
cond_wait (BPX1CTW) service

example 1092
cond_wait (BPX1CWA) service 114

example 1093
configuration

determine
limit 189, 459
pathname variable 189, 459

system options 824
connect (BPX1CON) service 117

example 1088
control

automatic conversion 174
file descriptors 174

control I/O 914, 929
convert_id_np

DCE UUID
userid 124

convert_id_np (BPX1CID) service 124
example 1085

coupling facility
calculating structure sizes 128

create
character special file 353
child process 184
directory 349
FIFO file 353
link to a file 319
mapped megabyte area 339
multiple threads 1327
new security environment for a process 613
pipe 475
process 184
pthreads 1327
session

set process group ID 709
symbolic link to external name 153
symbolic link to pathname 817
thread 486
threads 1327

creation mask
set or return file mode 875

current operating system
display name 880

Index 1361

D
data block

change permissions for 344
connect 344
create 344
disconnect 344
free backing storage for 344

data flow
suspend or resume terminal 831

database
obtain user information 269
user

access by user name 266, 455
debugger

controls 530
deletehfs (BPX1DEL) service 131
deleteHFS (BPX1DEL) service

example 1094
delivery key

signal 1322
deregister

certificate 613
detach

signal setup 419
directory

change
by descriptor 168

change root 94
change the group 86, 315

by descriptor 171
change the owner 86, 315

by descriptor 171
change working 79, 166
close 100
create 349
determine

configurable limit 189, 459
pathname variable 189, 459

open 439
read entry 571, 574
remove 610
remove entry 882
rename 602
reset to the beginning 608
rewind to the beginning 608

disability 1347
disable

signal delivery 815
display

name of current operating system 880
documents, licensed xxii
dub 1, 1320
dub setting

change default 669
dubbed task 1
dump

close 297
open 297
read information 302

E
effective group ID

obtain 218
set 673

effective user ID
obtain 219
set 676

enable
signal delivery 815

end process
bypass cleanup 150

environmental attribute
environment

attributes 425
environmental restrictions 5
ESPIE or ESTAE macro or routine

high-level language 1321
signals 1321

events
cancel interest 102
wait on user events 402, 405

examine
interrupt state 519
interrupt type 522
pending signals 757
process’s signal mask 759
signal action 746
signal actions 752

examples of callable services
__console() (BPX1CCS) 1078
__getthent (BPX1GTH) 1144
__map_init (BPX1MMI) 1167
__map_service (BPX1MMS) 1169
__mount (BPX2MNT) 1171
__osenv_get/set/unset/persist/unpersist)

(BPX1OSE) 1185
__passwd (BPX1PWD) 1206
__pid_affinity (BPX1PAF) 1186
__security (BPX1SEG) 1231
__sigactionset (BPX1SA2) 1228
__WLM (BPX1WLM) 1306
_exit (BPX1EXI) 1097
accept (BPX1ACP) 1069
accept_and_recv (BPX1ANR) 1072
access (BPX1ACC) 1067
aio_suspend (BPX1ASP) 1073
alarm (BPX1ALR) 1071
asyncio (BPX1AIO) 1070
attach_exec (BPX1ATX) 1075
attach_execmvs (BPX1ATM) 1074
auth_check_resource_np(BPX1ACK) 1068
bind (BPX1BND) 1076
BPX1ACC (access) 1067
BPX1ACK (auth_check_resource_np) 1068
BPX1ACP (accept) 1069
BPX1AIO (asyncio) 1070
BPX1ALR (alarm) 1071
BPX1ANR (accept_and_recv) 1072
BPX1ASP (aio_suspend) 1073
BPX1ATM (attach_execmvs) 1074
BPX1ATX (attach_exec) 1075

1362 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

examples of callable services (continued)
BPX1BND (bind) 1076
BPX1CCA (cond_cancel) 1077
BPX1CCS (__console()) 1078
BPX1CHA (chaudit) 1079
BPX1CHD (chdir) 1080
BPX1CHM (chmod) 1081
BPX1CHO (chown) 1082
BPX1CHP (chpriority) 1083
BPX1CHR (chattr) 1084
BPX1CID (convert_id_np) 1085
BPX1CLD (closedir) 1086
BPX1CLO (close) 1087
BPX1CON (connect) 1088
BPX1CPO (cond_post) 1089
BPX1CRT (chroot) 1090
BPX1CSE (cond_setup) 1091
BPX1CTW (cond_timed_wait) 1092
BPX1CWA (cond_wait) 1093
BPX1DEL (deleteHFS) 1094
BPX1ENV (oe_env_np) 1095
BPX1EXC (exec) 1096
BPX1EXI (_exit) 1097
BPX1EXM (execmvs) 1098
BPX1EXT (extlink_np) 1099
BPX1FAI(freeaddrinfo) 1100
BPX1FCA (fchaudit) 1101
BPX1FCD (fchdir) 1102
BPX1FCM (fchmod) 1103
BPX1FCO (fchown) 1104
BPX1FCR (fchattr) 1105
BPX1FCT (fcntl) 1106
BPX1FPC (fpathconf) 1107
BPX1FRK (fork) 1108
BPX1FST (fstat) 1109
BPX1FSY (fsync) 1110
BPX1FTR (ftruncate) 1111
BPX1FTV (fstatvfs) 1112
BPX1GAI (getaddrinfo) 1113
BPX1GCL (getclientid) 1114
BPX1GCW (getcwd) 1115
BPX1GEG (getegid) 1116
BPX1GEP (getpgid) 1117
BPX1GES (getsid) 1118
BPX1GET (w_getipc) 1119
BPX1GEU (geteuid) 1120
BPX1GGE (getgrent) 1121
BPX1GGI (getgrgid) 1122
BPX1GGN (getgrnam) 1123
BPX1GGR (getgroups) 1124
BPX1GHA (gethostbyaddr) 1125
BPX1GHN (gethostbyname) 1126
BPX1GID (getgid) 1127
BPX1GIV (givesocket) 1128
BPX1GLG (getlogin) 1129
BPX1GMN (w_getmntent) 1130
BPX1GNI (getnameinfo) 1131
BPX1GNM (getpeername or getsockname) 1133
BPX1GPE (getpwent) 1134
BPX1GPG (getpgrp) 1132
BPX1GPI (getpid) 1135

examples of callable services (continued)
BPX1GPN (getpwnam) 1136
BPX1GPP (getppid) 1137
BPX1GPS (w_getpsent) 1138
BPX1GPT (grantpt) 1139
BPX1GPU (getpwuid) 1140
BPX1GPY (getpriority) 1141
BPX1GRL (getrlimit) 1142
BPX1GRU (getrusage) 1143
BPX1GTH (__getthent) 1144
BPX1GTR (getitimer) 1145
BPX1GUG (getgroupsbyname) 1146
BPX1GUI (getuid) 1147
BPX1GWD (getwd) 1148
BPX1HST (gethostid or gethostname) 1149
BPX1IOC (w_ioctl) 1150
BPX1IPT (mvsiptaffinity) 1151
BPX1ITY (isatty) 1152
BPX1KIL (kill) 1154
BPX1LCO (lchown) 1155
BPX1LNK (link) 1156
BPX1LOD (loadHFS) 1157
BPX1LSK (lseek) 1158
BPX1LSN (listen) 1159
BPX1LST (lstat) 1160
BPX1MAT (shmat) 1161
BPX1MCT (shmctl) 1162
BPX1MDT (shmdt) 1163
BPX1MGT (shmget) 1164
BPX1MKD (mkdir) 1165
BPX1MKN (mknod) 1166
BPX1MMI (__map_init) 1167
BPX1MMP (mmap) 1168
BPX1MMS (__map_service) 1169
BPX1MNT (mount) 1170
BPX1MP (mvspause) 1172
BPX1MPC (mvsprocclp) 1173
BPX1MPI (mvspauseinit) 1174
BPX1MPR (mprotect) 1175
BPX1MSD (mvsunsigsetup) 1176
BPX1MSS (mvssigsetup) 1177
BPX1MSY (msync) 1178
BPX1MUN (munmap) 1179
BPX1NIC (nice) 1180
BPX1OPD (opendir) 1181
BPX1OPN (open) 1182
BPX1OPT (getsockopt or setsockopt) 1184
BPX1OSE (__osenv_get/set/unset/persist/unpersist

) 1185
BPX1PAF (__pid_affinity) 1186
BPX1PAS (pause) 1187
BPX1PCF (pathconf) 1188
BPX1PCT (pfsctl) 1189
BPX1PIP (pipe) 1190
BPX1POL (poll) 1191
BPX1PQG (Pthread_quiesce_and_get_np) 1192
BPX1PSI (pthread_setintr) 1193
BPX1PST (pthread_setintrtype) 1194
BPX1PTB (pthread_cancel) 1195
BPX1PTC (pthread_create) 1196
BPX1PTD (pthread_detach) 1197

Index 1363

examples of callable services (continued)
BPX1PTI (pthread_testintr) 1198
BPX1PTJ (pthread_join) 1199
BPX1PTK (pthread_kill) 1200
BPX1PTQ (pthread_quiesce) 1201
BPX1PTR (ptrace) 1202
BPX1PTS (pthread_self) 1203
BPX1PTT (pthread_tag_np) 1204
BPX1PTX (pthread_exit_and_get) 1205
BPX1PWD (__passwd) 1206
BPX1QCT (msgctl) 1207
BPX1QDB (querydub) 1208
BPX1QGT (msgget) 1209
BPX1QRC (msgrcv) 1210
BPX1QSE (quiesce) 1211
BPX1QSN (msgsnd) 1212
BPX1RCV (recv) 1213
BPX1RD2 (readdir2) 1218
BPX1RDD (readdir) 1214
BPX1RDL (readlink) 1215
BPX1RDV (readv) 1216
BPX1RDX (read extlink) 1217
BPX1RED (read) 1219
BPX1REN (rename) 1220
BPX1RFM (recvfrom) 1221
BPX1RMD (rmdir) 1222
BPX1RMG (resource) 1223
BPX1RPH (realpath) 1225
BPX1RW (Pwrite) 1226
BPX1RWD (rewinddir) 1227
BPX1SA2 (__sigactionset) 1228
BPX1SCT (semctl) 1229
BPX1SDD (setdubdefault) 1230
BPX1SEC (__security) 1231
BPX1SEG (setegid) 1232
BPX1SEL (select) 1233
BPX1SEU (seteuid) 1234
BPX1SF (send_file) 1235
BPX1SGE (setgrent) 1236
BPX1SGI (setgid) 1237
BPX1SGQ (sigqueue) 1238
BPX1SGR (setgroups) 1239
BPX1SGT (semget) 1240
BPX1SHT (shutdown) 1241
BPX1SIA (sigaction) 1242
BPX1SIN (server_init) 1243
BPX1SIP (sigpending) 1244
BPX1SLK (shmem_lock) 1245
BPX1SLP (sleep) 1246
BPX1SND (send) 1249
BPX1SOC (socket or socketpair) 1250
BPX1SOP (semop) 1251
BPX1SPB (queue_interrupt) 1252
BPX1SPE (setpwent) 1253
BPX1SPG (setpgid) 1254
BPX1SPM (sigprocmask) 1255
BPX1SPN (spawn) 1256
BPX1SPR (setpeer) 1257
BPX1SPW (server_pwu) 1258
BPX1SPY (setpriority) 1259
BPX1SRG (setregid) 1260

examples of callable services (continued)
BPX1SRL (setrlimit) 1261
BPX1SRU (setreuid) 1262
BPX1SRX (srx_np) 1263
BPX1SSI (setsid) 1264
BPX1SSU (sigsuspend) 1265
BPX1STA (stat) 1266
BPX1STE (set_timer_event) 1267
BPX1STF (w_statvfs) 1268
BPX1STL (set_thread_limits) 1269
BPX1STO (sendto) 1270
BPX1STR (setitimer) 1271
BPX1STV (statvfs) 1272
BPX1STW (sigtimedwait) 1273
BPX1SUI (setuid) 1274
BPX1SWT (sigwait) 1275
BPX1SYC (sysconf) 1276
BPX1SYM (symlink) 1277
BPX1SYN (sync) 1278
BPX1TAF (MVSThreadAffinity) 1279
BPX1TAK (takesocket) 1280
BPX1TDR (tcdrain) 1281
BPX1TFH (tcflush) 1282
BPX1TFW (tcflow) 1283
BPX1TGA (tcgetattr) 1284
BPX1TGC (tcgetcp) 1285
BPX1TGP (tcgetpgrp) 1286
BPX1TGS (tcgetsid) 1287
BPX1TIM (times) 1288
BPX1TLS (pthread_security_np) 1289
BPX1TRU (truncate) 1290
BPX1TSA (tcsetattr) 1291
BPX1TSB (tcsendbreak) 1292
BPX1TSC (tcsetcp) 1293
BPX1TSP (tcsetpgrp) 1294
BPX1TST (tcsettables) 1295
BPX1TYN (ttyname) 1296
BPX1UMK (umask) 1298
BPX1UMT (umount) 1299
BPX1UNA (uname) 1300
BPX1UNL (unlink) 1301
BPX1UPT (unlockpt) 1302
BPX1UQS (unquiesce) 1303
BPX1UTI (utime) 1304
BPX1WAT (wait) 1305
BPX1WLM (__WLM) 1306
BPX1WRT (write) 1307
BPX1WRV (writev) 1308
BPX1WTE (wait extension) 1309
BPX2ITY (isatty) 1153
BPX2MNT (__mount) 1171
BPX2OPT (openstat) 1183
BPX2RMS (recvmsg) 1224
BPX2TYN (ttyname) 1297
chattr (BPX1CHR) 1084
chaudit (BPX1CHA) 1079
chdir (BPX1CHD) 1080
chmod (BPX1CHM) 1081
chown (BPX1CHO) 1082
chpriority (BPX1CHP) 1083
chroot (BPX1CRT) 1090

1364 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

examples of callable services (continued)
close (BPX1CLO) 1087
closedir (BPX1CLD) 1086
cond_cancel (BPX1CCA) 1077
cond_post (BPX1CPO) 1089
cond_setup (BPX1CSE) 1091
cond_timed_wait (BPX1CTW) 1092
cond_wait (BPX1CWA) 1093
convert_id_np (BPX1CID) 1085
deleteHFS (BPX1DEL) 1094
exec (BPX1EXC) 1096
exec (BPX1IPT) 1151
exec (BPX1TAF) 1279
execmvs (BPX1EXM) 1098
extlink_np (BPX1EXT) 1099
fchattr (BPX1FCR) 1105
fchaudit (BPX1FCA) 1101
fchdir (BPX1FCD) 1102
fchmod (BPX1FCM) 1103
fchown (BPX1FCO) 1104
fcntl (BPX1FCT) 1106
fork (BPX1FRK) 1108
fpathconf (BPX1FPC) 1107
freeaddrinfo(BPX1FAI) 1100
fstat (BPX1FST) 1109
fstatvfs (BPX1FTV) 1112
fsync (BPX1FSY) 1110
ftruncate (BPX1FTR) 1111
getaddrinfo (BPX1GAI) 1113
getclientid (BPX1GCL) 1114
getcwd (BPX1GCW) 1115
getegid (BPX1GEG) 1116
geteuid (BPX1GEU) 1120
getgid (BPX1GID) 1127
getgrent (BPX1GGE) 1121
getgrgid (BPX1GGI) 1122
getgrnam (BPX1GGN) 1123
getgroups (BPX1GGR) 1124
getgroupsbyname (BPX1GUG) 1146
gethostbyaddr (BPX1GHA) 1125
gethostbyname (BPX1GHN) 1126
gethostid or gethostname (BPX1HST) 1149
getitimer (BPX1GTR) 1145
getlogin (BPX1GLG) 1129
getnameinfo (BPX1GNI) 1131
getpeername or getsockname (BPX1GNM) 1133
getpgid (BPX1GEP) 1117
getpgrp (BPX1GPG) 1132
getpid (BPX1GPI) 1135
getppid (BPX1GPP) 1137
getpriority (BPX1GPY) 1141
getpwent (BPX1GPE) 1134
getpwnam (BPX1GPN) 1136
getpwuid (BPX1GPU) 1140
getrlimit (BPX1GRL) 1142
getrusage (BPX1GRU) 1143
getsid (BPX1GES) 1118
getsockopt or setsockopt (BPX1OPT) 1184
getuid (BPX1GUI) 1147
getwd (BPX1GWD) 1148
givesocket (BPX1GIV) 1128

examples of callable services (continued)
grantpt (BPX1GPT) 1139
isatty (BPX1ITY) 1152
isatty (BPX2ITY) 1153
kill (BPX1KIL) 1154
lchown (BPX1LCO) 1155
link (BPX1LNK) 1156
loadHFS (BPX1LOD) 1157
lseek (BPX1LSK) 1158
lstat (BPX1LST) 1160
mkdir (BPX1MKD) 1165
mknod (BPX1MKN) 1166
mmap (BPX1MMP) 1168
mount (BPX1MNT) 1170
mprotect (BPX1MPR) 1175
msgctl (BPX1QCT) 1207
msgget (BPX1QGT) 1209
msgrcv (BPX1QRC) 1210
msgsnd (BPX1QSN) 1212
msync (BPX1MSY) 1178
munmap (BPX1MUN) 1179
mvspause (BPX1MP) 1172
mvspauseinit (BPX1MPI) 1174
mvsprocclp (BPX1MPC) 1173
mvssigsetup (BPX1MSS) 1177
mvsunsigsetup (BPX1MSD) 1176
nice (BPX1NIC) 1180
oe_env_np (BPX1ENV) 1095
open (BPX1OPN) 1182
opendir (BPX1OPD) 1181
openstat (BPX2OPT) 1183
pathconf (BPX1PCF) 1188
pause (BPX1PAS) 1187
pfsctl (BPX1PCT) 1189
pipe (BPX1PIP) 1190
poll (BPX1POL) 1191
pthread_cancel (BPX1PTB) 1195
pthread_create (BPX1PTC) 1196
pthread_detach (BPX1PTD) 1197
pthread_exit_and_get (BPX1PTX) 1205
pthread_join (BPX1PTJ) 1199
pthread_kill (BPX1PTK) 1200
pthread_quiesce (BPX1PTQ) 1201
Pthread_quiesce_and_get_np (BPX1PQG) 1192
pthread_security_np (BPX1TLS) 1289
pthread_self (BPX1PTS) 1203
pthread_setintr (BPX1PSI) 1193
pthread_setintrtype (BPX1PST) 1194
pthread_tag_np (BPX1PTT) 1204
pthread_testintr (BPX1PTI) 1198
ptrace (BPX1PTR) 1202
Pwrite (BPX1RW) 1226
querydub (BPX1QDB) 1208
queue_interrupt (BPX1SPB) 1252
quiesce (BPX1QSE) 1211
read (BPX1RED) 1219
read extlink (BPX1RDX) 1217
readdir (BPX1RDD) 1214
readdir2 (BPX1RD2) 1218
readlink (BPX1RDL) 1215
readv (BPX1RDV) 1216

Index 1365

examples of callable services (continued)
realpath (BPX1RPH) 1225
recv (BPX1RCV) 1213
recvfrom (BPX1RFM) 1221
recvmsg (BPX2RMS) 1224
reentrant entry 1066
reentrant return linkage 1310
rename (BPX1REN) 1220
resource (BPX1RMG) 1223
rewinddir (BPX1RWD) 1227
rmdir (BPX1RMD) 1222
select (BPX1SEL) 1233
semctl (BPX1SCT) 1229
semget (BPX1SGT) 1240
semop (BPX1SOP) 1251
send (BPX1SND) 1249
send_file (BPX1SF) 1235
sendto (BPX1STO) 1270
server_init (BPX1SIN) 1243
server_pwu (BPX1SPW) 1258
set_thread_limits (BPX1STL) 1269
setdubdefault (BPX1SEG) 1230
setegid (BPX1SEG) 1232
seteuid (BPX1SEU) 1234
setgid (BPX1SGI) 1237
setgrent (BPX1SGE) 1236
setgroups (BPX1SGR) 1239
setitimer (BPX1STR) 1271
setpeer (BPX1SPR) 1257
setpgid (BPX1SPG) 1254
setpriority (BPX1SPY) 1259
setpwent (BPX1SPE) 1253
setregid (BPX1SRG) 1260
setreuid (BPX1SRU) 1262
setrlimit (BPX1SRL) 1261
setsid (BPX1SSI) 1264
setsid (BPX1STE) 1267
setuid (BPX1SUI) 1274
shmat (BPX1MAT) 1161
shmdt (BPX1MDT) 1163
shmdt(BPX1MCT) 1162
shmem_lock (BPX1SLK) 1245
shmget (BPX1MGT) 1164
shutdown (BPX1SHT) 1241
sigaction (BPX1SIA) 1242
sigpending (BPX1SIP) 1244
sigprocmask (BPX1SPM) 1255
sigqueue (BPX1SGQ) 1238
sigsuspend (BPX1SSU) 1265
sigtimedwait (BPX1STW) 1273
sigwait (BPX1SWT) 1275
sleep (BPX1SLP) 1246
socket or socketpair (BPX1SOC) 1250
spawn (BPX1EXC) 1256
srx_np (BPX1SRX) 1263
stat (BPX1STA) 1266
statvfs (BPX1STV) 1272
symlink (BPX1SYM) 1277
sync (BPX1SYN) 1278
sysconf (BPX1SYC) 1276
takesocket (BPX1TAK) 1280

examples of callable services (continued)
tcdrain (BPX1TDR) 1281
tcflow (BPX1TFW) 1283
tcflush (BPX1TFH) 1282
tcgetattr (BPX1TGA) 1284
tcgetcp (BPX1TGC) 1285
tcgetpgrp (BPX1TGP) 1286
tcgetsid (BPX1TGS) 1287
tcsendbreak (BPX1TSB) 1292
tcsetattr (BPX1TSA) 1291
tcsetcp (BPX1TSC) 1293
tcsetpgrp (BPX1TSP) 1294
tcsettables (BPX1TST) 1295
times (BPX1TIM) 1288
truncate (BPX1TRU) 1290
ttyname (BPX1TYN) 1296
ttyname (BPX2TYN) 1297
umask (BPX1UMK) 1298
umount (BPX1UMT) 1299
uname (BPX1UNA) 1300
unlink (BPX1UNL) 1301
unlockpt (BPX1UPT) 1302
unquiesce (BPX1UQS) 1303
utime (BPX1UTI) 1304
w_getipc (BPX1GET) 1119
w_getmntent (BPX1GMN) 1130
w_getpsent (BPX1GPS) 1138
w_ioctl (BPX1IOC) 1150
w_statvfs (BPX1STF) 1268
wait (BPX1WAT) 1305
wait (BPX1WTE) 1309
write (BPX1WRT) 1307
writev (BPX1WRV) 1308

Examples of callable services
BPX1SMF (smf_record) 1247
BPX2SMS (sendmsg) 1248
send (BPX1SMF) 1247
sendmsg (BPX2SMS) 1248

examplesof callable services
connect (BPX1CON) 1088
Listen (BPX1LSN) 1159

exec (BPX1EXC) service 133
example 1096

exec (BPX1IPT) service
example 1151

exec (BPX1TAF) service
example 1279

execmvs (BPX1EXM) service 144
example 1098

execution
MVS program 54, 144
program 45, 90, 131, 133, 245, 255, 260, 272, 274,

276, 326, 422, 685, 695, 699, 702, 705, 784, 897
suspend process 774

execution on IPT
program 399

exits
installation 1343

external link
read value 578

1366 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

external name
create symbolic link to 153

extlink_np (BPX1EXT) service 153
example 1099

F
fchattr (BPX1FCR) service 156

example 1105
fchaudit (BPX1FCA) service 163

example 1101
fchdir (BPX1FCD) service 166

example 1102
fchmod (BPX1FCM) service 168

example 1103
fchown (BPX1FCO) service 171

example 1104
fcntl (BPX1FCT) service 174

example 1106
file

change audit flags 75
by descriptor 163

change offset 332
change the group 86, 315

by descriptor 171
change the owner 86, 315

by descriptor 171
check availability 18
close 97
create FIFO 353
create special character 353
determine

configurable limit 189, 459
pathname variable 189, 459

link created 319
obtain status

by descriptor 195
obtain status information 335, 808
open and create descriptor 434
open and obtain status information 442
read 482, 567
register interest in

by descriptor 914
by pathname 929

rename 602
represents a terminal 307, 309
send on a socket 645
truncate 203, 867
write from a buffer to a 935
write to 482

file descriptor
created 1182, 1183, 1190, 1191

file descriptors
control 174

file mode
change

by descriptor 168
file mode creation mask

set or return 875
file system

make available 365, 369, 887

file system (continued)
mounted

information 905
obtain status 198, 812, 932
quiesce 564
remove virtual 877

file tag
change 68

by descriptor 156
file tree

remove file system from 877
flags

audit
change file 75
change file by descriptor 163

file descriptor 174
file status 174

flush
terminal buffer 834

foreground
obtain process group ID 843
set process group ID 857

fork (BPX1FRK) service 184
example 1108

fpathconf (BPX1FPC) service 189
example 1107

free
Addr_Info structures 193

freeaddrinfo (BPX1FAI) service 193
example 1100

freeze
threads 508

fstat (BPX1FST) service 195
example 1109

fstatvfs (BPX1FTV) service 198
example 1112

fsync (BPX1FSY) service 201
example 1110

ftruncate (BPX1FTR) service 203
example 1111

functional recovery routine (FRR) 5

G
get

security attributes 447
terminal code page 840
WLM (Workload Manager) enclave membership

attributes 447
getaddrinfo (BPX1GAI) service 206

example 1113
getclientid (BPX1GCL) service 213

example 1114
getcwd (BPX1GCW) service 216

example 1115
getegid (BPX1GEG) service 218

example 1116
geteuid (BPX1GEU) service 219

example 1120
getgid (BPX1GID) service 220

example 1127

Index 1367

getgrent (BPX1GGE) service 221
example 1121

getgrgid (BPX1GGI) service 224
example 1122

getgrnam (BPX1GGN) service 227
example 1123

getgroups (BPX1GGR) service 230
example 1124

getgroupsbyname (BPX1GUG) service 233
example 1146

gethostbyaddr (BPX1GHA) service 236
example 1125

gethostbyname (BPX1GHN) service 239
example 1126

gethostid or gethostname (BPX1HST) service 242
example 1149

getitimer (BPX1GTR) service 245
example 1145

getlogin (BPX1GLG) service 248
example 1129

getnameinfo (BPX1GNI) service 251
example 1131

getpeername or getsockname (BPX1GNM) service
example 1133

getpgid (BPX1GEP) service 255
example 1117

getpgrp (BPX1GPG) service 257
example 1132

getpid (BPX1GPI) service 258
example 1135

getppid (BPX1GPP) service 259
example 1137

getpriority (BPX1GPY) service 260
example 1141

getpwent (BPX1GPE) service 263
example 1134

getpwnam (BPX1GPN) service 266
example 1136

getpwuid (BPX1GPU) service 269
example 1140

getrlimit (BPX1GRL) service 272
example 1142

getrusage (BPX1GRU) service 274
example 1143

getsid (BPX1GES) service 276
example 1118

getsockname or getpeername (BPX1GNM)
service 278

getsockopt or setsockopt (BPX1OPT) service 281
example 1184

getuid (BPX1GUI) service 288
example 1147

getwd (BPX1GWD) service 289
example 1148

givesocket (BPX1GIV) service 292
example 1128

grant
access to slave pseudoterminal device 295

grantpt (BPX1GPT) service 295
example 1139

group
identify with process ID 692

group database
access

by group ID 224
by group name 227
sequentially 221, 681

group ID
effective

obtain 218
set 673

foreground process
obtain 843
set 857

process
obtain 257

real
obtain 220

set 678
supplementary

obtain list and number 230, 233
set list 682

group name
group database

access 227
group members

information 227

H
heavyweight thread (HWT)

terminating 1328
high-level language

ESPIE or ESTAE routine 1321
signal interface 1319

host name
get

of an IP address 236
get from a socket address 251
get IP address and alias 239

HWT
See heavyweight thread

I
I/O

channel 475
control 914, 929
flush buffer 834

ID
supplementary group

obtain list and number 233
identify

group with process ID 692
initial pthread-creating task (IPT) 1327, 1328
installation exits 1343
interrupt

return last delivered 561
interrupt request block (IRB) 5
interrupt state

change and examine 519

1368 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

interrupt type
change and examine 522

invoke a z/OS UNIX service 1
IP address

get
of a host name 239

get for a service name or location 206
get host name and alias 236

IPCSDumpAccess (BPXGMPTR) service 302
IPCSDumpOpenClose service 297
IPT

See initial pthread-creating task
isatty (BPX1ITY) service 307

example 1152
isatty (BPX2ITY) service 309

example 1153

K
kernel

address space 1
clean up resources 408

keyboard 1347
kill (BPX1KIL) service 311

example 1154

L
lchown (BPX1LCO) service 315

example 1155
licensed documents xxii
link

create to a file 319
external 153
symbolic 153
to callable services 1

link (BPX1LNK) service 319
example 1156

linkage conventions
for callable services 3

linkage stub
linking to 2

linking
to linkage stub 2

listen (BPX1LSN) service 323
listen (BPX1LSN)service

example 1159
loadhfs (BPX1LOD) service 326
loadHFS (BPX1LOD) service

example 1157
locking information 174
LookAt message retrieval tool xxii
lseek (BPX1LSK) service 332

example 1158
lstat (BPX1LST) service 335

example 1160

M
macro

mapping 951

mapped megabyte area
create 339
services

request 344
mapping

macro 951
mapping macro 5

BPXYACC 951
BPXYAIO 952
BPXYATT 953
BPXYAUDT 954
BPXYBRLK 955
BPXYCCA 955
BPXYCID 956
BPXYCONS 956
BPXYCW 961
BPXYDCOR 962
BPXYDIRE 961
BPXYENFO 968
BPXYERNO 968
BPXYFCTL 968
BPXYFDUM 969
BPXYFTYP 969
BPXYFUIO 970
BPXYGIDN 971
BPXYGIDS 972
BPXYINHE 972
BPXYIOCC 973
BPXYIOV 978
BPXYIPCP 978
BPXYIPCQ 978
BPXYITIM 980
BPXYMMG 981
BPXYMNTE 983
BPXYMODE 986
BPXYMSG 986
BPXYMSGF 987
BPXYMSGH 987
BPXYMSGX 988
BPXYMTM 989
BPXYOCRT 990
BPXYOEXT 991
BPXYOPNF 993
BPXYPCF 993
BPXYPEDB 994
BPXYPGPS 996
BPXYPGTH 997
BPXYPOLL 1000
BPXYPPSD 1001
BPXYPRLI 1003
BPXYPTAT 1003
BPXYPTRC 1004
BPXYPTXL 1018
BPXYRFIS 1018
BPXYRLIM 1019
BPXYRMON 1019
BPXYSECI 1020
BPXYSEEK 1021
BPXYSEL 1021
BPXYSELT 1022
BPXYSEM 1022

Index 1369

mapping macro (continued)
BPXYSFDL 1022
BPXYSFPL 1023
BPXYSHM 1024
BPXYSIGH 1024
BPXYSINF 1026
BPXYSOCK 1027
BPXYSSET 1032
BPXYSSTF 1033
BPXYSTAT 1034
BPXYTCCP 1035
BPXYTCPP 1036
BPXYTCPX 1044
BPXYTHDQ 1044
BPXYTHLI 1047
BPXYTIMS 1049
BPXYTIOS 1049
BPXYUTSN 1053
BPXYWAST 1053
BPXYWLM 1054
BPXYWNSZ 1057
BPXZOAPB 1057
BPXZOTCB 1057

measure
resources 606

mediumweight thread (MWT)
terminating 1328

memory
map 357
synchronization 392
Unmap pages 396

memory map 357, 392, 396
memory mapping

protection of 373
message retrieval tool, LookAt xxii
messages

send to the console 120
mkdir (BPX1MKD) service 349

example 1165
mknod (BPX1MKN) service 353

example 1166
mmap (BPX1MMP) service 357

example 1168
mode

change directory 82
change file 82

modification
set times for file 890

module
invoking 2

mount (BPX1MNT) service 365
example 1170

mounted file system
information 905

mprotect (BPX1MPR) service 373
example 1175

msgctl
message control operations 376

msgctl (BPX1QCT) service 376
example 1207

msgget
get a message queue 380

msgget (BPX1QGT) service 380
example 1209

msgrcv
message queue receive 384

msgrcv (BPX1QRC) service 384
example 1210

msgsnd
message queue send. 388

msgsnd (BPX1QSN) service 388
example 1212

msync (BPX1MSY) service 392
example 1178

multiple pthreads
terminating 1328

multiple task
signals created by ATTACH 1324

munmap (BPX1MUN) service 396
example 1179

MVS program
execution 54, 144

MVS signals
set up 411

mvsiptaffinity (BPX1IPT) service 399
mvspause (BPX1MP) service 402

example 1172
mvspauseinit (BPX1MPI) service 405

example 1174
mvsprocclp (BPX1MPC) service 408

example 1173
mvssigsetup (BPX1MSS) service 411

example 1177
MVSThreadAffinity (BPX1TAF) service 416
mvsunsigsetup (BPX1MSD) service 419

example 1176
MWT

See mediumweight thread

N
nested callable services 5
nice (BPX1NIC) service 422

example 1180
nonreenterable code 5
Notices 1349

O
obtain

effective group ID 218
effective user ID 219
file status 335, 808

by descriptor 195
file system status 198, 812, 932
foreground process group ID 843
group ID

process 257
mounted file system

information 905

1370 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

obtain (continued)
pathname

working directory 216, 289
process data 285, 908
process ID 258

parent process 259
real group ID 220
real user ID 288
supplementary group ID 233
symbolic logic status information 335
terminal attributes 837
terminal name 870, 872
user information by user ID 269
user login name 248
working directory

pathname 216, 289
oe_env_np (BPX1ENV) service 425

example 1095
offset

change file 332
system control

callable services 945
open

directory 439
dump 297
file and create descriptor 434

open (BPX1OPN) service 434
example 1182

open (BPX2OPT) service
example 1183

opendir (BPX1OPD) service 439
example 1181

openstat (BPX2OPN) service 442
operating system

display name of current 880
osenv (BPX1OSE) service 447
output

hold processing for transmission 829

P
parameter

description 2, 4
lists 4

parent process
process ID

obtain 259
pathconf (BPX1PCF) service 459

example 1188
pathname

create symbolic link to 817
obtain terminal 870, 872
resolve 588
working directory

obtain 216, 289
pause (BPX1PAS) service 463

example 1187
PEDB (Process Exit Data Block) 1343
permanent

write to 201
PFS control 465

pfsctl (BPX1PCT) service 465
example 1189

PID
affinity

process termination 471
pipe

create 475
pipe (BPX1PIP) service 475

example 1190
poll (BPX1POL) service 477

example 1191
post-process initiation exit -

(BPX_POSPROC_INIT) 1343
pre-process initiation exit -

(BPX_PREPROC_INIT) 1343
pre-process termination exit -

(BPX_PREPROC_TERM) 1343
Pread() and Pwrite() (BPX1RW) service 482
process

control for debugging 530
create 184
create new security environment 613
end

bypass cleanup 150
information 530
obtain data 285, 908
obtain ID 258
obtain time used 864
parent

obtain process ID 259
queue a signal to 762
signal a 311
signal mask

examine or change 759
status of debugging 893
suspend

pending a signal 463
suspend execution 774

process communication 475
Process Exit Data Block (PEDB) 1343
process group

queue a signal to 762
process group ID

for controlling terminal 845
foreground

obtain 843
set 857

get for session leader 845
obtain 257

process ID
identify group with 692
obtain 258
parent process

obtain 259
process image initiation exit -

(BPX_IMAGE_INIT) 1343
process start/end exits

post-process initiation exit -
(BPX_POSPROC_INIT) 1343

pre-process initiation exit -
(BPX_PREPROC_INIT) 1343

Index 1371

process start/end exits (continued)
pre-process termination exit -

(BPX_PREPROC_TERM) 1343
process image initiation exit -

(BPX_IMAGE_INIT) 1343
process time

obtain 864
program 133

execution 45, 90, 131, 245, 255, 260, 272, 274,
276, 326, 422, 685, 695, 699, 702, 705, 784, 897

MVS 54, 144
execution on IPT 399

protection
of memory mapping 373

pseudoterminal
BPX1TSC (tcsetcp) 853
flush I/O buffer 834
get terminal code page 840
set attributes 850
set terminal code page 853
tcsetcp (BPX1TSC) 853

pthread
security

security environment 512
tag

tag thread 525
pthread_cancel (BPX1PTB) service 484

example 1195
pthread_create (BPX1PTC) service 486

example 1196
pthread_create task initialization routine 1327
pthread_detach (BPX1PTD) service 492

example 1197
pthread_exit_and_get (BPX1PTX) service 494

example 1205
pthread_join (BPX1PTJ) service 498

example 1199
pthread_kill (BPX1PTK) service 501

example 1200
pthread_quiesce (BPX1PTQ) service 504

example 1201
pthread_quiesce_and_get_np (BPX1PQG) service 508
Pthread_quiesce_and_get_np (BPX1PQG) service

example 1192
pthread_security_np (BPX1TLS) service 512

example 1289
pthread_self (BPX1PTS) service 518

example 1203
pthread_setintr (BPX1PSI) service 519

example 1193
pthread_setintrtype (BPX1PST) service 522

example 1194
pthread_tag_np (BPX1PTT) service 525

example 1204
pthread_testintr (BPX1PTI) service 528

example 1198
pthreads

callable services 1327
create 1327
terminating 1328

ptrace
status of process 893

ptrace (BPX1PTR) service 530
example 1202

publications
on CD-ROM xxi
softcopy xxi

Pwrite (BPX1RW) service
example 1226

Q
query

dub status 559
querydub (BPX1QDB) service 559

example 1208
queue_interrupt (BPX1SPB) service 561

example 1252
quiesce

file system 564
process 504

quiesce (BPX1QSE) service 564
example 1211

quiesce process
threads 504

R
read

directory entry 571, 574
dump information 302
external link value 578
file 482, 567
symbolic link value 581

read (BPX1RED) service 567
example 1219

read extlink (BPX1RDX) service
example 1217

read_extlink (BPX1RDX) service 578
readdir (BPX1RDD) service 571

example 1214
readdir2 (BPX1RD2) service 574

example 1218
readlink (BPX1RDL) service 581

example 1215
readv (BPX1RDV) service 584

example 1216
real user ID

obtain 288
realpath (BPX1RPH) service 588

example 1225
reason code

description 3
recv (BPX1RCV) service 592

example 1213
recvfrom (BPX1RFM) service 595

example 1221
recvmsg (BPX2RMS) service 599

example 1224
reenterable code 5, 1065

1372 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

register
certificate 613

register interest in
file

by descriptor 914
by pathname 929

register usage
for callable services 3

release level
determining 3

remote-terminal
get terminal code page 840
set terminal code page names and conversion

tables 860
remote-TTY

get terminal code page 840
set terminal code page names and conversion

tables 860
remove

directory 610
directory entry 882
virtual file system 877

rename
directory 602
file 602

rename (BPX1REN) service 602
example 1220

reset directory to the beginning 608
resolve

pathname 588
resource (BPX1RMG) service 606

example 1223
Resource Access Control Facility (RACF) 8
resources

clean up kernel 408
measure 606

restrictions, environmental 5
resume

terminal data flow 831
return

file mode creation mask 875
last interrupt delivered 561

return code
description 2

return value
description 2

rewind directory to the beginning 608
rewinddir (BPX1RWD) service 608

example 1227
rmdir (BPX1RMD) service 610

example 1222
root directory

change 94
RTL (runtime library)

signals 1319
runtime library (RTL)

signals 1319

S
security attributes

get 447
set 447
unset 447

security product 8
select (BPX1SEL) service 619

example 1233
semctl

semaphore control operations 627
semctl (BPX1SCT) service 627

example 1229
semget

get set of semaphores 633
semget (BPX1SGT) service 633

example 1240
semop

semaphore operations 638
semop (BPX1SOP) service 638

example 1251
send

messages to the console 120
send (BPX1SND) service 642

example 1249
send a signal 311
send_file (BPX1SF) service 645

example 1235
sendmsg (BPX2SMS) service 650

example 1248
sendto (BPX1STO) service 654

example 1270
serial data

break transmission of asynchronous 847
server

process work 662
server_init (BPX1SIN) service 658

example 1243
server_pwu (BPX1SPW) service 662

example 1258
service location

get
IP address 206

service name
get

IP address 206
get from a socket address 251

session
create

set process group ID 709
set

effective group ID 673
effective user ID 676
file access time 890
file mode creation mask 875
file modification time 890
foreground process group ID 857
group ID 678
security attributes 447
terminal attributes 850
terminal code page 853

Index 1373

set (continued)
terminal code page names and conversion

tables 860
thread limits 712
timer event 716
user ID 719
WLM (Workload Manager) enclave membership

attributes 447
set an alarm 25
set up

MVS signals 411
set_dub_default (BPX1SDD) service 669
set_thread_limits (BPX1STL) service 712

example 1269
set_timer_event (BPX1STE) service 716
set_timer_event (BPX1STE> service

example 1267
setdubdefault (BPX1SDD) service

example 1230
setegid (BPX1SEG) service 673

example 1232
seteuid (BPX1SEU) service 676

example 1234
setgid (BPX1SGI) service 678

example 1237
setgrent (BPX1SGE) service 681

example 1236
setgroups (BPX1SGR) service 682

example 1239
setitimer (BPX1STR) service 685

example 1271
setpeer (BPX1SPR) service 689

example 1257
setpgid (BPX1SPG) service 692

example 1254
setpriority (BPX1SPY) service 695

example 1259
setpwent (BPX1SPE) service 698

example 1253
setregid (BPX1SRG) service 699

example 1260
setreuid (BPX1SRU) service 702

example 1262
setrlimit (BPX1SRL) service 705

example 1261
setsid (BPX1SSI) service 709

example 1264
setuid (BPX1SUI) service 719

example 1274
setup

linking to callable services for signals 1320
shmat

shared memory attach operation 723
shmat (BPX1MAT) service 723

example 1161
shmctl

shared memory control operations 727
shmctl (BPX1MCT) service 727

example 1162
shmdt

detach shared memory segment 731

shmdt (BPX1MDT) service 731
example 1163

shmem_lock (BPX1SLK) service 733
example 1245

shmget
get shared memory segment 738

shmget (BPX1MGT) service 738
example 1164

shortcut keys 1347
shutdown (BPX1SHT) service 743

example 1241
sigaction (BPX1SIA) service 746

example 1242
signal

deferral 1323
delayed delivery 1323
delivery keys 1322
ESPIE or ESTAE macro, with 1321
examine pending 757
queue to a process 762
queue to a process group 762
runtime library (RTL) 1319
set up for MVS 411
setup for linking to callable services 1320
suspend a process

pending a signal 463
wait for 772

with a specified timeout 769
signal action

change or examine 746
signal actions

change 752
examine 752

signal delivery
disable 815
enable 815

signal interface
high-level language 1319

signal interface routine (SIR) 1319
signal mask

change 766
examine or change 759

signal setup
detach 419

signals 1319
relationship to callable services 1319
services supported with 1319

sigpending (BPX1SIP) service 757
example 1244

sigprocmask (BPX1SPM) service 759
example 1255

sigqueue (BPX1SGQ) service 762
example 1238

sigsuspend (BPX1SSU) service 766
example 1265

sigtimedwait (BPX1STW) service 769
example 1273

sigwait (BPX1SWT) service 772
example 1275

SIR (signal interface routine) 1319
sleep (BPX1SLP) service 774

1374 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

sleep (BPX1SLP) service (continued)
example 1246

smf_record (BPX1SMF) service 777
example 1247

socket
accept a connection 13
send a file on 645

socket address
get host name from 251
get service name from 251

socket connection
accept 13

socket or socketpair (BPX1SOC) service 780
example 1250

spawn (BPX1SPN) service 784
example 1256

SRB mode routines
callable services available to 1339

srx_np (BPX1SRX) service 801
example 1263

stat (BPX1STA) service 808
example 1266

status
obtain file

by descriptor 195
obtain file system 198, 812, 932
query dub 559

status information
obtain file 335, 808
obtain symbolic link 335

statvfs (BPX1STV) service 812
example 1272

storage
permanent

write to 201
superuser 8
supplementary group ID

obtain list and number 233
suspend

process execution 774
terminal data flow 831

suspend processing
for output transmission 829

sw_sigdlv (BPX1DSD) service 815
symbolic link

create to external name 153
create to pathname 817
obtain status information 335
read value 581
remove from directory 882

symlink (BPX1SYM) service 817
example 1277

sync (BPX1SYN) service 822
example 1278

syntax
for z/OS UNIX callable services 1

SYS1.CSSLIB 2
sysconf (BPX1SYC) service 824

example 1276
sysplex

BPX2MNT (__mount) service 369

sysplex (continued)
getmntent (BPX1GMN) service 905
quiesce restrictions 564
umount callable service 877

system configuration
options 824

system control
offsets to callable services 945

T
takesocket (BPX1TAK) service 826

example 1280
tasks

terminating 1328
tcdrain (BPX1TDR) service 829

example 1281
tcflow (BPX1TFW) service 831

example 1283
tcflush (BPX1TFH) service 834

example 1282
tcgetattr (BPX1TGA) service 837

example 1284
tcgetcp (BPX1TGC) service 840

example 1285
tcgetpgrp (BPX1TGP) service 843

example 1286
tcgetsid (BPX1TGS) service 845

example 1287
tcsendbreak (BPX1TSB) service 847

example 1292
tcsetattr (BPX1TSA) service 850

example 1291
tcsetcp (BPX1TSC) service 853

example 1293
tcsetpgrp (BPX1TSP) service 857

example 1294
tcsettables (BPX1TST) service 860

example 1295
terminal

break asynchronous serial data transmission 847
flush I/O buffer 834
get code page 840
obtain attributes 837
obtain name 870, 872
set attributes 850
set code page 853
set code page names and conversion tables 860

terminal data flow
suspend or resume 831

terminate
process

bypass cleanup 150
terminating

heavyweight thread (HWT) 1328
mediumweight thread (MWT) 1328
multiple pthreads 1328
pthreads 1328
tasks 1328

termios data area 837

Index 1375

thread
cancel 484
create 486

thread communication 475
threads

callable services 1327
create 1327
freeze 508
unfreeze 508

timer event
set 716

times (BPX1TIM) service 864
example 1288

transmission
break for asynchronous serial data 847

transmission output
hold processing for 829

truncate
file 203, 867

truncate (BPX1TRU) service 867
example 1290

ttyname (BPX1TYN) service 870
example 1296

ttyname (BPX2TYN) service 872
example 1297

U
umask (BPX1UMK) service 875

example 1298
umount (BPX1UMT) service 877

example 1299
uname (BPX1UNA) service 880

example 1300
undub 1
unfreeze

threads 508
unlink (BPX1UNL) service 882

example 1301
unlock

pseudoterminal master/slave pair 885
unlockpt (BPX1UPT) service 885

example 1302
unmap previously

mapped pages 396
unquiesce

file system 887
unquiesce (BPX1UQS) service 887

example 1303
unset

security attributes 447
WLM (Workload Manager) enclave membership

attributes 447
user database

access
sequentially 263, 698
user name 266, 455

user ID
obtain effective 219
set 719
set effective 676

user login name
obtain 248

utime (BPX1UTI) service 890
example 1304

V
virtual file system

remove 877

W
w_getipc

interprocess communications 901
w_getipc (BPX1GET) service 901

example 1119
w_getmntent (BPX1GMN) service 905

example 1130
w_getpsent (BPX1GPS) service 908

example 1138
w_ioctl (BPX1IOC) service 914

example 1150
w_pioctl (BPX1PIO) service 929
w_statvfs (BPX1STF) service 932

example 1268
wait

for a signal 772
with a specified timeout 769

for asynchronous I/O request 21
user events and signal event 405
user events plus signals 402

wait (BPX1WAT) service 893
example 1305

wait extension (BPX1WTE) service
example 1309

wait-extension (BPX1WTE) service 897
WLM (Workload Manager) enclave

membership attributes
get 447
set 447
unset 447

working directory
change 79, 166
pathname

obtain 216, 289
write

from a buffer to a file 935
permanent storage 201
to a file 482

write (BPX1WRT) service 935
example 1307

writev (BPX1WRV) service 939
example 1308

Z
z/OS UNIX

accessing 1
connecting to 1
disconnecting from 1
process start/end exits 1343

1376 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

z/OS UNIX (continued)
pthreads 1327
threads 1327

z/OS UNIX System Services
publications

on CD-ROM xxi
softcopy xxi

Index 1377

1378 z/OS V1R4.0 UNIX System Services Programming: Assembler Callable Services Reference

Readers’ Comments — We’d Like to Hear from You

z/OS
UNIX System Services
Programming: Assembler Callable
Services Reference

Publication No. SA22-7803-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7803-03

SA22-7803-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7803-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Softcopy publications
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	IBM Systems Center publications
	z/OS UNIX porting information
	z/OS UNIX courses
	z/OS UNIX home page
	z/OS UNIX customization wizard
	Discussion list

	Summary of changes
	Chapter 1. Invocation details for callable services
	Connecting to and disconnecting from z/OS UNIX System Services
	Syntax conventions for the callable services
	CALL
	Service_name
	Parm parameters
	Return_value
	Return_code
	Reason_code

	Determining the callable service release level
	Linkage conventions for the callable services
	Parameter descriptions for callable services
	Call parameter lists

	Mapping macros
	Examples
	Reentrant coding versus nonreentrant coding

	Environmental restrictions
	Restrictions in a multiprocess, multiuser environment
	Abend conditions and environments
	Callable service failures
	Authorization

	Chapter 2. Callable services descriptions
	accept (BPX1ACP) — Accept a Connection Request from a Client Socket
	accept_and_recv (BPX1ANR) — Accept a Connection and Receive the First Block of Data
	access (BPX1ACC) — Determine If a File Can Be Accessed
	aio_suspend (BPX1ASP) — Wait for an Asynchronous I/O Request
	alarm (BPX1ALR) — Set an Alarm
	asyncio (BPX1AIO) — Asynchronous I/O for Sockets
	attach_exec (BPX1ATX) — Attach a z/OS UNIX Program
	attach_execmvs (BPX1ATM) — Attach an MVS Program
	auth_check_resource_np (BPX1ACK) — Determine a User's Access to a RACF-Protected Resource
	bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor
	chattr (BPX1CHR) — Change the Attributes of a File or Directory
	chaudit (BPX1CHA) — Change Audit Flags for a File by Path
	chdir (BPX1CHD) — Change the Working Directory
	chmod (BPX1CHM) — Change the Mode of a File or Directory
	chown (BPX1CHO) — Change the Owner or Group of a File or Directory
	chpriority (BPX1CHP) — Change the Scheduling Priority of a Process
	chroot (BPX1CRT) — Change the Root Directory
	close (BPX1CLO) — Close a File
	closedir (BPX1CLD) — Close a Directory
	cond_cancel (BPX1CCA) — Cancel Interest in Events
	cond_post (BPX1CPO) — Post a Thread for an Event
	cond_setup (BPX1CSE) — Set Up to Receive Event Notifications
	cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or an Event
	cond_wait (BPX1CWA) — Suspend a Thread for an Event
	connect (BPX1CON) — Establish a Connection Between Two Sockets
	__console() (BPX1CCS) — Communicate with Console (Modify/Stop/WTO/DOM)
	convert_id_np (BPX1CID) — Convert a DCE UUID to a userid or a userid to a DCE UUID
	__cpl (BPX1CPL) — CPL Interface Service
	deletehfs (BPX1DEL) — Delete a Program from Storage
	exec (BPX1EXC) — Run a Program
	execmvs (BPX1EXM) — Run an MVS Program
	_exit (BPX1EXI) — End a Process and Bypass the Cleanup
	extlink_np (BPX1EXT) — Create an External Symbolic Link
	fchattr (BPX1FCR) — Change the Attributes of a File or Directory by Descriptor
	fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor
	fchdir (BPX1FCD) — Change the Working Directory
	fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor
	fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by Descriptor
	fcntl (BPX1FCT) — Control Open File Descriptors
	fork (BPX1FRK) — Create a New Process
	fpathconf (BPX1FPC) — Determine Configurable Pathname Variables Using a Descriptor
	freeaddrinfo (BPX1FAI) — Free Addr_Info Structures
	fstat (BPX1FST) — Get Status Information about a File by Descriptor
	fstatvfs (BPX1FTV) — Get the File System Status
	fsync (BPX1FSY) — Write Changes to Permanent Storage
	ftruncate (BPX1FTR) — Change the Size of a File
	getaddrinfo (BPX1GAI) — Get the IP Address and Information for a Service Name or Location
	getclientid (BPX1GCL) — Obtain the Calling Program's Identifier
	getcwd (BPX1GCW) — Get the Pathname of the Working Directory
	getegid (BPX1GEG) — Get the Effective Group ID
	geteuid (BPX1GEU) — Get the Effective User ID
	getgid (BPX1GID) — Get the Real Group ID
	getgrent (BPX1GGE) — Sequentially Access the Group Database
	getgrgid (BPX1GGI) — Access the Group Database by ID
	getgrnam (BPX1GGN) — Access the Group Database by Name
	getgroups (BPX1GGR) — Get a List of Supplementary Group IDs
	getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group IDs by User Name
	gethostbyaddr (BPX1GHA) — Get the IP Address and Alias of a Host Name for the Specified IP Address
	gethostbyname (BPX1GHN) — Get the IP Address and Alias of a Host Name for the Specified Host Domain Name
	gethostid or gethostname (BPX1HST) — Get ID or Name Information about a Socket Host
	getitimer (BPX1GTR) — Get the Value of the Interval Timer
	getlogin (BPX1GLG) — Get the User Login Name
	getpeername or getsockname (BPX1GNM) — Get the Name of a Socket or of the Peer Connected to a Socket
	getnameinfo (BPX1GNI) — Get the Host Name and Service Name from a Socket Address
	getpgid (BPX1GEP) — Get the Process Group ID
	getpgrp (BPX1GPG) — Get the Process Group ID
	getpid (BPX1GPI) — Get the Process ID
	getppid (BPX1GPP) — Get the Parent Process ID
	getpriority (BPX1GPY) — Get the Scheduling Priority of a Process
	getpwent (BPX1GPE) — Sequentially Access the User Database
	getpwnam (BPX1GPN) — Access the User Database by User Name
	getpwuid (BPX1GPU) — Access the User Database by User ID
	getrlimit (BPX1GRL) — Get Resource Limits
	getrusage (BPX1GRU) — Get Resource Usage
	getsid (BPX1GES) — Get the Process Group ID of the Session Leader
	getsockname or getpeername (BPX1GNM) — Get the Name of a Socket or of the Peer Connected to a Socket
	getsockopt or setsockopt (BPX1OPT) — Get or Set Options Associated with a Socket
	__getthent (BPX1GTH) — Get Thread Data
	getuid (BPX1GUI) — Get the Real User ID
	getwd (BPX1GWD) — Get the Pathname of the Working Directory
	givesocket (BPX1GIV) — Give a Socket to Another Program
	grantpt (BPX1GPT) — Grant Access to the Slave Pseudoterminal
	IPCSDumpOpenClose (BPXGMCDE) — MVS IPCS Dump Open/Close Service
	IPCSDumpAccess (BPXGMPTR) — PTRACE IPCS Dump Access Service
	isatty (BPX1ITY) (POSIX Version) — Determine Whether a File Descriptor Represents a Terminal
	isatty (BPX2ITY) (X/Open Version) — Determine Whether a File Descriptor Represents a Terminal
	kill (BPX1KIL) — Send a Signal to a Process
	lchown (BPX1LCO) — Change the Owner or Group of a File, Directory, or Symbolic Link
	link (BPX1LNK) — Create a Link to a File
	listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection Requests from Clients
	loadhfs (BPX1LOD) — Load a Program into Storage by HFS Pathname
	lseek (BPX1LSK) — Change a File's Offset
	lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Pathname
	__map_init (BPX1MMI) — Create a Mapped Megabyte Area
	__map_service (BPX1MMS) — Mapped Megabyte Area Services
	mkdir (BPX1MKD) — Make a Directory
	mknod (BPX1MKN) — Make a Directory, a FIFO, a Character Special, or a Regular File
	mmap (BPX1MMP) — Map Pages of Memory
	mount (BPX1MNT) — Make a File System Available
	__mount (BPX2MNT) — Make a File System Available
	mprotect (BPX1MPR) — Set Protection of Memory Mapping
	msgctl (BPX1QCT) — Perform Message Queue Control Operations
	msgget (BPX1QGT) — Create or Find a Message Queue
	msgrcv (BPX1QRC) — Receive from a Message Queue
	msgsnd (BPX1QSN) — Send to a Message Queue
	msync (BPX1MSY) — Synchronize Memory with Physical Storage
	munmap (BPX1MUN)— Unmap Previously Mapped Addresses
	mvsiptaffinity (BPX1IPT) — Run a Program on the IPT Thread
	mvspause (BPX1MP) — Wait on User Events Plus Signals
	mvspauseinit (BPX1MPI) — Set Up to Wait on User Events Plus Signals
	mvsprocclp (BPX1MPC) — Clean Up Kernel Resources
	mvssigsetup (BPX1MSS) — Set Up MVS Signals
	MVSThreadAffinity (BPX1TAF) — MVS Thread Affinity Service
	mvsunsigsetup (BPX1MSD) — Detach the Signal Setup
	nice (BPX1NIC) — Change the nice Value of a Process
	oe_env_np (BPX1ENV) — Examine, Change, or Examine and Change an Environmental Attribute
	open (BPX1OPN) — Open a File
	opendir (BPX1OPD) — Open a Directory
	openstat (BPX2OPN) — Open a File and Obtain Status Information
	osenv (BPX1OSE) — Get or Set Security Attributes or WLM Enclave Membership Attributes
	__passwd (BPX1PWD) — Verify/Change the User Password
	pathconf (BPX1PCF) — Determine Configurable Pathname Variables Using a Pathname
	pause (BPX1PAS) — Suspend a Process Pending a Signal
	pfsctl (BPX1PCT) — Physical File System Control
	__pid_affinity (BPX1PAF) — Add or Delete an Entry in a Process's Affinity List
	pipe (BPX1PIP) — Create an Unnamed Pipe
	poll (BPX1POL) — Monitor Activity on File Descriptors and Message Queues
	Pread() and Pwrite() (BPX1RW) — Read from or Write to a File without Changing the File Pointer
	pthread_cancel (BPX1PTB) — Cancel a Thread
	pthread_create (BPX1PTC) — Create a Thread
	pthread_detach (BPX1PTD) — Detach a Thread
	pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread
	pthread_join (BPX1PTJ) — Wait on a Thread
	pthread_kill (BPX1PTK) — Send a Signal to a Thread
	pthread_quiesce (BPX1PTQ) — Quiesce Threads in a Process
	pthread_quiesce_and_get_np (BPX1PQG) — pthread Quiesce and Get Service
	pthread_security_np (BPX1TLS)—Create/Delete Thread-Level Security Environment for Caller's Thread
	pthread_self (BPX1PTS) — Query the Thread ID
	pthread_setintr (BPX1PSI) — Examine and Change the Interrupt State
	pthread_setintrtype (BPX1PST) — Examine and Change the Interrupt Type
	pthread_tag_np (BPX1PTT) — Set, Query, or Both Set and Query the Caller's Thread Tag Data
	pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur
	ptrace (BPX1PTR) — Control Another Process for Debugging
	querydub (BPX1QDB) — Obtain the Dub Status of the Current Task
	queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered
	quiesce (BPX1QSE) — Quiesce a File System
	read (BPX1RED) — Read from a File or Socket
	readdir (BPX1RDD) — Read an Entry from a Directory
	readdir2 (BPX1RD2) — Read an Entry from a Directory
	read_extlink (BPX1RDX) — Read an External Symbolic Link
	readlink (BPX1RDL) — Read the Value of a Symbolic Link
	readv (BPX1RDV) — Read Data and Store It in a Set of Buffers
	realpath (BPX1RPH) — Resolve a Pathname
	recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer
	recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer
	recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers
	rename (BPX1REN) — Rename a File or Directory
	resource (BPX1RMG) — Measure Resources
	rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning
	rmdir (BPX1RMD) — Remove a Directory
	BPX1SEC — Create a New Security Environment for a Process
	select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues
	semctl (BPX1SCT) — Perform Semaphore Control Operations
	semget (BPX1SGT) — Create or Find a Set of Semaphores
	semop (BPX1SOP) — Perform Semaphore Serialization Operations
	send (BPX1SND) — Send Data on a Socket
	send_file (BPX1SF) — Send a File on a Socket
	sendmsg (BPX2SMS) — Send Messages on a Socket
	sendto (BPX1STO) — Send Data on a Socket
	server_init (BPX1SIN) — Server Initialization
	server_pwu (BPX1SPW) — Server Process Work Unit
	set_dub_default (BPX1SDD) — Set the Dub Default Service
	setegid (BPX1SEG) — Set the Effective Group ID
	seteuid (BPX1SEU) — Set the Effective User ID
	setgid (BPX1SGI) — Set the Group ID
	setgrent (BPX1SGE) — Reset the Group Database
	setgroups (BPX1SGR) — Set the Supplementary Group IDs List
	setitimer (BPX1STR) — Set the Value of the Interval Timer
	setpeer (BPX1SPR) — Preset the Peer Address Associated with a Socket
	setpgid (BPX1SPG) — Set a Process Group ID for Job Control
	setpriority (BPX1SPY) — Set the Scheduling Priority of a Process
	setpwent (BPX1SPE) — Reset the User Database
	setregid (BPX1SRG) — Set the Real and/or Effective GIDs
	setreuid (BPX1SRU) —Set the Real and/or Effective UIDs
	setrlimit (BPX1SRL) — Set Resource Limits
	setsid (BPX1SSI) — Create a Session and Set the Process Group ID
	setsockopt or getsockopt (BPX1OPT) — Get or Set Options Associated with a Socket
	set_thread_limits (BPX1STL) — Change a Process's Task or Thread Limits for pthread_created Threads
	set_timer_event (BPX1STE) — Set DIE-Mode Timer Event
	setuid (BPX1SUI) — Set User IDs
	shmat (BPX1MAT) — Attach to a Shared Memory Segment
	shmctl (BPX1MCT) — Perform Shared Memory Control Operations
	shmdt (BPX1MDT) — Detach a Shared Memory Segment
	shmem_lock (BPX1SLK) — Shared Memory Lock Service
	shmget (BPX1MGT) — Create/Find a Shared Memory Segment
	shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket Connection
	sigaction (BPX1SIA) — Examine or Change a Signal Action
	__sigactionset (BPX1SA2) — Examine or Change a Set of Signal Actions
	sigpending (BPX1SIP) — Examine Pending Signals
	sigprocmask (BPX1SPM) — Examine or Change a Process's Signal Mask
	sigqueue (BPX1SGQ) — Queue a Signal to a Process
	sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered
	sigtimedwait (BPX1STW) — Wait for a Signal With a Specified Timeout
	sigwait (BPX1SWT) — Wait for a Signal
	sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time
	smf_record (BPX1SMF) — Write an SMF Record
	socket or socketpair (BPX1SOC) — Create a Socket or a Pair of Sockets
	spawn (BPX1SPN) — Spawn a Process
	srx_np (BPX1SRX) — Send or Receive CSM Buffers on a Socket
	stat (BPX1STA) — Get Status Information about a File by Pathname
	statvfs (BPX1STV) — Get the File System Status
	sw_sigdlv (BPX1DSD) — Switch the Setting for Signal Delivery
	symlink (BPX1SYM) — Create a Symbolic Link to a Pathname
	sync (BPX1SYN) — Schedule File System Updates
	sysconf (BPX1SYC) — Determine System Configuration Options
	takesocket (BPX1TAK) — Acquire a Socket from Another Program
	tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted
	tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal
	tcflush (BPX1TFH) — Flush Input or Output on a Terminal
	tcgetattr (BPX1TGA) — Get the Attributes for a Terminal
	tcgetcp (BPX1TGC) — Get Terminal Code Page Names
	tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID
	tcgetsid (BPX1TGS) — Get a Process Group ID for the Session Leader for the Controlling Terminal
	tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal
	tcsetattr (BPX1TSA) — Set the Attributes for a Terminal
	tcsetcp (BPX1TSC) — Set Terminal Code Page Names
	tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID
	tcsettables (BPX1TST) — Set Terminal Code Page Names and Conversion Tables
	times (BPX1TIM) — Get Process and Child Process Times
	truncate (BPX1TRU) — Change the Size of a File
	ttyname (BPX1TYN) (POSIX Version) — Get the Name of a Terminal
	ttyname (BPX2TYN) (X/Open Version) — Get the Name of a Terminal
	umask (BPX1UMK) — Set the File Mode Creation Mask
	umount (BPX1UMT) — Remove a Virtual File System
	uname (BPX1UNA) — Obtain the Name of the Current Operating System
	unlink (BPX1UNL) — Remove a Directory Entry
	unlockpt (BPX1UPT) — Unlock a Pseudoterminal Master/Slave Pair
	unquiesce (BPX1UQS) — Unquiesce a File System
	utime (BPX1UTI) — Set File Access and Modification Times
	wait (BPX1WAT) — Wait for a Child Process to End
	wait-extension (BPX1WTE) — Obtain Status Information for Children
	w_getipc (BPX1GET) — Query Interprocess Communications
	w_getmntent (BPX1GMN) — Get Information on Mounted File Systems
	w_getpsent (BPX1GPS) — Get Process Data
	w_ioctl (BPX1IOC) — Control I/O
	__wlm (BPX1WLM) — WLM Interface Service
	w_pioctl (BPX1PIO) — Pathname I/O Control
	w_statvfs (BPX1STF) — Get the File System Status
	write (BPX1WRT) — Write to a File or a Socket
	writev (BPX1WRV) — Write Data from a Set of Buffers

	Appendix A. System control offsets to callable services
	Example
	List of offsets

	Appendix B. Mapping macros
	Macros Mapping Parameter Options
	BPXYACC — Map Flag Values for access
	BPXYAIO — Map asyncio Parameter List
	BPXYATT — Map File Attributes for chattr and fchattr
	BPXYAUDT — Map Flag Values for chaudit and fchaudit
	BPXYBRLK — Map Byte Range Lock Request for fcntl
	BPXYCCA — Map Input/Output Structure for __console()
	BPXYCID — Map the Returning Structure for getclientid()
	BPXYCONS — Constants Used by Services
	BPXYCW — Serialization Constants Used by Many Services
	BPXYDIRE — Map Directory Entries for readdir
	BPXYDCOR — dbx cordump cache information
	BPXYENFO — ENF Signal Constants
	BPXYERNO — Component Return and Reason Codes
	BPXYFCTL — Command Values and Flags for fcntl
	BPXYFDUM — Logical File System Dump Parameter List
	BPXYFTYP — File Type Definitions
	BPXYFUIO — Map File System User I/O Block
	BPXYGIDN — Map Data Returned for getpwnam and getpwuid
	BPXYGIDS — Map Data Returned for getgrnam and getgrpid
	BPXYINHE — Spawn Inheritance Structure
	BPXYIOCC — Ioctl Command Definitions
	BPXYIOV — Map the I/O Vector Structure
	BPXYIPCP — Map InterProcess Communication Permissions
	BPXYIPCQ — Map w_getipc Structure
	BPXYITIM — Map getitimer, setitimer Structure
	BPXYMMG — Map Interface for _map_init and _map_service
	BPXYMNTE — Map Response and Element Structure of w_getmntent
	BPXYMODE — Map the Mode Constants of the File Services
	BPXYMSG — Map InterProcess Communication Message Queues
	BPXYMSGF — Map the Message Flags
	BPXYMSGH — Map the Message Header
	BPXYMSGX — Map the Message Header
	BPXYMTM — Map the Modes for mount and unmount
	BPXYOCRT — Map the OE Certificate Support Structure
	BPXYOEXT — Map the Common External Control Block
	BPXYOPNF — Map Flag Values for open
	BPXYPCF — Command Values for pathconf and pathconf
	BPXYPEDB — Mapping of Process Exit Data Block f
	BPXYPGPS — Map the Response Structure for w_getpsent
	BPXYPGTH — Map the Response Structure for __getthent
	BPXYPOLL — Map poll Syscall Parameters
	BPXYPPSD — Map Signal Delivery Data
	BPXYPRLI — Process-level Information
	BPXYPTAT — Map Attributes for pthread_exit_and_get
	BPXYPTRC — Map Parameters for ptrace
	BPXYPTXL — Map the Parameter List for pthread_create
	BPXYRFIS — Map the Register File Interest Structures
	BPXYRLIM — Map the Rlimit, Rusage, and Timeval Structures
	BPXYRMON — Map Resource Monitor Data
	BPXYSECI — Map the Output of BPX1IOC for the SECIGET Request
	BPXYSEEK — Constants for lseek
	BPXYSEL — Map the select Options
	BPXYSELT — Map the Timeout Value for the select Syscall
	BPXYSEM — Map InterProcess Communication Semaphores
	BPXYSFDL — Map the Server File Descriptor List Structure
	BPXYSFPL — Map the send_file parameter list
	BPXYSHM—Map InterProcess Communication Shared Memory Segments
	BPXYSIGH — Signal Constants
	BPXYSINF — Map SIGINFO_T Structure
	BPXYSOCK — Map SOCKADDR Structure and Constants
	BPXYSSET — Map the sigaction set
	BPXYSSTF — Map Response Structure for File System Status
	BPXYSTAT — Map the Response Structure for stat
	BPXYTCCP — Map the Terminal Control Code Page Structure
	BPXYTCPP — Map TcpParm Structure
	BPXYTCPX — Map TcpX structure
	BPXYTHDQ — Mapping of THDQ structure for BPX1PQG
	BPXYTHLI — Thread-level Information
	BPXYTIMS — Map the Response Structure for times
	BPXYTIOS — Map the termios Structure
	BPXYUTSN — Map the Response Structure for uname
	BPXYWAST — Map the Wait Status Word
	BPXYWLM — WLM Constants and Parameter List DSECTs
	BPXYWNSZ — Map the winsize Structure
	BPXZOAPB — USS address space per-process extension
	BPXZOTCB — USS extension to the TCB

	Appendix C. Callable services examples
	Reentrant entry linkage
	BPX1ACC (access) Example
	BPX1ACK (auth_check_resource_np) Example
	BPX1ACP (accept) Example
	BPX1AIO (asyncio) Example
	BPX1ALR (alarm) Example
	BPX1ANR (accept_and_recv) Example
	BPX1ASP (aio_suspend) Example
	BPX1ATM (attach_execmvs) Example
	BPX1ATX (attach_exec) Example
	BPX1BND (bind) Example
	BPXICCA (cond_cancel) Example
	BPX1CCS (__console()) Example
	BPX1CHA (chaudit) Example
	BPX1CHD (chdir) Example
	BPX1CHM (chmod) Example
	BPX1CHO (chown) Example
	BPX1CHP (chpriority) Example
	BPX1CHR (chattr) Example
	BPX1CID (convert_id_np) Example
	BPX1CLD (closedir) Example
	BPX1CLO (close) Example
	BPX1CON (connect) Example
	BPX1CPO (cond_post) Example
	BPX1CRT (chroot) Example
	BPX1CSE (cond_setup) Example
	BPX1CTW (cond_timed_wait) Example
	BPX1CWA (cond_wait) Example
	BPX1DEL (deleteHFS) Example
	BPX1ENV (oe_env_np) Example
	BPX1EXC (exec) Example
	BPX1EXI (_exit) Example
	BPX1EXM (execmvs) Example
	BPX1EXT (extlink_np) Example
	BPX1FAI(freeaddrinfo)Example
	BPX1FCA (fchaudit) Example
	BPX1FCD (fchdir) Example
	BPX1FCM (fchmod) Example
	BPX1FCO (fchown) Example
	BPX1FCR (fchattr) Example
	BPX1FCT (fcntl) Example
	BPX1FPC (fpathconf) Example
	BPX1FRK (fork) Example
	BPX1FST (fstat) Example
	BPX1FSY (fsync) Example
	BPX1FTR (ftruncate) Example
	BPX1FTV (fstatvfs) Example
	BPX1GAI (getaddrinfo) Example
	BPX1GCL (getclientid) Example
	BPX1GCW (getcwd) Example
	BPX1GEG (getegid) Example
	BPX1GEP (getpgid) Example
	BPX1GES (getsid) Example
	BPX1GET (w_getipc) Example
	BPX1GEU (geteuid) Example
	BPX1GGE (getgrent) Example
	BPX1GGI (getgrgid) Example
	BPX1GGN (getgrnam) Example
	BPX1GGR (getgroups) Example
	BPX1GHA (gethostbyaddr) Example
	BPX1GHN (gethostbyname) Example
	BPX1GID (getgid) Example
	BPX1GIV (givesocket) Example
	BPX1GLG (getlogin) Example
	BPX1GMN (w_getmntent) Example
	BPX1GNI (getnameinfo) Example
	BPX1GPG (getpgrp) Example
	BPX1GNM (getpeername or getsockname) Example
	BPX1GPE (getpwent) Example
	BPX1GPI (getpid) Example
	BPX1GPN (getpwnam) Example
	BPX1GPP (getppid) Example
	BPX1GPS (w_getpsent) Example
	BPX1GPT (grantpt) Example
	BPX1GPU (getpwuid) Example
	BPX1GPY (getpriority) Example
	BPX1GRL (getrlimit) Example
	BPX1GRU (getrusage) Example
	BPX1GTH (__getthent) Example
	BPX1GTR (getitimer) Example
	BPX1GUG (getgroupsbyname) Example
	BPX1GUI (getuid) Example
	BPX1GWD (getwd) Example
	BPX1HST (gethostid or gethostname) Example
	BPX1IOC (w_ioctl) Example
	BPX1IPT (mvsiptaffinity) Example
	BPX1ITY (isatty) Example
	BPX2ITY (isatty) Example
	BPX1KIL (kill) Example
	BPX1LCO (lchown) Example
	BPX1LNK (link) Example
	BPX1LOD (loadHFS) Example
	BPX1LSK (lseek) Example
	BPX1LSN (listen) Example
	BPX1LST (lstat) Example
	BPX1MAT (shmat) Example
	BPX1MCT (shmctl) Example
	BPX1MDT (shmdt) Example
	BPX1MGT (shmget) Example
	BPX1MKD (mkdir) Example
	BPX1MKN (mknod) Example
	BPX1MMI (__map_init) Example
	BPX1MMP (mmap) Example
	BPX1MMS (__map_service) Example
	BPX1MNT (mount) Example
	BPX2MNT (__mount) Example
	BPX1MP (mvspause) Example
	BPX1MPC (mvsprocclp) Example
	BPX1MPI (mvspauseinit) Example
	BPX1MPR (mprotect) Example
	BPX1MSD (mvsunsigsetup) Example
	BPX1MSS (mvssigsetup) Example
	BPX1MSY (msync) Example
	BPX1MUN (munmap) Example
	BPX1NIC (nice) Example
	BPX1OPD (opendir) Example
	BPX1OPN (open) Example
	BPX2OPN (openstat) Example
	BPX1OPT (getsockopt or setsockopt) Example
	BPX1OSE ((__osenv_get/set/unset/persist/unpersist) Example
	BPX1PAF (__pid_affinity) Example
	BPX1PAS (pause) Example
	BPX1PCF (pathconf) Example
	BPX1PCT (pfsctl) Example
	BPX1PIP (pipe) Example
	BPX1POL (poll) Example
	BPX1PQG (Pthread_quiesce_and_get_np) Example
	BPX1PSI (pthread_setintr) Example
	BPX1PST (pthread_setintrtype) Example
	BPX1PTB (pthread_cancel) Example
	BPX1PTC (pthread_create) Example
	BPX1PTD (pthread_detach) Example
	BPX1PTI (pthread_testintr) Example
	BPX1PTJ (pthread_join) Example
	BPX1PTK (pthread_kill) Example
	BPX1PTQ (pthread_quiesce) Example
	BPX1PTR (ptrace) Example
	BPX1PTS (pthread_self) Example
	BPX1PTT (pthread_tag_np) Example
	BPX1PTX (pthread_exit_and_get) Example
	BPX1PWD (__passwd) Example
	BPX1QCT (msgctl) Example
	BPX1QDB (querydub) Example
	BPX1QGT (msgget) Example
	BPX1QRC (msgrcv) Example
	BPX1QSE (quiesce) Example
	BPX1QSN (msgsnd) Example
	BPX1RCV (recv) Example
	BPX1RDD (readdir) Example
	BPX1RDL (readlink) Example
	BPX1RDV (readv) Example
	BPX1RDX (read extlink) Example
	BPX1RD2 (readdir2) Example
	BPX1RED (read) Example
	BPX1REN (rename) Example
	BPX1RFM (recvfrom) Example
	BPX1RMD (rmdir) Example
	BPX1RMG (resource) Example
	BPX2RMS (recvmsg) Example
	BPX1RPH (realpath) Example
	BPX1RW (Pwrite) Example
	BPX1RWD (rewinddir) Example
	BPX1SA2 (__sigactionset) Example
	BPX1SCT (semctl) Example
	BPX1SDD (setdubdefault) Example
	BPX1SEC Example
	BPX1SEG (setegid) Example
	BPX1SEL (select)Example
	BPX1SEU (seteuid) Example
	BPX1SF (send_file) Example
	BPX1SGE (setgrent) Example
	BPX1SGI (setgid) Example
	BPX1SGQ (sigqueue) Example
	BPX1SGR (setgroups) Example
	BPX1SGT (semget) Example
	BPX1SHT (shutdown) Example
	BPX1SIA (sigaction) Example
	BPX1SIN (server_init) Example
	BPX1SIP (sigpending) Example
	BPX1SLK (shmem_lock) Example
	BPX1SLP (sleep) Example
	BPX1SMF (smf_record) Example
	BPX2SMS (sendmsg) Example
	BPX1SND (send) Example
	BPX1SOC (socket or socketpair) Example
	BPX1SOP (semop) Example
	BPX1SPB (queue_interrupt) Example
	BPX1SPE (setpwent) Example
	BPX1SPG (setpgid) Example
	BPX1SPM (sigprocmask) Example
	BPX1SPN (spawn) Example
	BPX1SPR (setpeer) Example
	BPX1SPW (server_pwu) Example
	BPX1SPY (setpriority) Example
	BPX1SRG (setregid) Example
	BPX1SRL (setrlimit) Example
	BPX1SRU (setreuid) Example
	BPX1SRX (srx_np) Example
	BPX1SSI (setsid) Example
	BPX1SSU (sigsuspend) Example
	BPX1STA (stat) Example
	BPX1STE (set_timer_event) Example
	BPX1STF (w_statvfs) Example
	BPX1STL (set_thread_limits) Example
	BPX1STO (sendto) Example
	BPX1STR (setitimer) Example
	BPX1STV (statvfs) Example
	BPX1STW (sigtimedwait) Example
	BPX1SUI (setuid) Example
	BPX1SWT (sigwait) Example
	BPX1SYC (sysconf) Example
	BPX1SYM (symlink) Example
	BPX1SYN (sync) Example
	BPX1TAF (MVSThreadAffinity) Example
	BPX1TAK (takesocket) Example
	BPX1TDR (tcdrain) Example
	BPX1TFH (tcflush) Example
	BPX1TFW (tcflow) Example
	BPX1TGA (tcgetattr) Example
	BPX1TGC (tcgetcp) Example
	BPX1TGP (tcgetpgrp) Example
	BPX1TGS (tcgetsid) Example
	BPX1TIM (times) Example
	BPX1TLS (pthread_security_np) Example
	BPX1TRU (truncate) Example
	BPX1TSA (tcsetattr) Example
	BPX1TSB (tcsendbreak) Example
	BPX1TSC (tcsetcp) Example
	BPX1TSP (tcsetpgrp) Example
	BPX1TST (tcsettables) Example
	BPX1TYN (ttyname) Example
	BPX2TYN (ttyname) Example
	BPX1UMK (umask) Example
	BPX1UMT (umount) Example
	BPX1UNA (uname) Example
	BPX1UNL (unlink) Example
	BPX1UPT (unlockpt) Example
	BPX1UQS (unquiesce) Example
	BPX1UTI (utime) Example
	BPX1WAT (wait) Example
	BPX1WLM (__WLM) Example
	BPX1WRT (write) Example
	BPX1WRV (writev) Example
	BPX1WTE (wait extension) Example
	Reentrant Return Linkage

	Appendix D. Example with nonreentrant entry linkage
	Appendix E. The relationship of z/OS UNIX signals to callable services
	High-level-language signal interfaces
	How high-level languages use signals
	Signal setup when linking to callable services

	ESPIE or ESTAE and the SIGILL, SIGFPE, and SIGSEGV signals
	When signals are and are not supported

	Signal delivery keys
	Delayed signal delivery
	When signals cannot be delivered
	Signals and multiple tasks created by ATTACH
	Signals and multiple tasks created by pthread_create
	Signal defaults

	Appendix F. Using threads with callable services
	Creating threads
	The pthread_create task initialization routine

	Terminating pthreads
	Heavyweight thread (HWT)
	Mediumweight thread (MWT)
	Terminating multiple pthreads and tasks
	Pthread termination scenarios
	Using exit or _exit when the thread is not the IPT
	Using exit or _exit when the thread is the IPT
	Using pthread_exit_and_get when the thread is not the IPT and not the last thread
	Using pthread_cancel when the thread is not the last thread and is canceled
	Using pthread_exit_and_get when the thread is the IPT and not the last thread
	Using pthread_exit_and_get when the thread is not the IPT and is the last thread
	Using pthread_exit_and_get when the IPT is the last thread

	Appendix G. Optimizing performance using process- and thread-level information
	Optimization processing for BPX1PSI (pthread_setintr)
	Optimization processing for BPX1PST (pthread_setintrtype)
	Optimization processing for BPX1SPM (sigprocmask)
	Optimization processing for BPX1GPI (getpid)

	Appendix H. Callable services available to SRB mode routines
	Overview
	Recovery
	Task mode routine responsibilities
	Task and address space dynamic resource manager

	Callable services supported in SRB mode

	Appendix I. z/OS UNIX process start/end exits
	Exit environment
	Errno/errnoJrs
	Restrictions
	Usage notes

	Appendix J. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

